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Abstract: With the S5 multi-agent epistemic logic we consider the
canonical maps from Kripke structures to knowledge structures. We de-
fine a cell to be a minimal subset of knowledge structures known in common
semantically by the agents. A cell has finite fanout if at every point every
agent considers only a finite number of other points to be possible. We de-
fine a cell to be surjective if every Kripke structure that maps to it does
so surjectively. All cells with finite fanout are surjective, but the converse
does not hold. To construct a counter-example we need topological insights
concerning the relationship between the logic and its semantic models. The
difference between syntactic and semantic common knowledge is central to
this construction.
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1 Introduction

In Fagin (1994), for every ordinal number v and sets of agents and primi-
tive propositions a hierarchically constructed canonical multi-agent Kripke
structure W, was defined for the S5 epistemic logic. This canonical structure
respresented all the possible truth evaluations for the statements of the logic,
with the ordinal numbers representing the levels in the construction of these
statements. For every Kripke structure for the same set of agents and prim-
itive propositions canonical maps were defined from the Kripke structure to
the canonical structures W,. These maps were defined in a straightforward
way; one reads off the truth evaluations from the Kripke structure in the
domain.

If there is an ordinal such that the map to one of the canonical structures
is injective, then the Kripke structure is called non-flabby, and the first such
ordinal is called the distinguishing ordinal. There is another minimal ordinal
(3, possibly larger than the distinguishing ordinal, for which the image of the
Kripke structure in W3 can be extended to any W, with v > 3 in only one
unique way. This latter ordinal is called the uniqueness ordinal. Fagin (1994)
proved that the uniqueness ordinal is a limit ordinal and never greater than
the next limit ordinal above the distinguishing ordinal. Behind this result
lies the concept of common knowledge (Lewis, 1969). The uniqueness of
extension depends upon the common knowledge of the agents concerning
the structure of possibilities. Common knowledge is completed only through
a limiting process; the common knowledge of a statement is an unlimited
sequence of statements concerning mutual knowledge of this statement, such
as the statement ”I know that you know that I know that .... that the
proposition p is true.”

For the rest of this paper, all multi-agent Kripke structures will be models
for the S5 epistemic logic, and we assume that there are only finitely many
agents and primitive propositions.

Our interest in unique extension originates from the difference between se-
mantic and syntactic formulations of common knowledge. Syntactic common
knowledge is a sequence of statements of ever increasing mutual knowledge.
Semantic common knowledge is the implicitely shared knowledge of what is
possible that is inherent in the structure of a Kripke structure. Syntactic
common knowledge may provide much less information that semantic com-
mon knowledge. This distinction is essential to understanding the main result



of this paper, and we return to it later.

We define a cell of a Kripke structure to be a minimal subset that is
closed under the possibility considerations of all agents. A subset C' is a
cell if and only if for every distinct points x,y € C there is a sequence
X = Xo,T1,-.-.,2T, =y such that for every 0 < 7 < n there is some agent at
x;_1 who considers both z;_; and z; to be possible, and furthermore for every
x € C and every agent all the points considered possible by this agent at the
point z already lie in C. The cell is the semantic formulation of common
knowledge; it is the minimal set on which the interactive knowledge of the
agents can be defined. It can be argued that all points outside of a cell are
irrelevant to the interactive knowledge of the agents inside that cell, and
therefore the cells are the important units with regard to the applications of
interactive epistemology (for example in economics see Aumann 1976). We
define a Kripke structure to be connected if it contains only one cell, (namely
the whole structure). It is straightforward to show that a connected Kripke
structure maps into only one cell of a canonical structure W,

Of special interest are the canonical Kripke structures W, associated with
the first infinite ordinal w, whose elements are called also knowledge struc-
tures; (see Fagin, Halpern, and Vardi, 1991). Fagin established the necessary
and sufficient condition for a cell of W, to have the first infinite ordinal w
as its uniqueness ordinal. This condition is the finite fanout property, and
it means that at every point in the cell every agent considers only a finite
number of other points to be possible. There is an alternative formulation
for hierarchically constructed canonical Kripke structures corresponding to
the ordinal numbers (Heifetz and Samet 1998, 1999), but with regard to the
first infinite ordinal they are the same as Fagin’s. W, is the set of all possible
truth assignments for the modal logic formulas of finite expression built from
the most primitive set of operations that include at least the knowledge of
the agents. The knowledge of an agent in this Kripke structure W, is nothing
other than the collection of statements of knowledge that this agent posesses
concerning these formulas of finite expression.

In Simon (1999) a cell of the Kripke structure W, was defined to be
surjective if all connected Kripke structures that map to it do so surjectively.
It is easy to show that a cell of W, with the finite fanout property is also
surjective.

In this paper, we construct an example of a countable and surjective cell of
W, that does not have finite fanout. We do not need to consider uncountable



cells, since all surjective cells are countable (Theorem 3a, Simon, 1999).

Central to understanding the relation between surjectivity and unique ex-
tension is point-set topology. For every Kripke structure we define a topology
on this structure based on the formulas of the logic. The base of open sub-
sets corresponds to the set of all formulas; for every formula f the subset
of the structure where f is true is a member of this base. For any agent j
and a point z of a Kripke structure M, let P/, () be the subset that agent j
considers possible at the point z. With this topology, W, is compact. With-
out explicitely mentioning this topology, Fagin (1994) showed that any set
Py, (x) is a compact subset of W,,. An extension to W, of a knowledge
structure x in W, is defined by dense subsets R’ of ngw () containing x
for all agents j; therefore there is a unique extension of a cell if and only if
every P%,w (x) in the cell has only one dense subset, which is equivalent to
the finiteness of these sets.

[s the lack of a unique extension from a cell of W, (equivalently the lack of
finite fanout) equivalent to the existence of some Kripke structure mapping
to this cell such that the agents have common knowledge on some transfinite
ordinal level that some knowledge structure of this cell is not possible? The
surjective property is exactly the impossibility of such common knowledge.

It is a natural question, and surprisingly the answer rests upon the prop-
erty called centeredness. The centered property has several equivalent defi-
nitions; the most straightfoward definition is that a cell of W,, is centered if
and only if no other cell of W, shares the same set of formulas held in com-
mon knowledge (Simon 1999). The centered property means that there is no
distinction between syntactic and semantic common knowledge. (The set of
formulas held in common knowledge is a constant throughout any given cell;
see Halpern and Moses 1992). An equivalent formulation is that the cell is an
open set relative to the closure of itself. The difference between centered and
uncentered cells is radical; if a cell is not centered then it does not contain
even one subset that is open relative to the cell’s closure, and then there are
uncountably many other cells sharing the same set of formulas in common
knowledge. Furthermore a centered cell of W, is surjective if and only if it
has finite fanout (Theorem 3b, Simon 1999).

Due to topological formulations of the centered property, to construct a
surjective cell without finite fanout requires some topological insight. Central
to our construction is an old result concerning homeomorphisms of a Cantor



Set, which we call Proposition 1. We do not prove Proposition 1 because it
is Theorem 9 of Chapter 12 of E. Moise, (1977).

Proposition 1: Let X and Y be two totally disconnected, perfect, com-
pact metric spaces (equivalently Cantor sets) and let X’ and Y’ be countable
and dense subsets of X and Y, respectively. There is a homeomorphism
between X and Y that is also a bijection between X' and Y.

Why is our main result surprising? As stated above, all possibility sets
of all agents in W, are compact. Using the above notation, the lack of
finite fanout implies the existence a cluster point y of some possibility set
P}, () for an agent j. (A cluster point of a set is the limit of a sequence
of infinitely many distinct points in that set.) Let C be the cell of W,, that
contains Pj, () (and therefore also y). The point y is a good candidate for
an excluded knowledge structure, namely the existence of a Kripke structure
that maps to C\{y}. Given any proper subset D of C, one could define a
new Kripke structure V(D) as the restriction of the existing structure on C
to the subset D, meaning that the new possibility set of an agent at a point
x € D is the old possibility set intersected with D. Then one could establish
the necessary and sufficient conditions for the canonical map defined from
V(D) to W, to be the identity map, meaning that a point d € D with respect
to the Kripke structure V(D) goes to d in W,,. If this occurs with any proper
subset D, then our cell would not be surjective. The converse holds too, that
the image of a Kripke structure is a subset D such that the map from V(D)
back to D is the identity map, (Lemma 6 and Lemma 7 of Simon 1999).

Now the centered property plays an critical role. If the cell C' is centered
and countable, then D defined to be the set of all isolated points of C' is a
non-empty subset such that the map from V(D) back to W, is the identity
(Theorem 3b, Simon, 1999). (A point is isolated in a set if there is an open
subset which contains only this point. In our context a point is isolated in a
cell if it can be distinguished from all other points in that cell by a finite set
of formulas.) A point y as described above would be not only a cluster point
of some possibility set but also a cluster point of the containing cell C, and
therefore our set D of isolated points would exclude y. So to find our counter-
example, we must work with uncentered cells. But most countable cells that
come to mind naturally are centered, because a countable cell is centered if
and only if it has at least one isolated point. The usual ideas for countable
cells involve sequences of points converging to one or several cluster points



that form a proper subset of the cell. However if only one point remains
isolated then the cell is centered and cannot be a counter-example. Proving
that uncentered countable cells exist is already complicated (Proposition 1
of Simon 1999), let alone finding a counter-example to our problem. In our
counter-example, although all points in our cell C' will be cluster points of
the cell, there will be only one infinite possibility set P (for some agent)
and there will be only one cluster point x of P. There will be no proper
subset D of C' such that the map from V(D) back to W,, is the identity map,
including the possibility of excluding only this single point x, namely with
the set D = C\{z}.

Why should one care about our main result, the distinction between finite
fanout and surjectivity? First, it is intuitive to suspect that the lack of unique
extensibility from a cell (or from any Kripke structure) is due ultimately to
the possibility of some form of common knowledge concerning the points in
this cell that is additional to that given a-priori by the structure of the cell.
Our result refutes this intuition. Second, it highlights the distinction between
syntactic and semantic common knowledge, bringing the meaning of this
distinction to another area that might appear at first to be unrelated. Third,
it demonstrates an non-trivial application of topology to philosophical logic.
Fourth, we investigated this problem in the context of a very primitive multi-
agent modal logic. Ours may be an example of a more general phenomenon,
occuring in more complex epistemic logics.

Lastly, our main result is related to belief revision. The operation of cre-
ating a new Kripke structure V(D) from an old structure through restriction
to a proper subset D is that of revising what the players know through in-
troducing the common knowledge of the set D. The property that all d in
the new Kripke structure V(D) get mapped back to the same point d in the
old structure W, means that concerning the truth value of all formulas the
results from the belief revision do not contradict the previous beliefs.

In the next section, we provide some background information necessary
to understand our solution. In the third and concluding section, we present
our example and prove that it has the claimed properties.



2 Background

Let X be a finite set of primitive propositions, and let .J be a finite set of
agents. Construct the set £(X,.J) of formulas using the sets X and .J in the
following way:

1) If z € X then z € L(X, J),

2) If g € L(X,J) then (—g) € L(X,]),

3)If g,h € L(X,J) then (g A h) € L(X,]),

4) If g € L(X,J) then kjg € L(X,]) for every j € J,

5) Only formulas constructed through application of the above four rules are
members of £(X,J).

We write simply £ if there is no ambiguity.

E(f) = E'(f) is defined to be Ajesk;f, E°(f) := f, and for i > 1,
E'(f) == E(E"'(f)). A formula f € £(X,J) is common knowledge in a
subset of formulas A C L(X, J) if E"f € A for every n < oco.

Throughout this paper, the multi-agent epistemic logic S5 will be as-
sumed. For a discussion of the S5 logic, see Cresswell and Hughes (1968);
and for the multi-agent variation, see Halpern and Moses (1992) and also
Bacharach, et al, (1997). Briefly, the S5 logic is defined by two rules of in-
ference, modus ponens and necessitation, and five types of axioms. Modus
ponens means that if f is a theorem and f — ¢ is a theorem, then g is also
a theorem. Necessitation means that if f is a theorem then k;f is also a
theorem for all j € J. The axioms are the following, for every f,g € L(X,J)
and j € J:

1) all formulas resulting from theorems of the propositional calculus through
substitution,

2) (kif NE;(f = 9)) = kjg,

3) kif = f,

4) kif = kji(k;f),

5) ~kif = kj(=k;if).

A set of formulas A C L(X,J) is called complete if for every formula
f € L(X,J) either f € Aor =f € A. A set of formulas is called consistent
if no finite subset of this set leads to a logical contradiction, meaning a
deduction of f and —f for some formula f. We define

Q(X,J):={S CL(X,J)| S is complete and consistent}.

Q(X, J) is equivalent to the W, of the introduction.
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For every agent j € J we define its knowledge partition Q7(X,.J) to
be the partition of (X, J) generated by the inverse images of the function
B Q(X, J) — 255 the set of subsets of £(X,.J), defined by

B(z) ={f € LIX,]) | k;f € 2}

Due to the fifth set of axioms 37(z) C #/(2') implies that 57(z) = 37(z'). We
will write Q, £ and Q7 if there is no ambiguity.

In this paper, a Kripke structure is a quintuple K = (S;J;(P? | j €
J); X; ) where J is a set of agents, for each j € J P7 is a partition of the set
S, X is a set of primitive propositions, and 1 : X — 2° is a map from X to
the subsets of S, such that for every x € X the set v(x) is interpreted to be
the subset of S where z is true. (The usual definition of a Kripke structure is
more general, but this more restricted usage applies to the S5 logic.) Define
an adjacency sequence to be a sequence of points 2y, z1, ..., 2, such that z;
and z;_; both belong to some member of P7 for some j € N. We define a
map o : £(X,J) — 2% inductively on the structure of the formulas in the
following way:

Caself:xeXa() ().

Case 2 [ = —g: o*(f ) S\a ’C()
Case 3 f =g Ah: o®(f) := a®(g) N X (h),
Case 4 f = k;(g): o(f

We define a map ¢~ : S

¢"(s) = {f € LIX,])) | s€a™(f)}.

The map ¢* is the map to the canonical structure Q(X,.J) corresponding to
the first infinite ordinal.

Consider the map 1 : X — 2 defined by ¢ (z) := {2 € Q | z € z}. We
have a Kripke structure Q = (Q;J; Q' ..., Q" X ;). (Due to its canonical
nature, we index this Kripke structure with €.) A possibility set of Q is
defined to be a member of Q7 for some j € J and a cell of  is a member of
the meet partition Q := Aje;Q7.

For every Kripke structure K = (S;.J;(P’|j € J);X;1) we define a
topology for S, the same as in Samet (1990). Let {a™(f) | f € £} be the
base of open sets of S. We call this the topology induced by the formulas; with
the same topology defined on 2 this topology on S is the coarsest topology
such that the canonical map ¢* : S — Q is continuous. The topology of a

{S|SEPG’P]:>PCa (9)}

) :
)=
— Q(X, J) (see Fagin, Halpern, and Vardi 1991) by
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subset A of S will be the relative topology for which the open sets of A are
{ANO | O is an open set of S}.

Central to this paper is the first part of Lemma 5 of Simon (1999), which
states that if K = (S;J; (P’ | j € J); X;4) is a Kripke structure and P is
a member of P’ for some j € J then ¢*(P) is a dense subset of F' for some
F € Q. This fact was used implicitely by Fagin (1994).

Given a Kripke structure K = (S;.J; (P’ | j € J); X;1) and a subset A C
S, we define the Kripke structure VX(A) := (A;J; (P74 | 7 € J)); X;9|a)
where for all j € J P/|4 :={FNA|FNA#(and F € P’} and for all
x € X Y|a(z) = ¢(z) N A. We define a subset A C €2 to be good if for every
j € J and every F' € QV satisfying F'N A # () it follows that ' N A is dense
in F. By Lemma 6 of Simon (1999) A is good if and only if for every z € A
¢V N (2) = 2.

The next lemmatta relate directly the good property to our problem.

Lemma 7: (Simon 1999) If K = (S;J;(P’|j € J); X;¢) is a Kripke
structure then ¢*(S) is a good subset.

Lemma 9: (Simon 1999) If A is a good subset of a cell C' such that for
every possibility set F' AN F # () implies that A N F is closed, then A = C.

We need a few more facts about Q(X,.J) for non-empty X. If |J| > 2
then Q(X,.J) is topologically equivalent to a Cantor set, (Fagin, Halpern
and Vardi 1991). Second we can perceive a Cantor set as {0,1}N, where

each finite sequence a = (a',a?,...,a") defines a cylinder subset C(a) of

{0, 13N by C(a) := {z € {0,1}N | ¥ = ¥ V& < n}. Furthermore all
cylinder subsets are themselves topologically equivalent to Cantor sets, and
the same holds for finite unions of cylinder sets. Third, if |.J| > 2 then there
exists an uncentered cell of Q(X, .J) of finite fanout that is dense in Q(X, .J);
an example is constructed in Simon (1999).

3 The Example

We call a partition P of a topological space D upper (respectively lower)
semi-continuous if the set valued correspondence that maps every d € D
to the partition member of P containing d is an upper (respectively lower)
semi-continuous correspondence. (We follow the definitions of Klein and
Thompson, 1984.)



Let 2 equal (X, {1,2}) with X any finite non-empty set. Let C' be an
uncentered cell of finite fanout that is dense in 2. We assume that 7 : Q) —
{0,1}N is a homeomorphism. For every n € N define 7, : Q — {0,1}" by
7,(z) equaling the a = (a',a?,...,a") € {0,1}" such that n(z)' = a' Vi < n.
If a is the empty sequence in {0,1}° then define my(z) := a for all z € Q.

Let z be any member of C' and for every ¢ = 1,2,... let z; be a member
of C such that my;_s(2;) = m9i_2(2) but my;(2;) # mai(z). For every i define
non-empty and mutually disjoint sets A;;, A;9,...A;; in the following way.
Let Ay, equal Q\ (my ' (m2(21)) U my H(ma(2))). For 1 < k < ilet Ay =
Taiea(Taia(2k))\ 73! (m2i(24)) and let A := 305 (moi—2(2))\ (723" (m2i(2:)) U
5 (mi(2))). Because for every a € {0,1}?* there are four members b of
{0,1}%%2 such that a = my(75;15(b)), all the sets A;; are non-empty and
homeomorphic to Cantor sets. By Proposition 1, for every ¢ > 1 and 1 <
k < there is a homeomorphism f; : A;,; — A; ) such that f; maps C'N A;,
bijectively to C'N A;j This implies for every ¢ > 1 that there exists an upper
and lower semi-continuous partition P; of C'N (U;_;A;x) such that every
partition member of P; has ¢ members, one member in A;;, for every 1 <k <
i. Notice that all the A, ; are mutually disjoint, meaning that A;; = A;« ;« if
and only if ¢ = ¢* and k = k*. Furthermore the disjoint union U;>1 Ui<p<; Aik
is equal to Q\ {z, 21, 29,...}. Let P be U2, P;U{z, 21, 29,...}, a partition of
C. It is straightforward to check that P is upper and lower semi-continuous.
We define A be the Kripke structure (C;{1,2,3}; QY ¢, Q%c, P; X, ¥|c).

Lemma 1: If K := (S;J; (P’ | j € J); X;4) is a Kripke structure with
a topology (not necessarily that induced by the formulas) such that
1) for every x € X #(z) is a clopen set and
2) for every j € N the partition P’ is lower and upper semi-continuous,
then the map ¢* : S — Q(X,J) is continuous.

Proof: It suffices to show that o (f) is a clopen set for every f €
L(X,J). We proceed by induction on the structure of formulas. The claim
is true for all x € X by the hypothesis and it is likewise true for =f and
f A g if it is true for f and g, due to the clopen property being closed
under complementation and finite intersection. For some f € L(X,J) we
assume that o/(f) is a clopen set. o*(k;f) is an open set by the upper
semi-continuity of P/ and the openness of &(f). S\a™(k;f) = o*(=k;f) is
an open set by the openness of S\a®(f) and the lower semi-continuity of P7.
(Il



The upper and lower semi-continuity of @7 in Q follow directly from
the extension conditions of Fagin, Halpern, and Vardi (1991) that define
knowledge structures. The upper and lower semi-continuity of P relative
to the topology on Q(X,{1,2}) induced by the formulas in £(X,{1,2}) is
essential for our argument, since a-priori we would not know that ¢ maps
{z, z1,...} surjectively to a possibility set of Q(X, {1,2,3}).

Theorem: ¢* maps C bijectively to a cell of Q({1, 2, 3}) that is surjective
but without finite fanout.

Proof: We have by Lemma 1 that ¢* : C — Q(X, {1,2,3}) is contin-
uous. Since every member of Q!|¢, Q%|¢, or P is compact, their images in
Q(X,{1,2,3}) are also compact. By Lemma 9 of Simon (1999) ¢* maps
C surjectively to a cell ¢*(C) of Q(X,{1,2,3}). Between any two points
of A(C) there is an adjacency path using images of members of Q'|c and
Q?|¢, all finite possibility sets of Q(X,{1,2,3}) - therefore there can be no
proper good subset of ¢*(C). By Lemma 7 of Simon (1999) this implies that
¢*(C) is a surjective cell. Since for every f € L(X, {1,2}) a®XAL2D(f) gets
mapped to a?XAL23N (£) ¢4 is an injective and an open map, and therefore
the map ¢* is also a homeomorphism of C' to ¢*(C). Therefore the image
of the one infinite possibility set in C' is also an infinite possibility set in the
cell $*(C), which implies that this cell of (X, {1,2,3}) does not have finite
fanout. q.e.d.
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