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Abstract. We prove here the existence of a value (of norm 1)
on the spaces ′NA and even ′AN, the closure in the variation dis-
tance of the linear space spanned by all games f ◦ µ, where µ is a
non-atomic, non-negative finitely additive measure of mass 1 and
f a real-valued function on [0, 1] which satisfies a much weakened
continuity at zero and one.
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1. Introduction

Aumann and Shapley (1974) proved the existence of a unique value
on the space bv′NA, the closure in the variation norm of the linear
space spanned by all games f � µ, where µ is a non-atomic probability
measure and f a real-valued function on [0, 1] which is of bounded vari-
ation, continuous at 0 = f(0) and at 1. Neyman (1981) proved that
this unique value is also an asymptotic value, and that the asympto-
tic approach fails when f is of unbounded variation: for some

�
0, 1 � -

valued function on [0, 1], which is continuous at 0 and 1 and vanishes
outside a countable set, f � µ does not have an asymptotic value. Tau-
man (1979) proved however that the axiomatic approach works also for
games of unbounded variation: there exists a value of norm 1 on the
space spanned by all games of the form f � µ where µ is a non-atomic
probability measure and f is integrable and continuous at 0 and 1. The
present paper removes the integrability assumption and weakens that
of continuity: we prove the existence of a value of norm 1 on the spaces
′AN, the closure in the variation distance of the linear space spanned
by all games f � µ, where µ is a non-atomic, non-negative finitely ad-
ditive measure of mass 1 and f a real-valued function on [0, 1] which
satisfies a much weaker continuity at 0 and 1. Under this value, f � µ
is mapped to f(1)µ. Moreover, even when the player set is standard
Borel, there are other values of norm 1 on ′AN, that differ already on
smooth functions of a finitely additive and non-atomic measure.

2. Preliminaries

Let (I, � ) be a measurable space. The members of the set I are
called players, those of � , coalitions. A game is a real-valued function
v on � such that v( � ) = 0. The linear space of all games is denoted G.
A game v � G is finitely additive if v(S � T ) = v(S) + v(T ) whenever
S and T are two disjoint coalitions.

A game v is monotone if v(S) � v(T ) whenever S � T . The vari-
ation of a game v � G, 	 v 	 , is the supremum of the variation of v over
all increasing chains S1 � S2 ��
�


�� Sn in � . A game v � G has
bounded variation if 	 v 	 < � . The space of all games of bounded vari-
ation, BV, is a Banach space. The variation metric given by d(v1, v2) =
min

�
1, 	 v1 � v2 	�� defines a distance (and hence a topology) on G.

FA (resp. M) is the set of additive (resp. countably additive) v � BV.
AN (resp. NA) is the set of non-atomic elements of FA (resp. M). Given
a set of games Q, Q+ denotes the monotone games in Q, and Q1 all
games v in Q+ with v(I) = 1.

Denote by � the group of automorphisms (i.e., one-to-one measur-
able mappings θ from I onto I with θ−1 measurable) of the underlying
space (I, � ). Each θ in � induces a linear mapping θ∗ of G onto it-
self, defined by (θ∗(v))(S) = v(θ−1(S)). A set of games Q is called
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symmetric if θ∗(Q) = Q for all θ in � .

Definition 1. Let Q be a symmetric linear subspace of G.
A map ϕ : Q � G is called positive if ϕ(Q+) � G+; symmetric if

for every θ ��� ϕ � θ∗ = θ∗ � ϕ; and efficient if for every v in Q,
(ϕ(v))(I) = v(I).

A value on Q is a symmetric, positive and efficient linear map from
Q to FA.

When Q � BV, the above definition of a value coincides with that in
(Aumann and Shapley, 1974). It is a natural extension to include also
spaces of games that are not necessarily subsets of BV.

The upper (lower) average of a function from an interval of � to �
is its upper (lower) Denjoy-Perron (or other) integral divided by the
length of that interval.

Let ′ be the set of all functions f : [0, 1] � � with the following
weakened continuity at 0 and 1: the upper and lower averages of f
over the intervals [0, ε] and [1 � ε, 1] converge as ε � 0+ to f(0) = 0
and f(1) respectively. The subspace of all polynomials is denoted p.
The subspace of all functions with bounded variation in ′ is denoted
bv′. The subspace of all integrable functions f that are continuous at 0
and 1 is denoted In′. Given subsets x of ′ and Y of G, xY is the closed
linear subspace of G spanned by the games f � γ with f � x and γ � Y1.

Obviously pNA � bv′NA � In′NA � ′AN. Aumann and Shapley
(1974) and Tauman (1979) prove the existence of a value on bv′NA and
In′NA respectively.

3. The Theorem

The objective of the present paper is:

Theorem 1. There exists a value of norm 1 on ′AN.

We show first that whenever � n

i=1 fi
� µi is bounded, with µi � AN1,

fi � ′, and µi �= µj for j �= i, all the fi’s are bounded. Using an extension
of Lebesgue measure to all sets we show next that 	 � n

i=1 fi(1)µi 	��	 � n

i=1 fi
� µi 	 . Therefore the map � n

i=1 fi
� µi �� � n

i=1 fi(1)µi defines
a value of norm 1 on ′AN.

Lyapunov’s (1940) classical convexity theorem asserts that the range
of a vector ~µ = (µ1, . . . , µn),

�
~µ(S) � S ����� , of non-atomic probability

measures, is convex (and compact); equivalently, for every ideal coali-
tion χ (a measurable function χ : I � [0, 1]) there is a coalition T ���
with ~µ(T ) = ~µ(ξ).

We make repeated use of the following generalizations and applica-
tion of Lyapunov’s theorem: given a vector of non-atomic finitely ad-
ditive measures ~µ = (µ1, . . . , µn), (1) for every ideal coalition ξ, there
is a coalition T with ~µ(T ) = ~µ(ξ), and more generally, (2) for every
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increasing sequence of ideal coalitions χ1 � . . . � χm there is an in-
creasing sequence of coalitions S1 � . . . � Sm such that ~µ(Sj) = ~µ(χj)
(Mertens, 1990), and (3) there is a coalition S such that µi(S) �= µj(S)
for all pairs i, j with µi �= µj (otherwise the range of ~µ is contained in
the union of the hyperplanes xi = xj where i, j are the pairs such that
µi �= µj, which contradicts the convexity of the range of ~µ unless all
the measures µi are identical).

Lemma 1. Assume that µ1, . . . , µn � AN1 are different, and that
f1, . . . , fn � ′. Then if v = � n

i=1 fi
� µi is bounded, so is each fi.

Proof. As each function fi is in ′, there is 0 < δ < 1/3 such that
for every 0 < ε � δ the upper and lower averages of each function
fi over the intervals [0, 2ε] and [1 � 2ε, 1] are within 1 of f(0) and
f(1) respectively. Therefore, for every δj with 0 < � δj ��� 1 and every
y � (0, δ] � [1 � δ, 1) the upper and lower averages of a �� fj(y + aδj)
over the interval 0 < a < min

�
y, 1 � y � are bounded in absolute value

by 3/δj + � fj(1) � . There exists S ��� with µi(S) �= µj(S) whenever
i �= j. Fix 1 � i � n and a sequence (xk)

∞
k=1 in (0, δ] � [1 � δ, 1). Set

δj = µj(S) � µi(S). For every a � min
�
xk, 1 � xk � , aS + (xk � aµi(S))I

is an ideal coalition. On the one hand,

µi(aS + (xk � aµi(S))I) = xk

and so fi(µi(aS+(xk � aµi(S))I)) = fi(xk). On the other hand, for every
j �= i µj(aS+(xk � aµi(S))I) = xk +aδj, and thus the upper and lower
averages of a �� fj(µj(aS+(xk � aµi(S))I)) over 0 < a < min

�
xk, 1 � xk �

are bounded in absolute value by 3/δj + � fj(1) � . Hence the upper
and lower averages of the map a �� � j 6=i fj(µj(aS + (xk � aµi(S))I))
over 0 < a < min

�
xk, 1 � xk � are bounded in absolute value by� j 6=i 3/δj + � fj(1) � . As the game � n

j=1 fj
� µj is bounded, the upper

and lower averages of the map a �� � n
j=1 fj(µj(aS+(xk � aµi(S))I)) =

fi(xk) + � j 6=i fj(µj(aS + (xk � aµi(S))I)) over 0 < a < min
�
xk, 1 � xk �

are bounded, implying that the sequence fi(xk) is bounded. So each fi

is bounded on [0, δ] and on [1 � δ, 1].
Define αi = inf

�
x � [0, 1] � fi is bounded on [x, 1] � . As fi is

bounded on [1 � δ, 1], αi � 1 � δ. As fi is bounded on [0, δ], either
αi = 0 in which case fi is bounded on [0, 1], or αi  δ. Assume
x = max1≤i≤nαi  δ, and set I =

�
i � αi = x � . Let i � I with

µi(S) � µj(S) for every j � I. There exists a sequence (xk)
∞
k=1 con-

verging to x such that � fi(xk) �!� � as k � � . Fix a > 0 sufficiently
small so that 2a < min(x, 1 � x) and αj < x � 2a whenever j /� I and
a < �µk(S) � µj(S) � whenever k �= j. Then aS + (xk � aµi(S))I is an
ideal coalition whenever (1 + x)/2 > xk > x/2. On the one hand,

µi(aS + (xk � aµi(S))I) = xk

and so fi(µi(aS + (xk � aµi(S))I)) = fi(xk) is unbounded. On
the other hand, for every j �= i limk→∞µj(aS + (xk � aµi(S))I) =
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x+a(µj(S) � µi(S)). Note that x+a(µj(S) � µi(S)) > αj+a
2 whenever

j �= i and hence for k sufficiently large

µj(aS + (xk � aµi(S))I) > αj + a2

and therefore for every j �= i the sequence fj(µj(aS+(xk � aµi(S))I)) =
fj(xk+a(µj(S) � µi(S))) is bounded. Thus � n

k=1 fk
� µk is an unbounded

game. "
The next is a “classic” corollary of the Markov-Kakutani theorem:

Lemma 2. Let E be the space of all real-valued functions on � that
are majorized in absolute value by some Lebesgue-integrable function.
There exists a translation invariant positive linear functional on E ex-
tending the Lebesgue integral.

Proof. Define p(f) for f � E as the upper-integral: inf
�$#
gdx � g �%

1, g  f � . Notice that p(f + g) � p(f) + p(g) and p(αf) = αp(f)
whenever f, g � E and α  0, and thus the Hahn-Banach theorem
yields the existence of a linear functional ϕ on E with ϕ � p: ϕ is a
positive linear functional and extends the Lebesgue integral.

For f � E let 	 f 	 = p( � f � ): this turns E into a semi-normed space.
The set of all positive linear functionals that extend the Lebesgue in-
tegral is a weak∗-compact convex subset C of the unit ball of the dual
E ′, and C �= � as just argued.

Let, for t �&� and f � E, Tt(f) : x �� f(x + t): this is an abelian
group of isometries of E; the transposes T ∗

t are continuous linear maps
from C to itself; hence by the Markov-Kakutani theorem (Dunford and
Schwartz, 1958, p. 456) there exists a common fixed point in C of all
T ∗

t : this is a translation invariant extension. "
In what follows we fix such a translation invariant extension,

%
,

and for a bounded function g on � , and a � b in � , let
# b

a
g(x)L(dx) =%

(g ' [a,b)), where ' A(x) = 1 if x � A and 0 otherwise. The crucial step
is the following:

Proposition 1. For every n �)( , f1, . . . , fn in ′ and ~µ = (µ1, . . . , µn)
in (AN1)

n, ***,+ n

i=1
fi(1)µi

*** � ***,+ n

i=1
fi
� µi

***
Proof. Set v = � n

i=1 fi
� µi and ϕv = � n

i=1 fi(1)µi. We must prove	 ϕv 	-�.	 v 	 .
We can assume that the right hand member ( 	 v 	 ) is finite; hence

that � n

i=1 fi
� µi is bounded. Since w.l.o.g. µi �= µj for i �= j, lemma 1

shows then that fi is bounded.
Obviously, ϕv � AN � FA. For each u � FA, 	 u 	 = supS∈ / �u(S) � +�u(Sc) � . It suffices thus to prove that for every coalition S ��� ,�ϕv(S) � + �ϕv(Sc) �!�.	 v 	 .
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For each positive integer m let S0 � S1 � 


�
0� Sm and Sc
0 �

Sc
1 � 




1� Sc

m be measurable subsets of S and Sc = I 2 S re-
spectively with ~µ(Sj) = j

m+1~µ(S) and ~µ(Sc
j) = j

m+1~µ(Sc). For every
0 � t � 1

m+1 let It be a measurable subset of I 2 (Sm � Sc
m)

with ~µ(It) = t~µ(I). Define the increasing sequence of coalitions
T0 � T1 � . . . T2m by T0 = It, T2j−1 = It � Sj � Sc

j−1 and T2j =
It � Sj � Sc

j, j = 1, . . . ,m. Obviously, 	 v 	  � 2m
j=1 � v(Tj) � v(Tj−1) �  �3� m−1

j=0 v(T2j+1) � v(T2j) � + �3� m

j=1 v(T2j) � v(T2j−1) � . Set ε = 1
m+1 .

Note that 1
ε

# ε

0
� m−1

j=0 [ � n

i=1 fi(t+ εj + εµi(S)) � � n

i=1 fi(t+ jε)]L(dt) =
1
ε

# 1−ε

0
[ � n

i=1 fi(t + εµi(S)) � � n
i=1 fi(t)]L(dt) �4� �m→∞ ϕv(S), and sim-

ilarly 1
ε

# ε

0
� m

j=1[ � n

i=1 fi(t + εj) � � n

i=1 fi(t + jε � εµi(S
c))]L(dt) =

1
ε

# 1

ε
[ � n

i=1 fi(t) � � n

i=1 fi(t � εµi(S
c))]L(dt) �4� �m→∞ ϕv(Sc). As v(T2j+1) �

v(T2j) = � n
i=1 fi(t+εj+εµi(S)) � � n

i=1 fi(t+jε), and v(T2j) � v(T2j−1) =� n
i=1 fi(t + 2jε) � � n

i=1 fi(t + 2jε � εµi(S
c)), we deduce that for each

fixed 0 � t � ε, �3� m−1
j=0 [ � n

i=1 fi(t+ εj + εµi(S)) � � n

i=1 fi(t+ jε)] � +�3� m

j=1[ � n

i=1 fi(t+ εj) � � n

i=1 fi(t+ jε � εµi(S
c))] �!�.	 v 	 and therefore�ϕv(S) � + �ϕv(Sc) �!�.	 v 	 . "

Proof of the Theorem. Consider the linear space Q generated by all
games of the form f � µ where f � ′ and µ � AN1. Any v � Q is of
the form � n

i=1 fi
� µi where fi � ′ and µi � AN1. Define ϕ : Q � AN

by ϕ( � n
i=1 fi

� µi) = � n
i=1 fi(1)µi. The proposition implies that ϕ

is well defined, i.e., independent of the representation. Indeed, if
v = � n

i=1 fi
� µi = � m

k=1 gk
� νk, 0 = � n

i=1 fi
� µi � � m

k=1 gk
� νk � BV, and

thus by the proposition � n
i=1 fi(1)µi = � m

k=1 gk(1)νk. Efficiency, linear-
ity and symmetry follow now from the definition of ϕ. Finally, the pro-
position implies that 	 ϕv 	5�6	 v 	 , so ϕ can be extended to a linear, effi-
cient and symmetric map ϕ : ′AN � AN ( � FA) such that 	 ϕv 	-�6	 v 	 .
This last property and efficiency imply that ϕ is positive. "

4. Comments

4.1. Continuity at 0 and 1. Previous papers on scalar-measure
games f � µ assumed continuity of f at 0 and 1 — and this was un-
derstood as the definition of ′. This concept is used however only in
the definitions of In′ and bv′ (cf. above); the former is subsumed by
the present paper, and the definition of the latter is not changed here,
since functions in bv anyway have limits at 0 and 1.

We could have used any other concept of integral to define the space
′ — in fact, the only properties we use are linearity, monotonicity, and
translation and scale covariance. But the Denjoy integral is applicable
to a wider class of functions than any other classical integration the-
ory (Riemann, Lebesgue, . . . ); hence it implies a bigger space ′. For
example, for α < β+, x−α cos(x−β) � ′, while using Lebesgue instead of
Denjoy-Perron (or at least Newton) in the definition would further re-
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quire α < 1: the additional absolute summability requirement is clearly
irrelevant (and would amount to again sneaking some bv requirement
into the definition, this time on the primitive).

A further extension: apply our result to the symmetrized game
(v �� v̂ where v̂(S) = 1

2(v(S) + v(I) � v( 7 S)), obtaining thus a value
on the sum of the present space and that of all anti-symmetric games
(v(S) = v( 7 S)). Then, for f � µ to belong to this space, it would suffice

that limδ→0+
1
δ

# δ

0
[f(1 � y) � f(y)]dy = f(1) in the sense of upper- and

lower- Denjoy-integrals (and f(0) = 0) — thus defining a larger ′.

4.2. ′AN 8 BV = bv′AN ? We suspect that maybe ′AN 9 BV = bv′AN
(equivalently: ′NA 9 BV = bv′NA), and conceivably even the stronger
result: � i fi

� µi � BV, where fi � ′ and µi are distinct elements of AN1,
implies fi � bv′ : i. Here we reduce these problems to the case where
the fi’s are continuous, and are smooth in the interior of [0, 1].

Lemma 3. If v = � n

i=1 fi
� µi � BV, with fi � ′, µi � AN1, µi �= µj for

i �= j, then:

(1) ; hi which are continuous on [0, 1] and C∞ on ]0, 1[ such that
fi � hi � bv′.

(2) v is “continuous in variation” at 0 (and similarly at 1), i.e.: ε > 0 ; δ > 0: for any ideal coalition χ with µi(χ) � δ : i the
variation of v on [0, χ] is � ε.

Proof. By lemma 1, all fi are bounded.
Step 1: : ε > 0 fi has bounded variation on [ε, 1 � ε]:

Fix S �<� such that µi(S) �= µ1(S) for i �= 1, and set ρ =
mini6=1 �µi(S) � µ1(S) � .

The function f ε
i , defined on [ε, 1 � ε] by (with L(dθ) as above)

f ε
i (x) =

1

ε

= ε

0

fi(x+ θ(µi(S) � µ1(S)))L(dθ)

is Lipschitz of constant 2K
ερ where K  sup0≤x≤1 � fi(x) � if i �= 1, and

f ε
1 = f1.
For ε � x0 < 


�
 < xk � 1 � ε, and αi = µi(S) � µ1(S),+ k

j=1 >> f1(xj) � f1(xj−1) >> � +
k

j=1 >>>
+ n

i=1
f ε

i (xj) � + n

i=1
f ε

i (xj−1) >>>
+ + k

j=1 >>>
+ n

i=2
f ε

i (xj) � + n

i=2
f ε

i (xj−1) >>>� + k

j=1 >>>
+ n

i=1

1

ε

= ε

0 ? fi @ xj + θαi A � fi @ xj−1 + θαi ACB L(dθ) >>> + n
2K

ερ

� 1

ε

= ε

0

+ k

j=1 >>>
+ n

i=1 ? fi @ xj + θαi AD� fi @ xj−1 + θαi ACB >>> L(dθ) + n
2K

ερ

As for every 0 < θ < ε, the sequence xj +θS � θµ1(S) is a chain of ideal
coalitions, the right-hand side is bounded by

** � fi
� µi

**
+ 2nK/ερ.

Therefore f1 has bounded variation on [ε, 1 � ε].
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Step 2: ; gi � bv′ such that hi = fi � gi is locally absolutely continuous
on ]0, 1[.

Let h0
i (x) =

# x
1

2

f ′
i(y)dy (the absolutely continuous part of f), gi =

fi � h0
i , f

ε
i (x) = fi(ε + (1 � 2ε)x) � fi(ε), and similarly gε

i ; by step
1, f ε

i � bv. If fi is continuous at ε and 1 � ε, f ε
i � bv′. Given a

chain S1 �E


�
 Sk, χi = ε+ (1 � 2ε)Si is a chain of ideal coalitions and
f ε

i (µi(Sj)) = fi(µi(χj)), so:** + f ε
i
� µi

** � ** + fi
� µi

**
By Aumann and Shapley (1974, 8.17, p. 65), 	 � fi

� µi 	  	 � f ε
i
� µi 	  � 	 gε

i 	 and thus 	 gε
i 	 is bounded in ε and gi � bv. Therefore, gi has

limits at 0 and 1. Hence defining ḡi(x) = gi(x) � limy→0+ gi(y), ḡi(0) = 0,
and ḡi(1) = limx→1− ḡi(x), ḡi � bv′. Setting hi = fi � ḡi we conclude
that hi is absolutely continuous on ]0, 1[.

Step 3: Smoothing hi.
For n = 1, 
�


 , let hn

i be a smooth function on an open neighborhood
of [2−n, 1 � 2−n] that coincides on [2−(n−1), 1 � 2−(n−1)] with hn−1

i and
at 2−n and 1 � 2−n with hi, and whose variation distance to hi on this
open neighborhood is � 1 � 2−n. Then h∞i is C∞ on ]0, 1[, and with
gi = hi � h∞i , 	 gi 	F� 1, so gi has limits at 0 and 1: extend gi to [0, 1]
by those limits, then subtract gi(0) from it: we have a function gi � bv′

such that hi � gi is C∞ on ]0, 1[.

Step 4: Continuity of hi.
For (1), it remains to prove continuity at 0 and 1, say of h1 at 0.

Otherwise, e.g., lim supx→0+h1(x) > 0 (or change the sign of the game).
Then choose 0 < β < lim supx→0+h1(x), and a sequence xi decreasing to
0 such that h1(xi) > β. Let yi = min

�
x � h1(y)  β/2 for x � y � xi � .

By continuity, the min is achieved and yi � xi, and h1 � ′, h1(0) = 0
imply yi > 0. So, for a subsequence, xi+1 < yi.

Let χ(z) = z @ (1 � θµ1(S))I + θS A , and Hi(z) =
# 1

0
(hi
� µi)(χ(z))dθ:

H1 = h1 and for i �= 1 Hi(z) = 1
z(µi(S)−µ1(S))

# z(1+µi(S)−µ1(S))

z
hi(x)dx con-

verges with z to 0 since hi � ′. Assume w.l.o.g. that : x � x1, �Hi(x) � <
β/(8n).

Now let χ2k−1 = χ(xk), χ2k = χ(yk):
: θ � [0, 1], the χk form

a decreasing chain of ideal coalitions (assuming x1 � 1/2). Hence: θ, � k � v(χ2k−1) � v(χ(xk)) �G�H	 v 	 , so, by Jensen, taking expectations
inside w.r.t. θ, � k �3� i(Hi(xk) � Hi(yk)) �!�6	 v 	 . But H1(xk) � H1(yk) =
h1(xk) � h1(yk)  β/2 by construction, and for i �= 1 Hi(xk) � Hi(yk) >� β/(4n), so that � i(Hi(xk) � Hi(yk)) > β/4, a contradiction.

Step 5: Continuity in variation.
By (1), it suffices to prove this when fi = hi, since a game g � µ

with g � bv′ and µ � AN1 is clearly continuous in variation at 0 and
1, and this continuity is preserved when summing games. If the res-
ult were not true, there would be a sequence χk and ε > 0 such that
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µ(χk) � 0 (with µ = � iµi) and : k Var(v)[0, χk] > ε. Now fix a
chain χ′

j with variation > 	 v 	 � ε. Let χk
j = max(χ′

j, χk). Observe that
0 � µi(χ

k
j) � µi(χ

′
j) � µi(χ

k) � 0; hence, by continuity of hi (step 4), for
k sufficiently large the variation of v on the chain χk

j is > 	 v 	 � ε. Take a
chain χ′′

l � χk with variation > ε. Then the variation of v on the chain
consisting of the χ′′

l followed by the χk
j is > 	 v 	 : a contradiction. "

Corollary 1. ′AN 9 BV � bv′AND where bv′AND is the closed space
spanned by bv′AN and all games of bounded variation that vanish on an
AN-diagonal neighborhood.

Proof. By lemma 3 any game in ′NA 9 BV is approximated by the sum
of a game in bv′AN and a game v = � n

i=1 fi
� µi where the fi are con-

tinuous on [0, 1] and smooth on its interior. It suffices to prove that
v � bv′AND. Fix ε > 0, and by the previous lemma take δ > 0 such
that Var(v)[0, χ] < ε whenever µ(χ) < δ. Let g : � � [0, 1] be a
smooth monotone function with g(x) = 0 for x � δ/2 and g(x) = 1 for
x  δ. Define w = (g � µ) I v. It follows that for χ with µ(χ)  δ,
w(χ) = v(χ), and for χ with µ(χ) = δ, Var(w)[0, χ] � 2Var(v)[0, χ].
Therefore the variation of v � w is bounded by 3ε. Also, w is smooth on
a neighborhood of [0, 1/2]. Handling the neighborhood of 1 similarly,
we can approximate the game v by a game w which is smooth on a
neighborhood of the diagonal, hence in bv′AND. "
The equalities ′NA 9 BV = bv′NA and ′AN 9 BV = bv′AN may depend on
the space of players (I, � ). To state ′NA 9 BV = bv′NA J ′AN 9 BV =
bv′AN, given that spaces depend on (I, � ):

Proposition 2. If ′NA 9 BV = bv′NA ( �= �
0 � ) or ′AN 9 BV = bv′AN

( �= �
0 � ) for some (I, � ) where NA or AN respectively are �= �

0 � , then
both equalities hold for all (I, � ).

Proof. Step 1: Fix a player set (I, � ) and finitely many elements µ1, . . . ,
µn, ν1, . . . , νk in AN1. We prove first that if fi, 1 � i � n, are continuous
on [0, 1] and smooth on its interior, and gj = gs

j + gac
j � bv′, 1 � j � k,

with gac
j absolutely continuous and gs

j singular, then** + n

i=1
fi
� µi � + k

j=1
gac

j
� νj

** � ** + n

i=1
fi
� µi � + k

j=1
gj
� νj

**
Indeed, let Ω: χ0 � . . . � χm be an increasing chain of ideal coalitions
so that 	 � n

i=1fi
� µi � � k

j=1g
ac
j
� νj 	 Ω > 	 � n

i=1fi
� µi � � k

j=1g
ac
j
� νj 	 � ε.

Using the continuity of the functions fi and gac
j we may assume w.l.o.g.

that there is δ > 0 such that δ < χ0 � χm < 1 � δ. Consider the
increasing path of ideal coalitions χ(t) = χj + (mt � j)(χj+1 � χj)
for j/m � t � (j + 1)/m, 0 � t � 1. The function t ��� n

i=1fi(µi(χ(t))) � � k
j=1gj(νj(χ(t))) is a sum of an absolutely continu-

ous function t �� � n

i=1fi(µi(χ(t))) � � k

j=1g
ac
j (νj(χ(t))) and a singular

function t �� � � k
j=1g

s
j(νj(χ(t))) and therefore its variation over [0, 1]

is  	C� n

i=1fi
� µi � � k

j=1g
ac
j
� νj 	 Ω  	C� n

i=1fi
� µi � � k

j=1g
ac
j
� νj 	 � ε.
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Step 2: Every game v = f � ~µ � bv′NA, where ~µ = (µ1, . . . , µn) is a
vector of NA+ elements, can be approximated by a game w = � gi

� νi

such that all νi � NA+ are dominated by µ = � µj: indeed, if w =� gi
� νi with νi � NA+, let ν = � νj and B =

�
x � dµ/d(µ+ν)(x) > 0 �

and set ν̃i(C) = ν(C 9 B). Let w̃ = � gi
� ν̃i. Then the variation

of v � w̃ over a chain C1 � 


�
�� Cn equals that of v � w over
C1 9 B �K




L� Cn 9 B; hence 	 v � w̃ 	M� 	 v � w 	 . Modify gi to
be left-continuous at ν̃i(I) if needed.1

Step 3: We now prove that if ′NA 9 BV = bv′NA �= �
0 � for (I ′, � ′),

then ′NA 9 BV = bv′NA for (I, � ). Fix ν � NA1 on (I ′, � ′). It suffices,
by lemma 3, to prove that v = � n

i=1 fi
� µi � bv′NA when v � BV,

µi � NA1(I, � ), and the fi are continuous on [0, 1] and smooth on its
interior. Let µ be the average of the µi. Let f be a Radon-Nikodym
derivative of the vector µi w.r.t. µ. Further, for each atom xk of the
distribution of f under µ, let Ik = f−1(xk), and construct, for each
rational r � [0, 1], a measurable subset Ir

k of Ik with Ir
k � Is

k for r < s
and µ(Ir

k) = rµ(Ik). Let � 0 be the separable sub-σ-field of � spanned
by f and the Ir

k. Similarly, let � ′
0 be a separable sub-σ-field of � ′ on

which ν is still non-atomic. The separable measure algebras NO� 0, µ P
and NO� ′

0, ν P are isomorphic. This isomorphism induces an isometry h
from L1( � 0, µ) to L1( � ′

0, ν). The isomorphism h induces maps H and
H ′ acting on all measures absolutely continuous with respect to µ re-
spectively ν to those absolutely continuous with respect to ν and µ
respectively such that H(ξ) = h( dξ

dµ � / 0
)dν and H ′(η) = h−1( dη

dν � / ′

0
)dµ.

The isometry of the L1 spaces induces one of their duals L∞ and there-
fore preserves all (relevant, i.e., � 0-measurable) chains. It maps the
game v to a game h(v) = � n

i=1 fi
� H(µi) � BV on (I ′, � ′). Therefore

by our assumption h(v) � bv′NA and thus, by step 2, it can be approx-
imated by a game w = � k

j=1gj
� νj with νj dominated by ν. Therefore,

the game h−1(w) = � k

j=1gj
� H ′(νj) approximates the game v.

Step 4: It remains to show that : (I, � ) ; (I ′, � ′) such that ′AN 9 BV =
bv′AN �= �

0 � on (I, � ) iff ′NA 9 BV = bv′NA �= �
0 � on (I ′, � ′). For this,

let I ′ be the Stone space S of B(I, � ), i.e., a compact space whose
algebra of continuous functions, C(S), is isomorphic to B(I, � ). En-
dow S with the (Baire) σ-field � ′ spanned by the continuous functions.
Every measure λ � AN(I, � ) thus becomes a continuous linear func-
tional h(λ) on C(S), i.e., by Riesz’s theorem h induces an isometry
between AN(I, � ) and NA(I ′, � ′). It maps a game v = � n

i=1 fi
� µi on

(I, � ) to a game h(v) = � n

i=1 fi
� h(µi) on (I ′, � ′) with 	 h(v) 	 = 	 v 	

when the functions fi are continuous, and thus h(v) � BV. If � k

j=1 gj
� νj

approximates h(v) then � j gj
� h−1(νj) approximates v which proves the

“if”part, (without any need for step 2). For the converse, h−1 maps the
game v = � n

i=1 fi
� µi on (I ′, � ′) to a game h−1(v) = � n

i=1 fi
� h−1(µi)

1Tauman (1982) has a much sharper result for the case v ∈ pNA.
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on (I, � ) with 	 h−1(v) 	Q� 	 v 	 , and thus h−1(v) � BV. Assuming
′AN 9 BV = bv′AN, there is a finite sum � k

j=1 gj
� νj with continuous

functions gj that approximate h−1(v). As the functions fi are also

continuous, � k
j=1 gj

� h(νj) approximate v: the variation of the game

v � � k
j=1 gj

� h(νj) over a chain of ideal coalitions in (I ′, � ′) is approx-
imated by its variation over a chain of continuous ideal coalitions and
thus 	 v � � j gj

� h(νj) 	 = 	 h−1(v) � � j gj
� νj 	 . "

Remarks: 1) To have AN1 �= � , it is necessary and sufficient that
# � = � . The necessity is clear; for the sufficiency, # � = � implies
the existence of a sequence xn in I such that n �= m R ; C �S� : xn �
C, xm /� C, and hence of a countable measurable partition Cn such that: n, xn � Cn. For f � B(I, � ) let p(f) = lim supn→∞ � n

i=1 f(xi)/n, and
choose by Hahn-Banach a linear functional µ on B(I, � ) with µ � p.
The linear functional µ is a finitely additive measure on (I, � ). For
every n µ( @UT ∞

k=0Ckn+i A � 1/n and @VT ∞
k=0Ckn+i A ni=1

is a finite measur-
able partition of I. Therefore, µ is non-atomic.

2) We have no such characterization for NA for general (I, � ), but:
For the existence of a non-atomic, non-null regular borel measure on
a Hausdorff space X, it is necessary and sufficient that X has a com-
pact perfect subset. For the necessity, by regularity we have then such
a measure with compact support, and by non-atomicity this support
must be perfect. For the sufficiency we can assume X compact and
perfect, observe then that the set of probability measures having at
least one atom of mass � 1/n is closed in the weak∗ topology, and with
empty interior by perfectness. and use the Baire category theorem.

Proposition 3. For every player set with # � = � the following are
equivalent:
1) If � n

i=1 fi
� µi � BV with (fi, µi) � ′ I AN1 and µi �= µj for i �= j,

then : i, fi � bv′.
2) If F : [0, 1]2 � � : (x, y) �� � n

i=1 fi(aix + (1 � ai)y) has bounded
variation, where fi � C([0, 1]) are smooth on ]0, 1[ and 0 < a1 < 


�
 <
an < 1, then : i, fi � bv′.

Proof. # � = � implies that there are two mutually singular measures
in AN1. So 1 R 2 is obvious. For 2 R 1, assume v = � n

i=1 fi
� µi � BV

with (fi, µi) � ′ I AN1 and µi �= µj for i �= j. We have to prove that
each fi has bounded variation. By lemma 3 we can assume w.l.o.g.
that the fi are continuous on [0, 1] and smooth on its interior. There
is a coalition S �W� such that 0 �= µi(S) �= µj(S) �= 1 if i �= j.
Set ai = µi(S). As v has bounded variation over ideal coalitions and
v(xS + y 7 S) = F (x, y) = � n

i=1 fi(aix + (1 � ai)y), the function F has
bounded variation over the square [0, 1]2 and thus by (2), each fi has
bounded variation. "
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Proposition 4. If the player set is standard Borel, the equality
′NA 9 BV = bv′NA implies that there is a unique value on ′NA.

Proof. Let ϕ be a value on ′NA. By assumption any game v � ′NA
is a sum of a game u � bv′NA and a finite sum � n

i=1 fi
� µi with

fi � ′ and µi � NA1. Thus, if ψ is the unique value on bv′NA,
ϕv = ψu+ � n

i=1 fi(1)µi, i.e. ϕv is uniquely defined. "
Even when (I, � ) is standard Borel, there are many values of norm

1 on ′AN, that differ already on pAN. E.g., decompose every µ in
AN+ as µ1 + µ2, with µ1 carried by a countable set and µ2 vanish-
ing on each such set. Fix a smooth increasing path (cf. Hart, 1973;
Haimenko, 2000) γ : [0, 1] � [0, 1]2 with γ(0) = 0, γ(1) = 1. For
simplicity, assume γ is affine in a neighborhood of 0 and of 1. For
f continuous on [0, 1] and C1 on its interior, let [ϕγ(f

� µ)](S) =# 1

0
f ′(γ1(t)µ

1(1)+γ2(t)µ
2(1))[γ′1(t)µ

1(S)+γ′2(t)µ
2(S)]dt, as a Denjoy in-

tegral. For f � bv′, let [ϕγ(f
� µ)](S) = limε→0

1
ε

# 1

0
[f(min(1, γ1(t)µ

1(1)+

γ2(t)µ
2(1)+ ε)) � f(γ1(t)µ

1(1)+ γ2(t)µ
2(1))][γ′1(t)µ

1(S)+ γ′2(t)µ
2(S)]dt.

Observe that both formulas coincide on the intersection of those 2
spaces, hence define by linearity ϕγ(f

� µ) uniquely for all f in their
sum X. Fix a Hamel basis for X, and complete it to a Hamel basis of ′:
the additional basis vectors span a space Y , such that every f � ′ has a
unique decomposition f = f 1+f 2 with f 1 � X and f 2 � Y . Define then
ϕγ(f

� µ) = ϕγ(f
1 � µ) + f 2(1)µ. Now 	�� iϕγ(fi

� µi) 	X�H	�� i fi
� µi 	 :

indeed, if the right hand member is finite, lemma 3.1 implies that
fi � X : i; the verification is then straightforward. This defines there-
fore ϕγ as a value of norm 1 on a dense subspace of ′AN, hence on ′AN.
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