האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

A VALUE ON 'AN

by

JEAN-FRANÇOIS MERTENS and ABRAHAM NEYMAN

Discussion Paper \# 276 November 2001

מרכז לחקר הרציונליות
CENTER FOR THE STUDY
OF RATIONALITY

Feldman Building, Givat-Ram, 91904 Jerusalem, Israel
PHONE: [972]-2-6584135 FAX: [972]-2-6513681
E-MAIL: ratio@math.huji.ac.il
URL: http://www.ratio.huji.ac.il/

A VALUE ON 'AN

JEAN-FRANÇOIS MERTENS ${ }^{\dagger}$ AND ABRAHAM NEYMAN ${ }^{\ddagger}$

Abstract

We prove here the existence of a value (of norm 1) on the spaces ' $N A$ and even ' $A N$, the closure in the variation distance of the linear space spanned by all games $f \circ \mu$, where μ is a non-atomic, non-negative finitely additive measure of mass 1 and f a real-valued function on $[0,1]$ which satisfies a much weakened continuity at zero and one.

Date: 29th October 2001.
1991 Mathematics Subject Classification. 90A08, 90A07
J.E.L. Classification numbers. D70, D71, D63, C71.

Key words and phrases. Games, Cooperative, Coalitional form, Transferable Utility, Value, Continuum of Players, Non-Atomic.

This research was in part supported by the Belgian Programme on Interuniversity Poles of Attraction, initiated by the Prime Minister's Science Policy Office, and by the Israeli Science Foundation grant 382/98.
${ }^{\dagger}$ CORE, Université Catholique de Louvain; 34, Voie du Roman-Pays; B-1348 Louvain-la-Neuve; Belgique. E-mail: jfm@core.ucl.ac.be.
${ }^{\ddagger}$ Institute of Mathematics; and Center for Rationality and Interactive Decision Theory; The Hebrew University of Jerusalem; Givat Ram; Jerusalem 91904; Israel. E-mail: aneyman@math.huji.ac.il.

1. Introduction

Aumann and Shapley (1974) proved the existence of a unique value on the space $b v^{\prime} N A$, the closure in the variation norm of the linear space spanned by all games $f \circ \mu$, where μ is a non-atomic probability measure and f a real-valued function on $[0,1]$ which is of bounded variation, continuous at $0=f(0)$ and at 1. Neyman (1981) proved that this unique value is also an asymptotic value, and that the asymptotic approach fails when f is of unbounded variation: for some $\{0,1\}$ valued function on $[0,1]$, which is continuous at 0 and 1 and vanishes outside a countable set, $f \circ \mu$ does not have an asymptotic value. Tauman (1979) proved however that the axiomatic approach works also for games of unbounded variation: there exists a value of norm 1 on the space spanned by all games of the form $f \circ \mu$ where μ is a non-atomic probability measure and f is integrable and continuous at 0 and 1 . The present paper removes the integrability assumption and weakens that of continuity: we prove the existence of a value of norm 1 on the spaces 'AN, the closure in the variation distance of the linear space spanned by all games $f \circ \mu$, where μ is a non-atomic, non-negative finitely additive measure of mass 1 and f a real-valued function on $[0,1]$ which satisfies a much weaker continuity at 0 and 1 . Under this value, $f \circ \mu$ is mapped to $f(1) \mu$. Moreover, even when the player set is standard Borel, there are other values of norm 1 on ' $A N$, that differ already on smooth functions of a finitely additive and non-atomic measure.

2. Preliminaries

Let (I, \mathscr{C}) be a measurable space. The members of the set I are called players, those of \mathscr{C}, coalitions. A game is a real-valued function v on \mathscr{C} such that $v(\emptyset)=0$. The linear space of all games is denoted G. A game $v \in G$ is finitely additive if $v(S \cup T)=v(S)+v(T)$ whenever S and T are two disjoint coalitions.

A game v is monotone if $v(S) \leq v(T)$ whenever $S \subset T$. The variation of a game $v \in G,\|v\|$, is the supremum of the variation of v over all increasing chains $S_{1} \subset S_{2} \subset \cdots \subset S_{n}$ in \mathscr{C}. A game $v \in G$ has bounded variation if $\|v\|<\infty$. The space of all games of bounded variation, $B V$, is a Banach space. The variation metric given by $d\left(v_{1}, v_{2}\right)=$ $\min \left\{1,\left\|v_{1}-v_{2}\right\|\right\}$ defines a distance (and hence a topology) on G.
$F A$ (resp. M) is the set of additive (resp. countably additive) $v \in B V$. $A N($ resp. $N A)$ is the set of non-atomic elements of $F A$ (resp. M). Given a set of games Q, Q_{+}denotes the monotone games in Q, and Q_{1} all games v in Q_{+}with $v(I)=1$.

Denote by \mathscr{G} the group of automorphisms (i.e., one-to-one measurable mappings θ from I onto I with θ^{-1} measurable) of the underlying space (I, \mathscr{C}). Each θ in \mathscr{G} induces a linear mapping θ^{*} of G onto itself, defined by $\left(\theta^{*}(v)\right)(S)=v\left(\theta^{-1}(S)\right)$. A set of games Q is called
symmetric if $\theta^{*}(Q)=Q$ for all θ in \mathscr{G}.
Definition 1. Let Q be a symmetric linear subspace of G.
A map $\varphi: Q \rightarrow G$ is called positive if $\varphi\left(Q_{+}\right) \subseteq G_{+}$; symmetric if for every $\theta \in \mathscr{G} \varphi \circ \theta^{*}=\theta^{*} \circ \varphi$; and efficient if for every v in Q, $(\varphi(v))(I)=v(I)$.
A value on Q is a symmetric, positive and efficient linear map from Q to $F A$.

When $Q \subseteq B V$, the above definition of a value coincides with that in (Aumann and Shapley, 1974). It is a natural extension to include also spaces of games that are not necessarily subsets of $B V$.

The upper (lower) average of a function from an interval of \mathbb{R} to \mathbb{R} is its upper (lower) Denjoy-Perron (or other) integral divided by the length of that interval.

Let ' be the set of all functions $f:[0,1] \rightarrow \mathbb{R}$ with the following weakened continuity at 0 and 1 : the upper and lower averages of f over the intervals $[0, \varepsilon]$ and $[1-\varepsilon, 1]$ converge as $\varepsilon \rightarrow 0+$ to $f(0)=0$ and $f(1)$ respectively. The subspace of all polynomials is denoted p. The subspace of all functions with bounded variation in ' is denoted $b v^{\prime}$. The subspace of all integrable functions f that are continuous at 0 and 1 is denoted $I n^{\prime}$. Given subsets x of ' and Y of $G, x Y$ is the closed linear subspace of G spanned by the games $f \circ \gamma$ with $f \in x$ and $\gamma \in Y_{1}$.

Obviously $p N A \subset b v^{\prime} N A \subset I n^{\prime} N A \subset ' A N$. Aumann and Shapley (1974) and Tauman (1979) prove the existence of a value on $b v^{\prime} N A$ and $I n^{\prime} N A$ respectively.

3. The Theorem

The objective of the present paper is:
Theorem 1. There exists a value of norm 1 on 'AN.
We show first that whenever $\sum_{i=1}^{n} f_{i} \circ \mu_{i}$ is bounded, with $\mu_{i} \in A N_{1}$, $f_{i} \in^{\prime}$, and $\mu_{i} \neq \mu_{j}$ for $j \neq i$, all the f_{i} 's are bounded. Using an extension of Lebesgue measure to all sets we show next that $\left\|\sum_{i=1}^{n} f_{i}(1) \mu_{i}\right\| \leq$ $\left\|\sum_{i=1}^{n} f_{i} \circ \mu_{i}\right\|$. Therefore the map $\sum_{i=1}^{n} f_{i} \circ \mu_{i} \mapsto \sum_{i=1}^{n} f_{i}(1) \mu_{i}$ defines a value of norm 1 on 'AN.

Lyapunov's (1940) classical convexity theorem asserts that the range of a vector $\vec{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right),\{\vec{\mu}(S) \mid S \in \mathscr{C}\}$, of non-atomic probability measures, is convex (and compact); equivalently, for every ideal coalition χ (a measurable function $\chi: I \rightarrow[0,1])$ there is a coalition $T \in \mathscr{C}$ with $\vec{\mu}(T)=\vec{\mu}(\xi)$.

We make repeated use of the following generalizations and application of Lyapunov's theorem: given a vector of non-atomic finitely additive measures $\vec{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)$, (1) for every ideal coalition ξ, there is a coalition T with $\vec{\mu}(T)=\vec{\mu}(\xi)$, and more generally, (2) for every
increasing sequence of ideal coalitions $\chi_{1} \leq \ldots \leq \chi_{m}$ there is an increasing sequence of coalitions $S_{1} \subset \ldots \subset S_{m}$ such that $\vec{\mu}\left(S_{j}\right)=\vec{\mu}\left(\chi_{j}\right)$ (Mertens, 1990), and (3) there is a coalition S such that $\mu_{i}(S) \neq \mu_{j}(S)$ for all pairs i, j with $\mu_{i} \neq \mu_{j}$ (otherwise the range of $\vec{\mu}$ is contained in the union of the hyperplanes $x_{i}=x_{j}$ where i, j are the pairs such that $\mu_{i} \neq \mu_{j}$, which contradicts the convexity of the range of $\vec{\mu}$ unless all the measures μ_{i} are identical).
Lemma 1. Assume that $\mu_{1}, \ldots, \mu_{n} \in A N_{1}$ are different, and that $f_{1}, \ldots, f_{n} \in^{\prime}$. Then if $v=\sum_{i=1}^{n} f_{i} \circ \mu_{i}$ is bounded, so is each f_{i}.
Proof. As each function f_{i} is in ', there is $0<\delta<1 / 3$ such that for every $0<\varepsilon \leq \delta$ the upper and lower averages of each function f_{i} over the intervals $[0,2 \varepsilon]$ and $[1-2 \varepsilon, 1]$ are within 1 of $f(0)$ and $f(1)$ respectively. Therefore, for every δ_{j} with $0<\left|\delta_{j}\right| \leq 1$ and every $y \in(0, \delta] \cup[1-\delta, 1)$ the upper and lower averages of $a \mapsto f_{j}\left(y+a \delta_{j}\right)$ over the interval $0<a<\min \{y, 1-y\}$ are bounded in absolute value by $3 / \delta_{j}+\left|f_{j}(1)\right|$. There exists $S \in \mathscr{C}$ with $\mu_{i}(S) \neq \mu_{j}(S)$ whenever $i \neq j$. Fix $1 \leq i \leq n$ and a sequence $\left(x_{k}\right)_{k=1}^{\infty}$ in $(0, \delta] \cup[1-\delta, 1)$. Set $\delta_{j}=\mu_{j}(S)-\mu_{i}(S)$. For every $a \leq \min \left\{x_{k}, 1-x_{k}\right\}, a S+\left(x_{k}-a \mu_{i}(S)\right) I$ is an ideal coalition. On the one hand,

$$
\mu_{i}\left(a S+\left(x_{k}-a \mu_{i}(S)\right) I\right)=x_{k}
$$

and so $f_{i}\left(\mu_{i}\left(a S+\left(x_{k}-a \mu_{i}(S)\right) I\right)\right)=f_{i}\left(x_{k}\right)$. On the other hand, for every $j \neq i \mu_{j}\left(a S+\left(x_{k}-a \mu_{i}(S)\right) I\right)=x_{k}+a \delta_{j}$, and thus the upper and lower averages of $a \mapsto f_{j}\left(\mu_{j}\left(a S+\left(x_{k}-a \mu_{i}(S)\right) I\right)\right)$ over $0<a<\min \left\{x_{k}, 1-x_{k}\right\}$ are bounded in absolute value by $3 / \delta_{j}+\left|f_{j}(1)\right|$. Hence the upper and lower averages of the map $a \mapsto \sum_{j \neq i} f_{j}\left(\mu_{j}\left(a S+\left(x_{k}-a \mu_{i}(S)\right) I\right)\right)$ over $0<a<\min \left\{x_{k}, 1-x_{k}\right\}$ are bounded in absolute value by $\sum_{j \neq i} 3 / \delta_{j}+\left|f_{j}(1)\right|$. As the game $\sum_{j=1}^{n} f_{j} \circ \mu_{j}$ is bounded, the upper and lower averages of the map $a \mapsto \sum_{j=1}^{n} f_{j}\left(\mu_{j}\left(a S+\left(x_{k}-a \mu_{i}(S)\right) I\right)\right)=$ $f_{i}\left(x_{k}\right)+\sum_{j \neq i} f_{j}\left(\mu_{j}\left(a S+\left(x_{k}-a \mu_{i}(S)\right) I\right)\right)$ over $0<a<\min \left\{x_{k}, 1-x_{k}\right\}$ are bounded, implying that the sequence $f_{i}\left(x_{k}\right)$ is bounded. So each f_{i} is bounded on $[0, \delta]$ and on $[1-\delta, 1]$.

Define $\alpha_{i}=\inf \left\{x \in[0,1] \mid f_{i}\right.$ is bounded on $\left.[x, 1]\right\}$. As f_{i} is bounded on $[1-\delta, 1], \alpha_{i} \leq 1-\delta$. As f_{i} is bounded on [$\left.0, \delta\right]$, either $\alpha_{i}=0$ in which case f_{i} is bounded on $[0,1]$, or $\alpha_{i} \geq \delta$. Assume $x=\max _{1 \leq i \leq n} \alpha_{i} \geq \delta$, and set $I=\left\{i \mid \alpha_{i}=x\right\}$. Let $i \in I$ with $\mu_{i}(S) \leq \mu_{j}(S)$ for every $j \in I$. There exists a sequence $\left(x_{k}\right)_{k=1}^{\infty}$ converging to x such that $\left|f_{i}\left(x_{k}\right)\right| \rightarrow \infty$ as $k \rightarrow \infty$. Fix $a>0$ sufficiently small so that $2 a<\min (x, 1-x)$ and $\alpha_{j}<x-2 a$ whenever $j \notin I$ and $a<\left|\mu_{k}(S)-\mu_{j}(S)\right|$ whenever $k \neq j$. Then $a S+\left(x_{k}-a \mu_{i}(S)\right) I$ is an ideal coalition whenever $(1+x) / 2>x_{k}>x / 2$. On the one hand,

$$
\mu_{i}\left(a S+\left(x_{k}-a \mu_{i}(S)\right) I\right)=x_{k}
$$

and so $f_{i}\left(\mu_{i}\left(a S+\left(x_{k}-a \mu_{i}(S)\right) I\right)\right)=f_{i}\left(x_{k}\right)$ is unbounded. On the other hand, for every $j \neq i \lim _{k \rightarrow \infty} \mu_{j}\left(a S+\left(x_{k}-a \mu_{i}(S)\right) I\right)=$
$x+a\left(\mu_{j}(S)-\mu_{i}(S)\right)$. Note that $x+a\left(\mu_{j}(S)-\mu_{i}(S)\right)>\alpha_{j}+a^{2}$ whenever $j \neq i$ and hence for k sufficiently large

$$
\mu_{j}\left(a S+\left(x_{k}-a \mu_{i}(S)\right) I\right)>\alpha_{j}+a^{2}
$$

and therefore for every $j \neq i$ the sequence $f_{j}\left(\mu_{j}\left(a S+\left(x_{k}-a \mu_{i}(S)\right) I\right)\right)=$ $f_{j}\left(x_{k}+a\left(\mu_{j}(S)-\mu_{i}(S)\right)\right)$ is bounded. Thus $\sum_{k=1}^{n} f_{k} \circ \mu_{k}$ is an unbounded game.

The next is a "classic" corollary of the Markov-Kakutani theorem:
Lemma 2. Let E be the space of all real-valued functions on \mathbb{R} that are majorized in absolute value by some Lebesgue-integrable function. There exists a translation invariant positive linear functional on E extending the Lebesgue integral.

Proof. Define $p(f)$ for $f \in E$ as the upper-integral: $\inf \left\{\int g d x \mid g \in\right.$ $\left.\mathscr{L}_{1}, g \geq f\right\}$. Notice that $p(f+g) \leq p(f)+p(g)$ and $p(\alpha f)=\alpha p(f)$ whenever $f, g \in E$ and $\alpha \geq 0$, and thus the Hahn-Banach theorem yields the existence of a linear functional φ on E with $\varphi \leq p: \varphi$ is a positive linear functional and extends the Lebesgue integral.

For $f \in E$ let $\|f\|=p(|f|)$: this turns E into a semi-normed space. The set of all positive linear functionals that extend the Lebesgue integral is a weak*-compact convex subset C of the unit ball of the dual E^{\prime}, and $C \neq \emptyset$ as just argued.

Let, for $t \in \mathbb{R}$ and $f \in E, T_{t}(f): x \mapsto f(x+t)$: this is an abelian group of isometries of E; the transposes T_{t}^{*} are continuous linear maps from C to itself; hence by the Markov-Kakutani theorem (Dunford and Schwartz, 1958, p. 456) there exists a common fixed point in C of all T_{t}^{*} : this is a translation invariant extension.

In what follows we fix such a translation invariant extension, \mathscr{L}, and for a bounded function g on \mathbb{R}, and $a \leq b$ in \mathbb{R}, let $\int_{a}^{b} g(x) L(d x)=$ $\mathscr{L}\left(g \mathbb{1}_{[a, b)}\right)$, where $\mathbb{1}_{A}(x)=1$ if $x \in A$ and 0 otherwise. The crucial step is the following:

Proposition 1. For every $n \in \mathbb{N}, f_{1}, \ldots, f_{n}$ in ' and $\vec{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)$ in $\left(A N_{1}\right)^{n}$,

$$
\left\|\sum_{i=1}^{n} f_{i}(1) \mu_{i}\right\| \leq\left\|\sum_{i=1}^{n} f_{i} \circ \mu_{i}\right\|
$$

Proof. Set $v=\sum_{i=1}^{n} f_{i} \circ \mu_{i}$ and $\varphi v=\sum_{i=1}^{n} f_{i}(1) \mu_{i}$. We must prove $\|\varphi v\| \leq\|v\|$.

We can assume that the right hand member $(\|v\|)$ is finite; hence that $\sum_{i=1}^{n} f_{i} \circ \mu_{i}$ is bounded. Since w.l.o.g. $\mu_{i} \neq \mu_{j}$ for $i \neq j$, lemma 1 shows then that f_{i} is bounded.

Obviously, $\varphi v \in A N \subset F A$. For each $u \in F A,\|u\|=\sup _{S \in \mathscr{C}}|u(S)|+$ $\left|u\left(S^{c}\right)\right|$. It suffices thus to prove that for every coalition $S \in \mathscr{C}$, $|\varphi v(S)|+\left|\varphi v\left(S^{c}\right)\right| \leq\|v\|$.

For each positive integer m let $S_{0} \subset S_{1} \subset \cdots \subset S_{m}$ and $S_{0}^{c} \subset$ $S_{1}^{c} \subset \cdots \subset S_{m}^{c}$ be measurable subsets of S and $S^{c}=I \backslash S$ respectively with $\vec{\mu}\left(S_{j}\right)=\frac{j}{m+1} \vec{\mu}(S)$ and $\vec{\mu}\left(S_{j}^{c}\right)=\frac{j}{m+1} \vec{\mu}\left(S^{c}\right)$. For every $0 \leq t \leq \frac{1}{m+1}$ let I_{t} be a measurable subset of $I \backslash\left(S_{m} \cup S_{m}^{c}\right)$ with $\vec{\mu}\left(I_{t}\right)=\stackrel{m}{=}(I)$. Define the increasing sequence of coalitions $T_{0} \subset T_{1} \subset \ldots T_{2 m}$ by $T_{0}=I_{t}, T_{2 j-1}=I_{t} \cup S_{j} \cup S_{j-1}^{c}$ and $T_{2 j}=$ $I_{t} \cup S_{j} \cup S_{j}^{c}, j=1, \ldots, m$. Obviously, $\|v\| \geq \sum_{j=1}^{2 m}\left|v\left(T_{j}\right)-v\left(T_{j-1}\right)\right| \geq$ $\left|\sum_{j=0}^{m-1} v\left(T_{2 j+1}\right)-v\left(T_{2 j}\right)\right|+\left|\sum_{j=1}^{m} v\left(T_{2 j}\right)-v\left(T_{2 j-1}\right)\right|$. Set $\varepsilon=\frac{1}{m+1}$. Note that $\frac{1}{\varepsilon} \int_{0}^{\varepsilon} \sum_{j=0}^{m-1}\left[\sum_{i=1}^{n} f_{i}\left(t+\varepsilon j+\varepsilon \mu_{i}(S)\right)-\sum_{i=1}^{n} f_{i}(t+j \varepsilon)\right] L(d t)=$ $\frac{1}{\varepsilon} \int_{0}^{1-\varepsilon}\left[\sum_{i=1}^{n} f_{i}\left(t+\varepsilon \mu_{i}(S)\right)-\sum_{i=1}^{n} f_{i}(t)\right] L(d t) \xrightarrow[m \rightarrow \infty]{\longrightarrow} \varphi v(S)$, and similarly $\frac{1}{\varepsilon} \int_{0}^{\varepsilon} \sum_{j=1}^{m}\left[\sum_{i=1}^{n} f_{i}(t+\varepsilon j)-\sum_{i=1}^{n} f_{i}\left(t+j \varepsilon-\varepsilon \mu_{i}\left(S^{c}\right)\right)\right] L(d t)=$ $\frac{1}{\varepsilon} \int_{\varepsilon}^{1}\left[\sum_{i=1}^{n} f_{i}(t)-\sum_{i=1}^{n} f_{i}\left(t-\varepsilon \mu_{i}\left(S^{c}\right)\right)\right] L(d t) \xrightarrow[m \rightarrow \infty]{ } \varphi v\left(S^{c}\right)$. As $v\left(T_{2 j+1}\right)-$ $v\left(T_{2 j}\right)=\sum_{i=1}^{n} f_{i}\left(t+\varepsilon j+\varepsilon \mu_{i}(S)\right)-\sum_{i=1}^{n} f_{i}(t+j \varepsilon)$, and $v\left(T_{2 j}\right)-v\left(T_{2 j-1}\right)=$ $\sum_{i=1}^{n} f_{i}(t+2 j \varepsilon)-\sum_{i=1}^{n} f_{i}\left(t+2 j \varepsilon-\varepsilon \mu_{i}\left(S^{c}\right)\right)$, we deduce that for each fixed $0 \leq t \leq \varepsilon,\left|\sum_{j=0}^{m=1}\left[\sum_{i=1}^{n} f_{i}\left(t+\varepsilon j+\varepsilon \mu_{i}(S)\right)-\sum_{i=1}^{n} f_{i}(t+j \varepsilon)\right]\right|+$ $\left|\sum_{j=1}^{m}\left[\sum_{i=1}^{n} f_{i}(t+\varepsilon j)-\sum_{i=1}^{n} f_{i}\left(t+j \varepsilon-\varepsilon \mu_{i}\left(S^{c}\right)\right)\right]\right| \leq\|v\|$ and therefore $|\varphi v(S)|+\left|\varphi v\left(S^{c}\right)\right| \leq\|v\|$.

Proof of the Theorem. Consider the linear space Q generated by all games of the form $f \circ \mu$ where $f \in^{\prime}$ and $\mu \in A N_{1}$. Any $v \in Q$ is of the form $\sum_{i=1}^{n} f_{i} \circ \mu_{i}$ where $f_{i} \in^{\prime}$ and $\mu_{i} \in A N_{1}$. Define $\varphi: Q \rightarrow A N$ by $\varphi\left(\sum_{i=1}^{n} f_{i} \circ \mu_{i}\right)=\sum_{i=1}^{n} f_{i}(1) \mu_{i}$. The proposition implies that φ is well defined, i.e., independent of the representation. Indeed, if $v=\sum_{i=1}^{n} f_{i} \circ \mu_{i}=\sum_{k=1}^{m} g_{k} \circ \nu_{k}, 0=\sum_{i=1}^{n} f_{i} \circ \mu_{i}-\sum_{k=1}^{m} g_{k} \circ \nu_{k} \in B V$, and thus by the proposition $\sum_{i=1}^{n} f_{i}(1) \mu_{i}=\sum_{k=1}^{m} g_{k}(1) \nu_{k}$. Efficiency, linearity and symmetry follow now from the definition of φ. Finally, the proposition implies that $\|\varphi v\| \leq\|v\|$, so φ can be extended to a linear, efficient and symmetric map $\varphi:^{\prime} A N \rightarrow A N(\subseteq F A)$ such that $\|\varphi v\| \leq\|v\|$. This last property and efficiency imply that φ is positive.

4. Comments

4.1. Continuity at 0 and 1. Previous papers on scalar-measure games $f \circ \mu$ assumed continuity of f at 0 and 1 - and this was understood as the definition of '. This concept is used however only in the definitions of $I n^{\prime}$ and $b v^{\prime}$ (cf. above); the former is subsumed by the present paper, and the definition of the latter is not changed here, since functions in $b v$ anyway have limits at 0 and 1.

We could have used any other concept of integral to define the space ' - in fact, the only properties we use are linearity, monotonicity, and translation and scale covariance. But the Denjoy integral is applicable to a wider class of functions than any other classical integration theory (Riemann, Lebesgue, ...); hence it implies a bigger space '. For example, for $\alpha<\beta^{+}, x^{-\alpha} \cos \left(x^{-\beta}\right) \in^{\prime}$, while using Lebesgue instead of Denjoy-Perron (or at least Newton) in the definition would further re-
quire $\alpha<1$: the additional absolute summability requirement is clearly irrelevant (and would amount to again sneaking some $b v$ requirement into the definition, this time on the primitive).

A further extension: apply our result to the symmetrized game ($v \mapsto \hat{v}$ where $\hat{v}(S)=\frac{1}{2}(v(S)+v(I)-v(C S)$), obtaining thus a value on the sum of the present space and that of all anti-symmetric games $(v(S)=v(\complement S))$. Then, for $f \circ \mu$ to belong to this space, it would suffice that $\lim _{\delta \rightarrow 0+} \frac{1}{\delta} \int_{0}^{\delta}[f(1-y)-f(y)] d y=f(1)$ in the sense of upper- and lower- Denjoy-integrals (and $f(0)=0$) - thus defining a larger ${ }^{\prime}$.
4.2. 'AN $\cap \boldsymbol{B} \boldsymbol{V}=\boldsymbol{b} \boldsymbol{v} \boldsymbol{A} \boldsymbol{N}$? We suspect that maybe ' $A N \cap B V=b v A N$ (equivalently: ' $N A \cap B V=b v N A$), and conceivably even the stronger result: $\sum_{i} f_{i} \circ \mu_{i} \in B V$, where $f_{i} \in^{\prime}$ and μ_{i} are distinct elements of $A N_{1}$, implies $f_{i} \in b v^{\prime} \forall i$. Here we reduce these problems to the case where the f_{i} 's are continuous, and are smooth in the interior of $[0,1]$.

Lemma 3. If $v=\sum_{i=1}^{n} f_{i} \circ \mu_{i} \in B V$, with $f_{i} \in^{\prime}$, $\mu_{i} \in A N_{1}, \mu_{i} \neq \mu_{j}$ for $i \neq j$, then:
(1) $\exists h_{i}$ which are continuous on $[0,1]$ and C^{∞} on $] 0,1[$ such that $f_{i}-h_{i} \in b v^{\prime}$.
(2) v is "continuous in variation" at 0 (and similarly at 1), i.e. $\forall \varepsilon>0 \exists \delta>0$: for any ideal coalition χ with $\mu_{i}(\chi) \leq \delta \forall i$ the variation of v on $[0, \chi]$ is $\leq \varepsilon$.
Proof. By lemma 1, all f_{i} are bounded.
Step 1: $\forall \varepsilon>0 f_{i}$ has bounded variation on $[\varepsilon, 1-\varepsilon]$:
Fix $S \in \mathscr{C}$ such that $\mu_{i}(S) \neq \mu_{1}(S)$ for $i \neq 1$, and set $\rho=$ $\min _{i \neq 1}\left|\mu_{i}(S)-\mu_{1}(S)\right|$.

The function f_{i}^{ε}, defined on $[\varepsilon, 1-\varepsilon]$ by (with $L(d \theta)$ as above)

$$
f_{i}^{\varepsilon}(x)=\frac{1}{\varepsilon} \int_{0}^{\varepsilon} f_{i}\left(x+\theta\left(\mu_{i}(S)-\mu_{1}(S)\right)\right) L(d \theta)
$$

is Lipschitz of constant $\frac{2 K}{\varepsilon \rho}$ where $K \geq \sup _{0 \leq x \leq 1}\left|f_{i}(x)\right|$ if $i \neq 1$, and $f_{1}^{\varepsilon}=f_{1}$.
For $\varepsilon \leq x_{0}<\cdots<x_{k} \leq 1-\varepsilon$, and $\alpha_{i}=\mu_{i}(S)-\mu_{1}(S)$,

$$
\begin{aligned}
& \sum_{j=1}^{k}\left|f_{1}\left(x_{j}\right)-f_{1}\left(x_{j-1}\right)\right| \leq \sum_{j=1}^{k}\left|\sum_{i=1}^{n} f_{i}^{\varepsilon}\left(x_{j}\right)-\sum_{i=1}^{n} f_{i}^{\varepsilon}\left(x_{j-1}\right)\right| \\
& \quad+\sum_{j=1}^{k}\left|\sum_{i=2}^{n} f_{i}^{\varepsilon}\left(x_{j}\right)-\sum_{i=2}^{n} f_{i}^{\varepsilon}\left(x_{j-1}\right)\right| \\
& \leq \sum_{j=1}^{k}\left|\sum_{i=1}^{n} \frac{1}{\varepsilon} \int_{0}^{\varepsilon}\left[f_{i}\left(x_{j}+\theta \alpha_{i}\right)-f_{i}\left(x_{j-1}+\theta \alpha_{i}\right)\right] L(d \theta)\right|+n \frac{2 K}{\varepsilon \rho} \\
& \leq \frac{1}{\varepsilon} \int_{0}^{\varepsilon} \sum_{j=1}^{k}\left|\sum_{i=1}^{n}\left[f_{i}\left(x_{j}+\theta \alpha_{i}\right)-f_{i}\left(x_{j-1}+\theta \alpha_{i}\right)\right]\right| L(d \theta)+n \frac{2 K}{\varepsilon \rho}
\end{aligned}
$$

As for every $0<\theta<\varepsilon$, the sequence $x_{j}+\theta S-\theta \mu_{1}(S)$ is a chain of ideal coalitions, the right-hand side is bounded by $\left\|\sum f_{i} \circ \mu_{i}\right\|+2 n K / \varepsilon \rho$. Therefore f_{1} has bounded variation on $[\varepsilon, 1-\varepsilon]$.

Step 2: $\exists g_{i} \in b v^{\prime}$ such that $h_{i}=f_{i}-g_{i}$ is locally absolutely continuous on $] 0,1$.

Let $h_{i}^{0}(x)=\int_{\frac{1}{2}}^{x} f_{i}^{\prime}(y) d y$ (the absolutely continuous part of f), $g_{i}=$ $f_{i}-h_{i}^{0}, f_{i}^{\varepsilon}(x)=f_{i}(\varepsilon+(1-2 \varepsilon) x)-f_{i}(\varepsilon)$, and similarly g_{i}^{ε}; by step $1, f_{i}^{\varepsilon} \in b v$. If f_{i} is continuous at ε and $1-\varepsilon, f_{i}^{\varepsilon} \in b v^{v}$. Given a chain $S_{1} \subset \cdots S_{k}, \chi_{i}=\varepsilon+(1-2 \varepsilon) S_{i}$ is a chain of ideal coalitions and $f_{i}^{\varepsilon}\left(\mu_{i}\left(S_{j}\right)\right)=f_{i}\left(\mu_{i}\left(\chi_{j}\right)\right)$, so:

$$
\left\|\sum f_{i}^{\varepsilon} \circ \mu_{i}\right\| \leq\left\|\sum f_{i} \circ \mu_{i}\right\|
$$

By Aumann and Shapley (1974, 8.17, p. 65), $\left\|\sum f_{i} \circ \mu_{i}\right\| \geq\left\|\sum f_{i}^{\varepsilon} \circ \mu_{i}\right\| \geq$ $\sum\left\|g_{i}^{\varepsilon}\right\|$ and thus $\left\|g_{i}^{\varepsilon}\right\|$ is bounded in ε and $g_{i} \in b v$. Therefore, g_{i} has limits at 0 and 1 . Hence defining $\bar{g}_{i}(x)=g_{i}(x)-\lim _{y \rightarrow 0+} g_{i}(y), \bar{g}_{i}(0)=0$, and $\bar{g}_{i}(1)=\lim _{x \rightarrow 1-} \bar{g}_{i}(x), \bar{g}_{i} \in b v^{\prime}$. Setting $h_{i}=f_{i}-\bar{g}_{i}$ we conclude that h_{i} is absolutely continuous on $] 0,1[$.
Step 3: Smoothing h_{i}.
For $n=1, \cdots$, let h_{i}^{n} be a smooth function on an open neighborhood of $\left[2^{-n}, 1-2^{-n}\right]$ that coincides on $\left[2^{-(n-1)}, 1-2^{-(n-1)}\right]$ with h_{i}^{n-1} and at 2^{-n} and $1-2^{-n}$ with h_{i}, and whose variation distance to h_{i} on this open neighborhood is $\leq 1-2^{-n}$. Then h_{i}^{∞} is C^{∞} on $] 0,1[$, and with $g_{i}=h_{i}-h_{i}^{\infty},\left\|g_{i}\right\| \leq 1$, so g_{i} has limits at 0 and 1 : extend g_{i} to $[0,1]$ by those limits, then subtract $g_{i}(0)$ from it: we have a function $g_{i} \in b v^{\prime}$ such that $h_{i}-g_{i}$ is C^{∞} on $] 0,1[$.
Step 4: Continuity of h_{i}.
For (1), it remains to prove continuity at 0 and 1 , say of h_{1} at 0 . Otherwise, e.g., lim sup ${ }_{x \rightarrow 0+} h_{1}(x)>0$ (or change the sign of the game). Then choose $0<\beta<\lim \sup _{x \rightarrow 0+} h_{1}(x)$, and a sequence x_{i} decreasing to 0 such that $h_{1}\left(x_{i}\right)>\beta$. Let $y_{i}=\min \left\{x \mid h_{1}(y) \geq \beta / 2\right.$ for $\left.x \leq y \leq x_{i}\right\}$. By continuity, the min is achieved and $y_{i} \leq x_{i}$, and $h_{1} \in^{\prime}, h_{1}(0)=0$ imply $y_{i}>0$. So, for a subsequence, $x_{i+1}<y_{i}$.

Let $\chi(z)=z\left(\left(1-\theta \mu_{1}(S)\right) I+\theta S\right)$, and $H_{i}(z)=\int_{0}^{1}\left(h_{i} \circ \mu_{i}\right)(\chi(z)) d \theta$: $H_{1}=h_{1}$ and for $i \neq 1 H_{i}(z)=\frac{1}{z\left(\mu_{i}(S)-\mu_{1}(S)\right)} \int_{z}^{z\left(1+\mu_{i}(S)-\mu_{1}(S)\right)} h_{i}(x) d x$ converges with z to 0 since $h_{i} \in^{\prime}$. Assume w.l.o.g. that $\forall x \leq x_{1},\left|H_{i}(x)\right|<$ $\beta /(8 n)$.

Now let $\chi_{2 k-1}=\chi\left(x_{k}\right), \chi_{2 k}=\chi\left(y_{k}\right): \forall \theta \in[0,1]$, the χ_{k} form a decreasing chain of ideal coalitions (assuming $x_{1} \leq 1 / 2$). Hence $\forall \theta, \sum_{k}\left|v\left(\chi_{2 k-1}\right)-v\left(\chi\left(x_{k}\right)\right)\right| \leq\|v\|$, so, by Jensen, taking expectations inside w.r.t. $\theta, \sum_{k}\left|\sum_{i}\left(H_{i}\left(x_{k}\right)-H_{i}\left(y_{k}\right)\right)\right| \leq\|v\|$. But $H_{1}\left(x_{k}\right)-H_{1}\left(y_{k}\right)=$ $h_{1}\left(x_{k}\right)-h_{1}\left(y_{k}\right) \geq \beta / 2$ by construction, and for $i \neq 1 H_{i}\left(x_{k}\right)-H_{i}\left(y_{k}\right)>$ $-\beta /(4 n)$, so that $\sum_{i}\left(H_{i}\left(x_{k}\right)-H_{i}\left(y_{k}\right)\right)>\beta / 4$, a contradiction.
Step 5: Continuity in variation.
By (1), it suffices to prove this when $f_{i}=h_{i}$, since a game $g \circ \mu$ with $g \in b v^{\prime}$ and $\mu \in A N_{1}$ is clearly continuous in variation at 0 and 1 , and this continuity is preserved when summing games. If the result were not true, there would be a sequence χ_{k} and $\varepsilon>0$ such that
$\mu\left(\chi_{k}\right) \rightarrow 0$ (with $\mu=\sum_{i} \mu_{i}$) and $\forall k \operatorname{Var}(v)\left[0, \chi_{k}\right]>\varepsilon$. Now fix a chain χ_{j}^{\prime} with variation $>\|v\|-\varepsilon$. Let $\chi_{j}^{k}=\max \left(\chi_{j}^{\prime}, \chi_{k}\right)$. Observe that $0 \leq \mu_{i}\left(\chi_{j}^{k}\right)-\mu_{i}\left(\chi_{j}^{\prime}\right) \leq \mu_{i}\left(\chi^{k}\right) \rightarrow 0$; hence, by continuity of h_{i} (step 4), for k sufficiently large the variation of v on the chain χ_{j}^{k} is $>\|v\|-\varepsilon$. Take a chain $\chi_{l}^{\prime \prime} \leq \chi_{k}$ with variation $>\varepsilon$. Then the variation of v on the chain consisting of the $\chi_{l}^{\prime \prime}$ followed by the χ_{j}^{k} is $>\|v\|$: a contradiction.
Corollary 1. 'AN $\cap B V \subseteq b v ' A N D$ where bv'AND is the closed space spanned by bv'AN and all games of bounded variation that vanish on an $A N$-diagonal neighborhood.
Proof. By lemma 3 any game in ' $N A \cap B V$ is approximated by the sum of a game in $b v A N$ and a game $v=\sum_{i=1}^{n} f_{i} \circ \mu_{i}$ where the f_{i} are continuous on $[0,1]$ and smooth on its interior. It suffices to prove that $v \in b v^{\prime} A N D$. Fix $\varepsilon>0$, and by the previous lemma take $\delta>0$ such that $\operatorname{Var}(v)[0, \chi]<\varepsilon$ whenever $\mu(\chi)<\delta$. Let $g: \mathbb{R} \rightarrow[0,1]$ be a smooth monotone function with $g(x)=0$ for $x \leq \delta / 2$ and $g(x)=1$ for $x \geq \delta$. Define $w=(g \circ \mu) \times v$. It follows that for χ with $\mu(\chi) \geq \delta$, $w(\chi)=v(\chi)$, and for χ with $\mu(\chi)=\delta, \operatorname{Var}(w)[0, \chi] \leq 2 \operatorname{Var}(v)[0, \chi]$. Therefore the variation of $v-w$ is bounded by 3ε. Also, w is smooth on a neighborhood of $[0,1 / 2]$. Handling the neighborhood of 1 similarly, we can approximate the game v by a game w which is smooth on a neighborhood of the diagonal, hence in $b v^{\prime} A N D$.

The equalities ' $N A \cap B V=b v^{\prime} N A$ and ' $A N \cap B V=b v^{\prime} A N$ may depend on the space of players (I, \mathscr{C}). To state ' $N A \cap B V=b v^{\prime} N A \Leftrightarrow^{\prime} A N \cap B V=$ $b v^{\prime} A N$, given that spaces depend on (I, \mathscr{C}) :
Proposition 2. If ' $N A \cap B V=b v ' N A(\neq\{0\})$ or ${ }^{\prime} A N \cap B V=b v A N$ $(\neq\{0\})$ for some (I, \mathscr{C}) where NA or $A N$ respectively are $\neq\{0\}$, then both equalities hold for all (I, \mathscr{C}).
Proof. Step 1: Fix a player set (I, \mathscr{C}) and finitely many elements μ_{1}, \ldots, $\mu_{n}, \nu_{1}, \ldots, \nu_{k}$ in $A N_{1}$. We prove first that if $f_{i}, 1 \leq i \leq n$, are continuous on $[0,1]$ and smooth on its interior, and $g_{j}=g_{j}^{s}+g_{j}^{a c} \in b v^{\prime}, 1 \leq j \leq k$, with $g_{j}^{a c}$ absolutely continuous and g_{j}^{s} singular, then

$$
\left\|\sum_{i=1}^{n} f_{i} \circ \mu_{i}-\sum_{j=1}^{k} g_{j}^{a c} \circ \nu_{j}\right\| \leq\left\|\sum_{i=1}^{n} f_{i} \circ \mu_{i}-\sum_{j=1}^{k} g_{j} \circ \nu_{j}\right\|
$$

Indeed, let Ω : $\chi_{0} \leq \ldots \leq \chi_{m}$ be an increasing chain of ideal coalitions so that $\left\|\sum_{i=1}^{n} f_{i} \circ \mu_{i}-\sum_{j=1}^{k} g_{j}^{a c} \circ \nu_{j}\right\|_{\Omega}>\left\|\sum_{i=1}^{n} f_{i} \circ \mu_{i}-\sum_{j=1}^{k} g_{j}^{a c} \circ \nu_{j}\right\|-\varepsilon$. Using the continuity of the functions f_{i} and $g_{j}^{a c}$ we may assume w.l.o.g. that there is $\delta>0$ such that $\delta<\chi_{0} \leq \chi_{m}<1-\delta$. Consider the increasing path of ideal coalitions $\chi(t)=\chi_{j}+(m t-j)\left(\chi_{j+1}-\chi_{j}\right)$ for $j / m \leq t \leq(j+1) / m, 0 \leq t \leq 1$. The function $t \mapsto$ $\sum_{i=1}^{n} f_{i}\left(\mu_{i}(\chi(t))\right)-\sum_{j=1}^{k} g_{j}\left(\nu_{j}(\chi(t))\right)$ is a sum of an absolutely continuous function $t \mapsto \sum_{i=1}^{n^{j}} f_{i}\left(\mu_{i}(\chi(t))\right)-\sum_{j=1}^{k} g_{j}^{a c}\left(\nu_{j}(\chi(t))\right)$ and a singular function $t \mapsto-\sum_{j=1}^{k} g_{j}^{s}\left(\nu_{j}(\chi(t))\right)$ and therefore its variation over [0, 1] is $\geq\left\|\sum_{i=1}^{n} f_{i} \circ \mu_{i}-\sum_{j=1}^{k} g_{j}^{a c} \circ \nu_{j}\right\|_{\Omega} \geq\left\|\sum_{i=1}^{n} f_{i} \circ \mu_{i}-\sum_{j=1}^{k} g_{j}^{a c} \circ \nu_{j}\right\|-\varepsilon$.

Step 2: Every game $v=f \circ \vec{\mu} \in b v^{\prime} N A$, where $\vec{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)$ is a vector of $N A_{+}$elements, can be approximated by a game $w=\sum g_{i} \circ \nu_{i}$ such that all $\nu_{i} \in N A_{+}$are dominated by $\mu=\sum \mu_{j}$: indeed, if $w=$ $\sum g_{i} \circ \nu_{i}$ with $\nu_{i} \in N A_{+}$, let $\nu=\sum \nu_{j}$ and $B=\{x \mid d \mu / d(\mu+\nu)(x)>0\}$ and set $\tilde{\nu}_{i}(C)=\nu(C \cap B)$. Let $\tilde{w}=\sum g_{i} \circ \tilde{\nu}_{i}$. Then the variation of $v-\tilde{w}$ over a chain $C_{1} \subseteq \cdots \subseteq C_{n}$ equals that of $v-w$ over $C_{1} \cap B \subseteq \cdots \subseteq C_{n} \cap B$; hence $\|v-\tilde{w}\| \leq\|v-w\|$. Modify g_{i} to be left-continuous at $\tilde{\nu}_{i}(I)$ if needed. ${ }^{1}$

Step 3: We now prove that if ' $N A \cap B V=b v^{\prime} N A \neq\{0\}$ for $\left(I^{\prime}, \mathscr{C}^{\prime}\right)$, then ' $N A \cap B V=b v^{\prime} N A$ for (I, \mathscr{C}). Fix $\nu \in N A_{1}$ on $\left(I^{\prime}, \mathscr{C}^{\prime}\right)$. It suffices, by lemma 3 , to prove that $v=\sum_{i=1}^{n} f_{i} \circ \mu_{i} \in b v N A$ when $v \in B V$, $\mu_{i} \in N A_{1}(I, \mathscr{C})$, and the f_{i} are continuous on $[0,1]$ and smooth on its interior. Let μ be the average of the μ_{i}. Let f be a Radon-Nikodym derivative of the vector μ_{i} w.r.t. μ. Further, for each atom x_{k} of the distribution of f under μ, let $I_{k}=f^{-1}\left(x_{k}\right)$, and construct, for each rational $r \in[0,1]$, a measurable subset I_{k}^{r} of I_{k} with $I_{k}^{r} \subseteq I_{k}^{s}$ for $r<s$ and $\mu\left(I_{k}^{r}\right)=r \mu\left(I_{k}\right)$. Let \mathscr{C}_{0} be the separable sub- σ-field of \mathscr{C} spanned by f and the I_{k}^{r}. Similarly, let \mathscr{C}_{0}^{\prime} be a separable sub- σ-field of \mathscr{C}^{\prime} on which ν is still non-atomic. The separable measure algebras $\left\langle\mathscr{C}_{0}, \mu\right\rangle$ and $\left\langle\mathscr{C}_{0}^{\prime}, \nu\right\rangle$ are isomorphic. This isomorphism induces an isometry h from $L_{1}\left(\mathscr{C}_{0}, \mu\right)$ to $L_{1}\left(\mathscr{C}_{0}^{\prime}, \nu\right)$. The isomorphism h induces maps H and H^{\prime} acting on all measures absolutely continuous with respect to μ respectively ν to those absolutely continuous with respect to ν and μ respectively such that $H(\xi)=h\left(\left.\frac{d \xi}{d \mu}\right|_{\mathscr{\sigma}_{0}}\right) d \nu$ and $H^{\prime}(\eta)=h^{-1}\left(\left.\frac{d \eta}{d \nu}\right|_{\mathscr{E}_{0}^{\prime}}\right) d \mu$. The isometry of the L_{1} spaces induces one of their duals L_{∞} and therefore preserves all (relevant, i.e., \mathscr{C}_{0}-measurable) chains. It maps the game v to a game $h(v)=\sum_{i=1}^{n} f_{i} \circ H\left(\mu_{i}\right) \in B V$ on $\left(I^{\prime}, \mathscr{C}^{\prime}\right)$. Therefore by our assumption $h(v) \in b v^{\prime} N A$ and thus, by step 2, it can be approximated by a game $w=\sum_{j=1}^{k} g_{j} \circ \nu_{j}$ with ν_{j} dominated by ν. Therefore, the game $h^{-1}(w)=\sum_{j=1}^{k} g_{j} \circ H^{\prime}\left(\nu_{j}\right)$ approximates the game v.

Step 4: It remains to show that $\forall(I, \mathscr{C}) \exists\left(I^{\prime}, \mathscr{C}^{\prime}\right)$ such that ' $A N \cap B V=$ $b v^{\prime} A N \neq\{0\}$ on (I, \mathscr{C}) iff ' $N A \cap B V=b v^{\prime} N A \neq\{0\}$ on $\left(I^{\prime}, \mathscr{C}^{\prime}\right)$. For this, let I^{\prime} be the Stone space S of $B(I, \mathscr{C})$, i.e., a compact space whose algebra of continuous functions, $C(S)$, is isomorphic to $B(I, \mathscr{C})$. Endow S with the (Baire) σ-field \mathscr{C}^{\prime} spanned by the continuous functions. Every measure $\lambda \in A N(I, \mathscr{C})$ thus becomes a continuous linear functional $h(\lambda)$ on $C(S)$, i.e., by Riesz's theorem h induces an isometry between $A N(I, \mathscr{C})$ and $N A\left(I^{\prime}, \mathscr{C}^{\prime}\right)$. It maps a game $v=\sum_{i=1}^{n} f_{i} \circ \mu_{i}$ on (I, \mathscr{C}) to a game $h(v)=\sum_{i=1}^{n} f_{i} \circ h\left(\mu_{i}\right)$ on $\left(I^{\prime}, \mathscr{C}^{\prime}\right)$ with $\|h(v)\|=\|v\|$ when the functions f_{i} are continuous, and thus $h(v) \in B V$. If $\sum_{j=1}^{k} g_{j} \circ \nu_{j}$ approximates $h(v)$ then $\sum_{j} g_{j} \circ h^{-1}\left(\nu_{j}\right)$ approximates v which proves the "if" part, (without any need for step 2). For the converse, h^{-1} maps the game $v=\sum_{i=1}^{n} f_{i} \circ \mu_{i}$ on $\left(I^{\prime}, \mathscr{C}^{\prime}\right)$ to a game $h^{-1}(v)=\sum_{i=1}^{n} f_{i} \circ h^{-1}\left(\mu_{i}\right)$

[^0]on (I, \mathscr{C}) with $\left\|h^{-1}(v)\right\| \leq\|v\|$, and thus $h^{-1}(v) \in B V$. Assuming ${ }^{\prime} A N \cap B V=b v^{\prime} A N$, there is a finite sum $\sum_{j=1}^{k} g_{j} \circ \nu_{j}$ with continuous functions g_{j} that approximate $h^{-1}(v)$. As the functions f_{i} are also continuous, $\sum_{j=1}^{k} g_{j} \circ h\left(\nu_{j}\right)$ approximate v : the variation of the game $v-\sum_{j=1}^{k} g_{j} \circ h\left(\nu_{j}\right)$ over a chain of ideal coalitions in $\left(I^{\prime}, \mathscr{C}^{\prime}\right)$ is approximated by its variation over a chain of continuous ideal coalitions and thus $\left\|v-\sum_{j} g_{j} \circ h\left(\nu_{j}\right)\right\|=\left\|h^{-1}(v)-\sum_{j} g_{j} \circ \nu_{j}\right\|$.

Remarks: 1) To have $A N_{1} \neq \emptyset$, it is necessary and sufficient that $\# \mathscr{C}=\infty$. The necessity is clear; for the sufficiency, $\# \mathscr{C}=\infty$ implies the existence of a sequence x_{n} in I such that $n \neq m \Rightarrow \exists C \in \mathscr{C}: x_{n} \in$ $C, x_{m} \notin C$, and hence of a countable measurable partition C_{n} such that $\forall n, x_{n} \in C_{n}$. For $f \in B(I, \mathscr{C})$ let $p(f)=\lim \sup _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) / n$, and choose by Hahn-Banach a linear functional μ on $B(I, \mathscr{C})$ with $\mu \leq p$. The linear functional μ is a finitely additive measure on (I, \mathscr{C}). For every $n \mu\left(\left(\bigcup_{k=0}^{\infty} C_{k n+i}\right) \leq 1 / n\right.$ and $\left(\bigcup_{k=0}^{\infty} C_{k n+i}\right)_{i=1}^{n}$ is a finite measurable partition of I. Therefore, μ is non-atomic.
2) We have no such characterization for $N A$ for general (I, \mathscr{C}), but: For the existence of a non-atomic, non-null regular borel measure on a Hausdorff space X, it is necessary and sufficient that X has a compact perfect subset. For the necessity, by regularity we have then such a measure with compact support, and by non-atomicity this support must be perfect. For the sufficiency we can assume X compact and perfect, observe then that the set of probability measures having at least one atom of mass $\leq 1 / n$ is closed in the weak ${ }^{*}$ topology, and with empty interior by perfectness. and use the Baire category theorem.

Proposition 3. For every player set with $\# \mathscr{C}=\infty$ the following are equivalent:

1) If $\sum_{i=1}^{n} f_{i} \circ \mu_{i} \in B V$ with $\left(f_{i}, \mu_{i}\right) \in{ }^{\prime} \times A N_{1}$ and $\mu_{i} \neq \mu_{j}$ for $i \neq j$, then $\forall i, f_{i} \in b v^{\prime}$.
2) If $F:[0,1]^{2} \rightarrow \mathbb{R}:(x, y) \mapsto \sum_{i=1}^{n} f_{i}\left(a_{i} x+\left(1-a_{i}\right) y\right)$ has bounded variation, where $f_{i} \in C([0,1])$ are smooth on $] 0,1\left[\right.$ and $0<a_{1}<\cdots<$ $a_{n}<1$, then $\forall i, f_{i} \in b v^{\prime}$.

Proof. $\# \mathscr{C}=\infty$ implies that there are two mutually singular measures in $A N_{1}$. So $1 \Rightarrow 2$ is obvious. For $2 \Rightarrow 1$, assume $v=\sum_{i=1}^{n} f_{i} \circ \mu_{i} \in B V$ with $\left(f_{i}, \mu_{i}\right) \in^{\prime} \times A N_{1}$ and $\mu_{i} \neq \mu_{j}$ for $i \neq j$. We have to prove that each f_{i} has bounded variation. By lemma 3 we can assume w.l.o.g. that the f_{i} are continuous on $[0,1]$ and smooth on its interior. There is a coalition $S \in \mathscr{C}$ such that $0 \neq \mu_{i}(S) \neq \mu_{j}(S) \neq 1$ if $i \neq j$. Set $a_{i}=\mu_{i}(S)$. As v has bounded variation over ideal coalitions and $v(x S+y \complement S)=F(x, y)=\sum_{i=1}^{n} f_{i}\left(a_{i} x+\left(1-a_{i}\right) y\right)$, the function F has bounded variation over the square $[0,1]^{2}$ and thus by (2), each f_{i} has bounded variation.

Proposition 4. If the player set is standard Borel, the equality ' $N A \cap B V=b v^{\prime} N A$ implies that there is a unique value on ' $N A$.

Proof. Let φ be a value on 'NA. By assumption any game $v \in{ }^{\prime} N A$ is a sum of a game $u \in b v^{\prime} N A$ and a finite sum $\sum_{i=1}^{n} f_{i} \circ \mu_{i}$ with $f_{i} \in{ }^{\prime}$ and $\mu_{i} \in N A_{1}$. Thus, if ψ is the unique value on $b v^{\prime} N A$, $\varphi v=\psi u+\sum_{i=1}^{n} f_{i}(1) \mu_{i}$, i.e. φv is uniquely defined.

Even when (I, \mathscr{C}) is standard Borel, there are many values of norm 1 on ' $A N$, that differ already on $p A N$. E.g., decompose every μ in $A N_{+}$as $\mu^{1}+\mu^{2}$, with μ^{1} carried by a countable set and μ^{2} vanishing on each such set. Fix a smooth increasing path (cf. Hart, 1973; Haimenko, 2000) $\gamma:[0,1] \rightarrow[0,1]^{2}$ with $\gamma(0)=0, \gamma(1)=1$. For simplicity, assume γ is affine in a neighborhood of 0 and of 1 . For f continuous on $[0,1]$ and C^{1} on its interior, let $\left[\varphi_{\gamma}(f \circ \mu)\right](S)=$ $\int_{0}^{1} f^{\prime}\left(\gamma_{1}(t) \mu^{1}(1)+\gamma_{2}(t) \mu^{2}(1)\right)\left[\gamma_{1}^{\prime}(t) \mu^{1}(S)+\gamma_{2}^{\prime}(t) \mu^{2}(S)\right] d t$, as a Denjoy integral. For $f \in b v^{\prime}$, let $\left[\varphi_{\gamma}(f \circ \mu)\right](S)=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int_{0}^{1}\left[f\left(\min \left(1, \gamma_{1}(t) \mu^{1}(1)+\right.\right.\right.$ $\left.\left.\left.\gamma_{2}(t) \mu^{2}(1)+\epsilon\right)\right)-f\left(\gamma_{1}(t) \mu^{1}(1)+\gamma_{2}(t) \mu^{2}(1)\right)\right]\left[\gamma_{1}^{\prime}(t) \mu^{1}(S)+\gamma_{2}^{\prime}(t) \mu^{2}(S)\right] d t$. Observe that both formulas coincide on the intersection of those 2 spaces, hence define by linearity $\varphi_{\gamma}(f \circ \mu)$ uniquely for all f in their sum X. Fix a Hamel basis for X, and complete it to a Hamel basis of ${ }^{\prime}$: the additional basis vectors span a space Y, such that every $f \in{ }^{\prime}$ has a unique decomposition $f=f^{1}+f^{2}$ with $f^{1} \in X$ and $f^{2} \in Y$. Define then $\varphi_{\gamma}(f \circ \mu)=\varphi_{\gamma}\left(f^{1} \circ \mu\right)+f^{2}(1) \mu$. Now $\left\|\sum_{i} \varphi_{\gamma}\left(f_{i} \circ \mu_{i}\right)\right\| \leq\left\|\sum_{i} f_{i} \circ \mu_{i}\right\|:$ indeed, if the right hand member is finite, lemma 3.1 implies that $f_{i} \in X \forall i$; the verification is then straightforward. This defines therefore φ_{γ} as a value of norm 1 on a dense subspace of ' $A N$, hence on ' $A N$.

References

Aumann, R. J., and L. S. Shapley (1974): Values of Non-Atomic Games, Princeton University Press, Princeton (N.J.), ISBN ??
Dunford, N., and J. T. Schwartz (1958): Linear Operators, vol. 1, Interscience Publishers, New York.
Haimenko, O. (2000): "Partially Symmetric Values", Mathematics of Operations Research, 25(4), 573-590.
Hart, S. (1973): "Values of Mixed Games", International Journal of Game Theory, 2(??), 69-85.
Lyapunov, A. (1940): "Sur les fonctions-vecteurs compl tement additives", Bull. Acad. Sci. USSR Ser. Math., 4(??), 465-478.
Mertens, J.-F. (1990): "Extensions of games, purification of strategies, and Lyapunov's theorem", pp. 233-279 in Gabszewicz, J. J., J.-F. Richard, and L. Wolsey (eds.), Economic DecisionMaking: Games, Econometrics and Optimisation. Contributions in Honour of J.H. Drèze, Elsevier Science Publishers, Amsterdam, ISBN 044488422 X.

Neyman, A. (1981): "Singular games have asymptotic values", Mathematics of Operations Research, 6(??), 205-212.
Tauman, Y. (1979): "Value on the Space of all Scalar Integrable Games", pp. 107-115 in Moeschlin, O., and D. Pallaschke (eds.), Game Theory and Related Topics, North-Holland, Amsterdam, ISBN 0-444-85342-1. Proceedings of the Seminar on Game Theory and Related Topics, Bonn/Hagen, 26-29 Sept., 1978.

- (1982): "A Characterization of Vector Measure Games in $p N A$ ", Israel Journal of Mathematics, 43(??), 75-96.

[^0]: ${ }^{1}$ Tauman (1982) has a much sharper result for the case $v \in p N A$.

