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Abstract. This paper presents a model of group formation based on the assumption

that individuals prefer to associate with people similar to them. It is shown that, in

general, if the number of groups that can be formed is bounded, then a stable

partition of the society into groups may not exist. A partition is defined as stable if

none of the individuals would prefer be in a different group than the one he is in.

However, if individuals’ characteristics are one-dimensional, then a stable partition

always exists. We give sufficient conditions for stable partitions to be segregating

(in the sense that, for example, low-characteristic individuals are in one group and

high-characteristic ones are in another) and Pareto efficient. In addition, we propose

a dynamic model of individual myopic behavior describing the evolution of group

formation to an eventual stable, segregating, and Pareto efficient partition. Journal

of Economic Literature Classification Numbers: C72, H41.
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1. INTRODUCTION

Group formation refers to environments in which an individual’s payoff from performing

a particular action only depends on the set of other individuals taking that action. The

motivation behind studying group formation is that, in a wide range of social and

economic interactions, individuals take independent decisions which, among other things,

determine the identities of the people with whom they associate. In such situations, the

individuals’ preferences over the available alternatives are often strongly dependent on

their preferences for particular kinds of people. For example, in deciding about a

residential neighborhood, entertainment activity, fashion, or affiliation to a religious

congregation, the question of who are the other people making the same choice is often of

major importance. The objective of this paper is to study group formation in

environments in which individuals seek to associate themselves with people similar to

them.

   Our basic group formation model is very simple. It consists of a finite set of individuals

and a metric which, for each pair of individuals, quantifies the relevant differences

between them. For every possible partition of the set of individuals into groups, each

person’s satisfaction with the partition is determined by the average distance between

himself and the other members of his group: the greater the distance, the lower the

satisfaction. Thus, the highest degree of satisfaction is attained when a group is

homogeneous, i.e., the distance between any two individuals in the group is zero.

Therefore, if there were no bound on the number of groups, only homogeneous groups

would be formed. To avoid such a triviality, we assume there is an upper bound to the

possible number of groups. For example, each group of individuals is associated with a

distinct site or jurisdiction, so that the number of groups cannot exceed the number of

available locales. The identification of groups with sites has the additional advantage of

providing a natural labeling of groups. Thus, an individual’s choice of site determines his

group. Since our concern here is only with group formation, uncompounded by any other

effects, we assume that there is no intrinsic difference between sites. However, there are
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clearly situations in which it would be more realistic to assume that the sites are not

identical.

   There is more than one sense in which a partition of a society into groups may be stable

(see, for example, Bogomolnaia and Jackson, 1998). The definition of stability used in

this paper is as follows: A partition is stable if none of the individuals would be better off

leaving his current group and joining another group. This definition is rather demanding.

An individual is not required to obtain the consent of the members of his current group or

the group he joins. Nor does he incur any travel costs. The number of stable partitions is,

therefore, likely to be smaller than it would be if free mobility were not assumed. We

show, in fact, in Section 2 that, in general, stable partitions might not exist.

   Our counterexample involves a society of five individuals who are represented by

points in the plane: The distance between any two individuals is equal to the distance

between the corresponding points. In this example, if only two groups are allowed to

form, stable partitions do not exist. We show, however, in Section 2 that a similar

problem does not arise when people can be represented by points on the line. In this case,

at least one stable partition always exists. The argument, for the special case of only two

groups, was already given by Schelling (1978). As he showed, it is sufficient to consider

segregating partitions; in the two-group case, this means that all the individuals to the

right of some imaginary point on the line are in one group, and all the individuals to the

left of that point are in another group. In each group, if the individual closest to the other

group is satisfied with the proposed partition, nobody in the group objects to it. If not, that

individual needs to be moved to the other group. After a finite number of iterations, this

procedure gives a partition to which no one objects.

   The algorithm for finding a stable partition (under the assumption that people’s

characteristics are unidimensional) yields, in fact, a partition that is not only stable but

also segregating. This is significant since, as we show in Section 3, all stable and

segregating partitions are weakly Pareto efficient. There are, however, stable partitions

that are not weakly Pareto efficient, and therefore not segregating. The reason for this

potential lack of efficiency has to do with the assumption that individuals only care about
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the absolute value of the difference between their own characteristics and those of each of

the other individuals in their group. They are not concerned whether the other members of

the group are all to the left or to the right of themselves, or there are some on both sides.

Consequently, an individual may be unwilling to leave a group even if his characteristic is

closer to the average in another group than in his own group. This observation suggests

the following modification to the model described above. Rather than looking at the

average distance from the other people in their group, individuals should be seeking to

minimize the distance from the average in the group. In Section 4, we show that this

modification does indeed eliminate inefficiency. In the modified model, all partitions are

segregating and weakly Pareto efficient. In fact, a partition is stable in the new, “distance

from the average,” model if and only if it is stable in the old, “average distance,” model

and is segregating.

   One conceptual difference between the “average distance” and the “distance from the

average” models is that, in the latter, people do not necessarily have to know the identity

or the characteristic of every member of each group. Knowing the attributes of a

“representative individual” in each group suffices. We offer two alternative

interpretations for this model. The first interpretation is that the members of each group

are making collective decisions on issues affecting their welfare. For example, they

decide on the level of expenditure on some public good. Individuals differ in their

preferences, and hence also in their ideas about the optimal level of expenditure. An

individual whose preferred level of expenditure is close to the average in his group is

likely to be less dissatisfied with the collective decision than one whose preferred level is,

say, higher than everybody else’s. A second possible interpretation is that group

membership serves as a signal to the outside world. The idea is that outside observers

categorize a person in a certain way when they learn he is a member of a particular group.

To minimize errors, they ascribe the average characteristic of the people in the group to

that person. It should be emphasized that the issue here is honest signaling. People want

to be recognized for what they are. Hence, they will try to be in a group in which the

average person is as close as possible to themselves.
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   These interpretations of the “distance from the average” model may raise two

objections. First, when individuals join a group, they change it. For example, if the group

is going to take a decision, a new member has as much power as everybody else to affect

it. Correspondingly, people should consider, not the average characteristic of the other

members of their group but the average characteristic of all the individuals in the group,

including themselves. This may very well affect their decisions on which group to join.

For example, individuals would generally prefer to join smaller rather than larger groups,

everything else being equal. This is because the average characteristic tends to shift more

towards that of a newcomer in a small rather than in a large group. In Section 5, we study

the implications of such a “self-effect” on group formation. Because of the (indirect)

effect of group size on individuals’ behavior, this case is more difficult to study

analytically than the previous one, in which self-effect is absent. In particular, we are only

able to prove the existence of stable partitions when there are two groups. However, in

other aspects, at least, this model is similar to the “distance from the average” model

without self-effect.

   The second objection that can be raised against our interpretations of the “distance from

the average” model is that other statistics—in particular the median—may be more

relevant than the average characteristic of group members as predictors of the decision

reached by the group. In certain situations, this is certainly the case (see Westhoff, 1977

and 1979). We show, however, in Section 6, that if the average characteristic is replaced

by a weighted average, then stable partitions do not necessarily exist. Also, the existence

of stable partitions is not generally guaranteed if individuals’ preferences over groups are

allowed to depend in a more direct way on the number of group members; if congestion

effects are strong, all partitions may be unstable. In the same section, we show that, in all

the three models considered in this paper (namely, the “average distance” model and the

“distance from the average” model with or without self-effect), there may not be a

partition which is strongly stable, in the sense that there are no profitable deviations, not

just for individuals but also for coalitions (i.e., subsets of individuals). In fact, we give an

example in which there is always a profitable deviation for a coalition consisting of
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identical individuals, who are members of the same group and move together to join

some other group.

   In the last section (Section 7), we describe a dynamic model of group formation. In this

model, individuals behave myopically by moving, one at a time, to a group which they

prefer to their current one. The order in which individuals move is random, at least to

some degree. We show that, in both variants of the “distance from the average” model,

this process converges almost surely to a stable and segregating partition within a finite

number of periods, regardless of the initial partition. (As before, with self-effect we are

able to prove convergence only if there are only two groups.) A small amount of

randomness is indispensable since, without it, the process may be cyclical. We show,

however, that there is always a way out of a cycle, and therefore the process will escape it

eventually, provided that every order of movers occurs with positive probability.

   The issue of group formation has been discussed in a variety of contexts in the past.

Schelling’s (1978) early analysis is particularly relevant to our own. Schelling provides

several examples illustrating the strategic considerations related to group formation when

individuals’ preferences depend on such factors as the age, income, or race of those with

whom they associate. Our analysis offers a more complete and rigorous treatment of some

of the issues addressed by Schelling. Karni and Schmeidler (1990) give an example of an

overlapping generation model in which two types of individuals choose one of three

possible colors (or fashions). A consumer’s payoff from choosing a color depends on the

proportion of individuals of his type who decide on the same color. In this framework,

Karni and Schmeidler examine fashion cycles and the conditions for segregation. Group

formation in a different context was discussed by Kaneko and Kimura (1992). These

authors use a game theoretic model to explain racial discrimination. In their framework,

the population consists of two types, blacks and whites, with the latter forming the

majority. Players are engaged in a “festival game” generating a positive payoff for

participants if and only if a majority of the population attends the festival. They show that

a stable convention may emerge in which only the white population attends the festival.

Ellickson et al. (1999) developed a general-equilibrium theory of clubs based on the view

that clubs are involved in a variety of public activities, rather than only in the production
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of public good, and obtained results about the relation between the competitive

equilibrium and the core in this framework. Our paper is related to this work in so far as

clubs are a form of group formation. However, apart from the fact that our approach here

is game theoretic, our notion of group formation differs from the notion of clubs as

defined by Ellickson et al. (1997). In particular, in our framework there is no

consumption and the individuals’ payoffs are derived directly from their association with

a group. The literature on core stability in games with effective coalitions (see, for

example, Kaneko and Wooders, 1982, and Le Breton, Owen, and Weber, 1992) is also

somewhat related to our paper. An effective coalition is characterized by a particular

combination of types of individuals. For example, in a two-sided market, an effective

coalition consists of a buyer and a seller. The existence of types in games with effective

coalitions induces a particular form of preferences of individuals over coalitions. Even

more closely related to our approach are the recent papers of Bogomolnaia and Jackson

(1998) and Banerjee, Konishi, and Sönmez (1998). These studies focus on several

stability notions (in particular, core, individual, and Nash stability) of hedonic coalition

formation, in which a player’s payoff is only determined by the identity of the other

members of his group. None of these notions is directly applicable to our framework,

however, since they all imply that individuals would not like to deviate and form their

own groups. In our model, individuals normally would like to form new groups, and it is

only the exogenous constraint on the number of groups which prevents them from doing

so. Correspondingly, the sufficient conditions for stability obtained by Bogomolnaia and

Jackson (1998) are not satisfied by any of our models.  

   Finally, although our paper does not draw its motivation directly from the literature on

local public goods, it is somewhat related to it. This literature aims to explain how

consumers partition themselves into jurisdictions to maximize their utility from the

consumption of public good (see, for example, Tiebout, 1956, Wooders, 1980, Bewley,

1981, Greenberg and Weber, 1993, Jehiel and Schotchmer, 1997, and Konishi et al.,

1998). Conceptually, our model is similar. As indicated above, groups in our model can

be interpreted as jurisdictions, and individuals’ characteristics as their optimal levels of

public good (with respect to a particular tax scheme). Perhaps the most significant
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departure of our paper from the relevant literature on local public goods is the dynamic

process of movement between groups. Conceivably, this process may be applied to model

the way jurisdictions evolve to their final structure. We are not aware of similar models in

the current literature on local public goods.

2. THE SETUP

A society consists of a finite number n of individuals, indexed from 1 to n; it can thus be

identified with the index set I = {1, 2, …, n}. A partition of the society is a specification

of m groups of individuals, such that each individual belongs to one, and only one, group.

The groups are indexed from 1 to m, and the set of groups can thus be identified with the

index set K = {1, 2, …, m}. Group formation is viewed as endogenous. However, the

number m of groups is an exogenous parameter (with m ≤ n). The formation of new

groups is viewed as being either physically impossible or prohibitively expensive.

Moving between existing groups, on the other hand, is always possible and does not

involve any cost. Formally, an (ordered) partition (of I) is an element σ = (σ1, σ2, …,σn)

of Kn such that, for all k ∈ K, σi = k for some i.1 Here, σi  denotes the (index of the) group

to which individual i belongs. It is convenient to define a partial order ≤ on the set of

partitions, as follows: σ ≤ σ' if and only if σi ≤ σ'i for all i. The notation σ < σ' means

σ ≤ σ' and σ ≠ σ'. A partition σ is minimal (with respect to ≤) in a given set of partitions

if there is no partition σ' in that set such that σ' < σ. It is maximal in a given set if there is

no partition σ' in that set such that σ < σ'. It is the smallest (greatest) partition in a set if

σ ≤ σ' (respectively, σ' ≤ σ) for every partition σ' in the set. A partition σ is

nondecreasing if σi ≤ σj when i < j.

   The distance dij between two individuals i and j is a measure of how different they are

from one another. For a given partition σ, the average distance between individual i and

1 The assumption that all m groups are non-empty is made for technical convenience only. None of the

results in this paper would be affected if groups were allowed to remain empty, so that m would become an

upper bound on the number of groups.
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the other individuals in his group is denoted di(σ). If i is the only member of the group,

then di(σ) = 0. Individuals prefer the company of other individuals who are similar to

them. A partition is considered to be unstable if there is at least one individual who would

like to move to a different group, because the average distance between him and the

members of the other group is smaller than in his current group. Formally, a partition σ is

unstable if there is a partition τ differing from it in only one coordinate, say the ith one,

such that di(τ) < di(σ). Otherwise, the partition is stable. A partition is stable if and only if

it is a (pure-strategy) Nash equilibrium in the game in which the set of players is I, the set

of actions available to each player is K, and the payoff function of player i is given by

some strictly decreasing function of di. The following example shows that, even in the

special case in which the dij’s are distances in an Euclidean space, an equilibrium does not

always exist.

EXAMPLE 2.1. There are five individuals in the society and two groups. Each individual is

represented by a point in the plane, such that the distance between any two individuals is

equal to the Euclidean distance between the respective points. The points are: (0, 0),

(0, 47), (55, 62), (74, −34), and (101, 55) (see Fig. 1). A straightforward, though

somewhat tedious, computation shows that none of the 30 possible partitions in this

example is stable.

Fig 1. A society in which all the partitions into two groups are unstable.
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   If, however, individuals can be represented by points on a line, a stable partition always

exists. The following proposition follows as an immediate corollary from a stronger result

(Theorem 2.4) that we prove below.

PROPOSITION 2.2. If for every individual i there is a real number ci, such that dij = |ci − cj|

for all i and j, then a stable partition exists.

   In the rest of this paper, we assume that distances can indeed be represented as in

Proposition 2.2. We will refer to ci as the characteristic of individual i and assume,

without loss of generality, that c1 ≤ c2 ≤ ⋅ ⋅ ⋅ ≤ cn. A natural question arising in this context

is whether stability implies that individuals are separated, or segregated, according to

their characteristics, so that, for example, low-characteristic individuals are in one group

and high-characteristic individuals are in another. Formally, a partition is segregating if,

for every pair of individuals i and j' such that ci < cj', if i and j' are members of the same

group k then all the individuals j such that ci ≤ cj ≤ cj' are in k. Perhaps somewhat

surprisingly, the answer to this question is “no.”  

EXAMPLE 2.3. The following partition is stable, but not segregating:

0  5  5  5 4  4  4  9.

In this example, and elsewhere in this paper, the characteristics of the individuals

belonging to the same group are written alongside one another.

   While a stable partition, as Example 2.3 shows, need not be segregating, it always has

the following weaker property (which holds for every segregating partition): If two

individuals in two different groups have the same characteristic c, then all the individuals

in these two groups have characteristic c. The proof of this is rather simple. If σ is a

partition which does not have this property, then there are two individuals, i and j', in the

same group k such that ci ≠ cj', and a third individual j in another group l such that cj = ci.

The average distance between i and the individuals in l does not exceed dj(σ), while the

average distance between j and the individuals in k is less than di(σ). (The latter average

distance is equal to [dij + (nk−1) di(σ)]/nk, where nk is the number of individuals in
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group k. Since not all the individuals in group k have the same characteristic, di(σ) > 0. At

the same time, dij = |ci − cj| = 0.) Therefore, regardless of whether dj(σ) < di(σ) or di(σ) ≤

dj(σ), the partition σ is unstable. Thus, we conclude that all stable partitions have the

property described above. It is easy to see that a nondecreasing partition which has this

property is segregating. Therefore, every nondecreasing stable partition is segregating.

The next theorem shows that at least one nondecreasing stable partition always exists. In

the theorem, the following definitions are used. Individual i u-objects to a nondecreasing

partition σ if σi < m and di(σ) > di(τ), where τ is the partition differing from σ only in that

i is a member of group σi + 1. Individual i d-objects to σ if σi > 1 and di(σ) > di(τ), where

τ is the partition differing from σ only in that i is a member of group σi − 1.

THEOREM 2.4. Every minimal element (with respect to the partial order ≤) in the set of all

nondecreasing partitions to which none of the individuals u-objects, as well as every

maximal element in the set of all nondecreasing partitions to which none of the

individuals d-objects, is stable and segregating.

   The proof of Theorem 2.4 uses the following lemma.

LEMMA 2.5. Let σ be a nondecreasing partition. If the highest- (lowest-) index individual

in a group does not u-object (respectively, d-object) to σ, then no one in that group does

so.

Proof. Let i be the highest-index individual in group k, and j another member of k.

Assuming that k < m, let τ be the partition differing from σ only in that individual i is in

group k + 1, and τ' the partition differing from σ only in that individual j is in group k + 1.

Since σ is nondecreasing and ci ≥ cj, di(τ) = dj(τ') − (ci − cj). On the other hand, di(σ) ≥

dj(σ) − (ci − cj). Therefore, if j u-objects to σ then so does i. The proof for d-objections is

similar. n

Proof of Theorem 2.4. A nondecreasing partition is stable (and hence segregating) if and

only if none of the individuals u-objects or d-objects to it. In view of the symmetry

between u- and d-objections, it is sufficient to prove the following: If a given partition is
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maximal in the set of all nondecreasing partitions to which none of the individuals

d-objects, then on one u-objects to it either. We will show, in fact, that if σ is a

nondecreasing partition to which none of the individuals d-objects, and if i is the highest-

index individual who u-objects to σ (assuming there is such an individual), then no one

d-objects to the partition τ > σ defined by τi = σi + 1 and τj = σj for all j ≠ i. (Note that τ is

a legitimate partition. Since i u-objects to σ, there must be at least one more individual in

i’s group.) And this partition is nondecreasing, for it follows from Lemma 2.5 that i must

be the highest-index individual in group σi.

   Clearly, individual i does not d-object to τ. It therefore follows from Lemma 2.5 that

none of the individuals j such that τj = τi d-objects to τ. If j is an individual such that

τj > τi + 1 or τj < σi then, since j did not d-object to σ, he does not d-object to τ either. The

same is true if τj = τi + 1: Since ci ≤ cj' ≤ cj for all individuals j' in group τi, the average

distance between j and the individuals in group τi could only have increased when i joined

that group. It remains to examine the case in which τj = σi. If j is the lowest-index

individual in group σi (in which the highest-index individual was i), the average distance

between j and the other individuals in group σi could only have decreased when i left that

group. Since individual j did not d-object to σ, a fortiori he does not d-object to τ. It

follows, by Lemma 2.5, that none of the individuals j such that τj = σi d-objects to τ.    n

3. EFFICIENCY

A partition σ is weakly Pareto efficient if there is no partition τ such that di(τ) < di(σ) for

all individuals i. A partition σ is Pareto efficient if there is no partition τ such that

di(τ) ≤ di(σ) for all individuals i, and strict inequality holds for at least one individual. As

Example 2.3 demonstrates, a stable partition need not be even weakly Pareto efficient. (In

that example, if individuals 1 and 8 switch places, everybody is better off.) Note,

however, that the partition in Example 2.3 is not segregating. In fact, the next theorem

shows that a stable partition is not weakly Pareto efficient only if it is not segregating.
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Note that, in a segregating partition, there may be two or more groups in which all the

individuals have the same characteristic c. Such a segregating partition will be said to be

detaching. Clearly, in the generic case, in which ci ≠ cj when i ≠ j, all segregating

partitions are non-detaching.

THEOREM 3.1. All stable and segregating partitions are weakly Pareto efficient. All stable

and non-detaching segregating partitions are Pareto efficient.

   The proof of Theorem 3.1 is given in the Appendix. This proof shows, in fact, even

more than the theorem asserts. In the generic case, for example, not only is it true that

every deviation from a stable and segregating partition which is advantageous to some

individuals must be disadvantageous to at least one of the others, but any change that is

not tantamount to re-labeling of groups must leave at least one individual worse off.

   In Theorem 3.1, the condition of a stable partition cannot be dropped. In fact, a non-

detaching segregating partition that is not stable need not be even weakly Pareto efficient.

For example, all individuals are worse off in

0  3 4  5 6  9

than in

0 3  4  5  6 9.

In the second part of the theorem, the condition of a non-detaching partition cannot be

dropped; stability alone is not a sufficient condition for Pareto efficiency of a segregating

partition (but only for weak Pareto efficiency). For example, the partitions

0  1 3 3

0 1 3  3

are both stable. However, the first two individuals are better off in the second partition,

while the other two are equally well off in both partitions.
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4. DISTANCE FROM THE AVERAGE

In the model presented in Section 2, stable partitions may not be even weakly Pareto

efficient. As shown, this potential lack of efficiency has to do with the fact that, in that

model, some stable partitions are not segregating. This section presents a variant of the

above model in which all the stable partitions are segregating and weakly Pareto efficient.

In fact, in the new model, a partition is stable if and only if it is stable in the old model

and is segregating. The difference between the two models is that, rather than seeking to

minimize the average distance between their own characteristic and that of the other

members of their group, individuals like the distance between their own characteristic and

the average characteristic of the other people in the group to be as small as possible.

Formally, for a given partition σ, and for an individual i in group k, di(σ) is redefined as

| $C k − ci|, where $C k is the average characteristic of all individuals other than i in group k.

If i the only member of his group, then di(σ) = 0. As before, the stability of a partition σ is

defined by the condition that, for every individual i, there is no partition τ differing from

σ in the ith coordinate only such that di(τ) < di(σ). The old model will hereafter be

referred to as the “average distance” model, and the new one as the “distance from the

average” model.

   One interpretation of the difference between the two models is that in the “distance

from the average” model the groups are viewed as significant entities—and not merely as

collections of individuals. This model may therefore be more suitable than the “average

distance” model in cases in which the properties of the “average person” in a group are

reasonably reliable predictors of the group’s collective acts or decisions (see the

Introduction). Note that there is one case in which these two models coincide. When there

are only two types of individuals (e.g., two races), people’s preferences are the same in

both models. Namely, they want to be with people of their own kind, and rank groups

according to the proportion of such people in them. In this special case, a partition is

stable (in either model) if and only if it is segregating, which means that all groups are

homogeneous.
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THEOREM 4.1. In the “distance from the average” model, all stable partitions are

segregating and weakly Pareto efficient. Moreover, all the stable partition that are non-

detaching are Pareto efficient.

   The proof of Theorem 4.1 is given in the Appendix. As it shows, the reason that stable

partitions in the “distance from the average” model are always segregating is that

individuals always want to move to a group in which they are closer to the average

characteristic than in their current group. This is not the case in the “average distance”

model (cf. Example 2.3).

   The existence of stable partitions in the “distance from the average” model can be

proved in exactly the same way as in the “average distance” model. In fact, Lemma 2.5

and Theorem 2.4, as well as the proofs given for these results above, hold in both models.

However, with the aid of Theorem 4.1, it is possible to prove more than mere existence.

As the following theorem shows, the set of all stable partitions in the former model is, in

fact, a subset of the corresponding set in the latter one.

THEOREM 4.2. The set of all stable partitions in the “distance from the average” model is

non-empty. It consists of all the stable partitions in the “average distance” model which

are segregating.

Proof. Consider a segregating partition σ that is unstable in one of these models. Without

loss of generality, we may assume that σ is nondecreasing. Let i be an individual who (in

the model in which σ is unstable) u-objects or d-objects to σ. It follows from Lemma 2.5

that, without loss of generality, i may be assumed to be the highest- or lowest-index

individual, respectively, in his group. For such an individual, the value of di(σ) in the

“distance from the average” and the “average distance” models is the same. Moreover,

the value of di(τ) is also the same in both models, where τ is the nondecreasing partition

that differs from σ in the ith coordinate only (i.e., differs only in that individual i is in the

neighboring group). It follows that di(τ) < di(σ), and hence the partition σ is unstable, in

both models. n
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5. SELF-EFFECT

In the “distance from the average” model presented in the previous section, individuals do

not take into account the fact that, by joining a group, they change it: the “average

person” in the group becomes more like themselves. This assumption is implicit in the

definition that sets di(σ) as the distance between i’s characteristic and the average

characteristic of the other individuals in i’s group. This section explores the alternative

possibility, that people contemplating a move take into consideration the effect it will

have on the group they join. Formally, di(σ) is redefined as the absolute value |Ck − ci| of

the difference between the characteristic ci of individual i and the average characteristic

Ck of all the individuals in i’s group k (including i himself). The new model is termed the

“distance from the average” model with self-effect. The model presented in Section 4 will

hereafter be referred to as the “distance from the average” model without self-effect. Note

that, even with self-effect, it is possible to express di(σ) in terms of the average

characteristic $C k of the other individuals in i’s group k. Specifically, if the number of

people nk in group k is at least two, di(σ) = (1 − 1/nk) | $C k − ci|. The factor 1 − 1/x can be

interpreted as quantifying the (negative) effect of group size on people’s desire to join a

group. Note that, although group size is not assumed to have a direct effect on the well-

being of group members, congestion effects do come in indirectly because small groups

are more affected by the arrival of new members.

   As shown in the Appendix, Theorem 4.1 holds for the “distance from the average”

model with self-effect as well as for the model without self-effect. In fact, a single proof

holds for both models. The (indirect) effect of group size on individuals’ willingness to

join the group does, however, complicate things when one tries to establish the existence

of stable partitions in the “distance from the average” model with self-effect. We can

prove that such a partition always exists for two, but not for more than two, groups.

However, we do not have counter-examples, either. Thus, the existence of stable

partitions in the “distance from the average” model with self-effect and more than two
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groups is unresolved. Note that if m = 2 then there are precisely n − 1 nondecreasing

partitions, which are linearly ordered by ≤. The proof of the following result is given in

the Appendix.

THEOREM 5.1. In the “distance from the average” model with self-effect, if the number of

groups is two then a stable partition exists. Specifically, the smallest (with respect to the

partial order ≤) nondecreasing partition to which none of the individuals u-objects, or the

greatest nondecreasing partitions to which none of the individuals d-objects, is stable (and

hence segregating).

   In contrast with the parallel result for the “distance from the average” model without

self-effect (Theorem 2.4), “or” in Theorem 5.1 cannot be replaced by “and.” For example,

in the present model, no one u-objects to the nondecreasing partition

−8  0  0  0  0 0  5,

while individual 1 u-objects to

−8  0  0  0  0  0     5.

The former partition is therefore the smallest element in the set of all nondecreasing

partitions to which none of the individuals u-objects. However, since this partition is not

segregating, it cannot be stable.

6. OTHER VARIATIONS

There are a number of additional ways in which the three models presented in this paper,

or our notion of stability, could be further modified or generalized. This section considers

three possible generalizations. It shows that all of them have the undesirable property that

the set of stable partitions may be empty.

Weighted averages. Even with only two groups, the existence of stable partitions is not

generally guaranteed if individuals are seeking to minimize, not the distance from the

average characteristic of the people in their group (as in the “distance from the average”
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model with self-effect) but the distance from a weighted average of these people’s

characteristics. Specifically, suppose that each individual is assigned some fixed positive

weight, and that a partition is defined as stable if, for every individual i, the absolute

value of the difference between ci and the weighted average (with respect to these

weights) of the characteristics of all the people in i’s group (including i himself) is not

more than the absolute value of the difference between ci and what would have been the

weighted average of the characteristics in any other group if individual i joined that

group. Then, stable partitions may not exist. For example, it is straightforward to verify

that stable partitions do not exist when there are two groups and four individuals, with

characteristics −2, 1/8, 1, and 5 and weights 3, 8, 2, and 1, respectively.

Strongly stable partitions. The last example can be modified to show that, even with

equal weights, a strongly stable partition does not always exist. By a strongly stable

partition we mean a partition that is a strong equilibrium in the corresponding game

(Aumann, 1959): there is no subset of individuals that could make themselves better off

by moving simultaneously from their current groups to some other groups. This is true in

all of our models: the “average distance” model and both “distance from the average”

models. For example, let s be a positive integer, and suppose that there are two groups

and 14s individuals: 3s individuals with characteristic −2, 8s individuals with

characteristic 1/8, 2s individuals with characteristic 1, and s individuals with

characteristic 5. Then, in all three models, there are precisely six stable partitions—all the

segregating ones. However, for large enough s (s ≥ 17 in the case of the “average

distance” model and the “distance from the average” model without self-effect, and all

values of s in the case of the “distance from the average” model with self-effect), none of

these six partitions is strongly stable. In fact, none of them is even a coalition-proof

equilibrium (Bernheim et al., 1987) of the corresponding game. Indeed, for each of the

six partitions there is a characteristic c such that (in all three models) the individuals with

characteristic c would be better off moving together from their (common) group to the

other one.
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Congestion effects. One may wonder, whether results similar to those we obtained for the

“distance from the average” model with self-effect also hold for more general models in

which individuals are (either directly or indirectly) affected by the size of their group, as

well as by the characteristics of its members. One class of such models includes “distance

from the average” models in which, for every partition σ, every group k in which the

number of individuals nk is at least two, and every individual i in group k, di(σ) can be

written as ψ(nk) | $C k − ci|, where $C k is the average characteristic of all individuals other

than i in group k. The factor ψ(x) expresses the congestion effects. In the “distance from

the average” model without self-effect it is equal to 1, and in the model with self-effect it

is equal to 1 – 1/x. Do the results in Sections 4 and 5 also hold for other functional forms

of ψ(x)? In general, they do not. For example, if ψ(x) = (1 – 1/x)2, n = 5, and m = 2 then

there are no stable partitions when c1 = −1, c2 = c3 = 0, 0 < c4 < 1/13, and c5 = 1. In

addition, even when a stable partition does exist, it might not be weakly Pareto efficient.

For example, the non-detaching segregating partitions

0  3  3  4  4 7

0  3  3 4  4  7

are both stable if ψ(2) = 0.74, ψ(3) = 0.94, and ψ(x) = 1 − 1/x for x > 3. However,

everybody is better off in the first partition. We thus see that it is not possible to maintain

existence and efficiency of stable partitions when people’s desire to join a group may

depend in an arbitrary way on the number of group members.

7. MYOPIC OPTIMIZATION AND CONVERGENCE TO A STABLE PARTITION

In the previous sections, the existence and efficiency of stable and segregating partitions

in our three models were studied. This section is concerned with how such partitions

form. To study the evolution of group formation, we present a simple, and rather general,

model in which individuals behave myopically, and possibly non-deterministically, in

moving from one group to the other. We show that, in both “distance from the average”
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models (but only for two groups, in the model with self-effect), this process converges to

a stable partition almost surely, regardless of the initial partition. This may be interpreted

as implying that social migration between groups is a temporary phenomenon in a

trajectory leading to eventual stability. As in Section 5, we do not know whether the

restriction on the number of groups in the model with self-effect is substantial, or is only

due to the limitations of our techniques. We also do not know whether convergence to a

stable partition occurs in the “average distance” model. (For a partial result, see

Lemma 7.3 below).

   Starting with an initial partition σ, consider the following stochastic process: At each

period t (t = 1, 2, …), an individual i and a group k are randomly selected according to

some probability measure on I × K. The probability that a particular pair is selected may

depend on t, on the current partition, or on history. However, that probability is greater

than some fixed ε > 0 for every i and k such that, at time t, individual i is better off

joining group k than staying with his current group, and there is no other group that would

be even better for him. (Note that we do not specify whether or not other pairs are

selected with positive probability.) If the individual i and group k selected satisfy the

above condition, then i moves to group k. Otherwise, there are no changes. The process

then proceeds to period t + 1.

THEOREM 7.1. In the “distance from the average” model without self-effect, as well as in

the model with self-effect and only two groups, the stochastic process described above

converges to a stable—and hence segregating and weakly Pareto efficient—partition with

probability 1, regardless of the initial partition σ.

   To prove Theorem 7.1, the following definitions are needed. A finite sequence of

partitions, σ(0), σ(1), …, σ(T), is called a path of length T if, for every 1 ≤ t ≤ T, there is

exactly one individual it, called the deviator in σ(t), such that σit
(t) ≠ σit

(t−1). It is an

improvement path if, for every 1 ≤ t ≤ T, dit
(σ(t)) < dit

(σ(t−1)), and a best-reply path if, for

every 1 ≤ t ≤ T, dit
(σ(t)) ≤ dit

(τ) for every partition τ such that τj = σj(t) for all j ≠ it. A best-

reply improvement path is one which is both an improvement and a best-reply path.
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(A path of length 0, consisting of a single partition, is also considered a best-reply

improvement path.) For the stochastic process described above, if the partition at time t is

equal to σ(0), the initial point of a given best-reply improvement path of length T, then

the probability that at time t + T the partition is σ(T), the terminal point of that path, is at

least εT. Therefore, to prove Theorem 7.1 it suffices to show that, under the conditions of

the theorem, every partition is the initial point of some best-reply improvement path

leading to a stable partition. The following two lemmas, the proofs of which are given in

the Appendix, establish this. The first lemma shows that it is always possible to reach a

segregating partition. The second lemma shows that it is always possible to go from a

segregating partition to a stable one. Altogether, it only takes 4(m−1)(n−m) deviations to

reach a stable partition.

LEMMA 7.2. In both “distance from the average” models, for every partition σ there is an

improvement path whose initial point is σ, whose terminal point is segregating, and

whose length does not exceed 2(m–1)(n–m). In the model without self-effect, there is

moreover a best-reply improvement path with these properties.

LEMMA 7.3. In the “average distance” model, the “distance from the average” model

without self-effect, and the “distance from the average” model with self-effect and only

two groups, for every segregating partition σ there is a best-reply improvement path

whose initial point is σ, whose terminal point is stable and segregating, and whose length

does not exceed 2(m−1)(n−m).

   Lemmas 7.2 and 7.3 are related to the notion of weak acyclicity of games (Young,

1993). A normal-form game is weakly acyclic if for every pure-strategy profile there is a

best-reply path leading from that strategy profile to a strict Nash equilibrium. A game is

acyclic if in every best-reply path all strategy profiles are distinct. Lemmas 7.2 and 7.3

show that, if the number of groups is two, the games defined by our two “distance from

the average” models are weakly acyclic (at least if there are no ties, so that all pure-

strategy equilibria are strict). In general, however, these games are not acyclic; there are

best-reply improvement paths (of lengths greater than zero) in which the initial and



24

terminal points coincide. For example, in the “distance from the average” model with

self-effect,

−1  ε  1  1

ε  1 −1  1

1 −1  ε  1

is an improvement path for 0 < ε < 3/7. In the “distance from the average” model without

self-effect, as well as in the “average distance” model,

0 0  ε  1

0  ε 0  1

0  ε   1 0

is an improvement path for 0 < ε < 1/4. Since, in both cases, the first and last partitions

are essentially the same, these paths can be extended indefinitely. Thus, although our

dynamic model converges to a stable partition almost surely in both “distance from the

average” models (at least if m = 2), cycles may nevertheless occur. This shows that the

corresponding games do not generally have any kind of potential (Monderer and Shapley,

1996). These examples also demonstrate the general point that, even in situations in

which each individual’s best reply is always unique, a weakly acyclic game with more

than two individuals need not be acyclic. For another class of weakly acyclic, but

generally not acyclic, games see Milchtaich (1996, 1998).

APPENDIX

Formally, at least, the three models presented in this paper may be viewed as special cases

of a single, general model. This makes it possible to unify the proofs of some of the

results stated above. The common features of the three models are as follows. If the

number of individuals nk in group k is at least two, individual i is a member of that group,

and the average characteristic of all the individuals other than i in group k is Ĉ k, then, in

both “distance from the average” models,
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(1) di(σ) = ψ(nk) |Ĉ k – ci|,

where ψ(x) = 1 in the model without self-effect and ψ(x) = 1 – 1/x in the model with self-

effect. Alternatively, di(σ) can be expressed in terms of the average characteristic Ck of all

the individuals in group k, a follows:

(2) di(σ) = φ(nk) |Ck – ci|,

where φ(x) = x/(x−1) (and φ(1) = 3, say) in the model without self-effect and φ(x) = 1 in

the model with self-effect. Equations (1) and (2), with ψ(x) = 1 and φ(x) = x/(x−1), also

hold in the average distance model, provided that individual i has the minimum or the

maximum characteristic in group k. If this is not the case, then the expressions on the

right-hand side of (1) and (2) (which are equal to one another) are less than di(σ).

   It turns out, that the exact functional forms of the congestion factors ψ(x) and φ(x),

which quantify the effect of group size on people’s desire to join the group, are not very

important. What is important about these functions is that they are defined for all positive

integers x, are related by

(3) ψ(x) = (1 – 1/x) φ(x)    for all x,

and satisfy the following conditions:

(4) ψ(x) < φ(y)    for all x and y, and

(5) ψ(x) ≤ ψ(y)   when x ≤ y.

Note, however, that the first of these conditions, and both of them in conjunction,

stringently limit the effect that group size can have on people’s desire to join a group

(especially one which is at least moderately large). These limitations cannot be removed.

The examples in Section 6 show, in fact, that in a variant of the “distance from the

average” model in which only (5) (but not (4)) holds, stable partitions may not exist, and

in a variant in which only (4) (but not (5)) holds, they may not be weakly Pareto efficient.

   A unified proof of Theorem 3.1, which holds in all three models, is now presented.
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Proof of Theorem 3.1. Let σ and τ be two partitions such that σ is stable and segregating

and di(τ) ≤ di(σ) for all i. We claim that di(τ) = di(σ) for at least one individual i, and if σ

is non-detaching then there is a permutation π of K such that π(σi) = τi for all i (and hence

di(τ) = di(σ) for all i). This claim is trivial if n = 1. Suppose, then, that n ≥ 2, and we have

already proved this claim for all societies in which the number of individuals is smaller

than n (and for all numbers of groups).

   For k ∈ K, let nk be the number of individuals, and Ck the average characteristic, in

group k when the partition is σ. Let n'k and C'k be the number of individuals and the

average characteristic, respectively, in group k when the partition is τ. Without loss of

generality, it may be assumed that Ck ≤ Cl and C'k ≤ C'l for all k and all l > k. (Under this

additional assumption, the above permutation π is in fact the identity.)

   Suppose, first, that n'1 ≥ n1. Let i be the lowest-index individual such that σi = 1. If

n1 = 1 then di(σ) = 0, and hence also di(τ) = 0. If, in addition, the segregating partition σ is

non-detaching then (since C1 ≤ Ck for all k) cj > ci for all j ≠ i. Since di(τ) = 0 and C'1 ≤ C'k

for all k, this implies that τi = 1 and τj ≠ 1 for all j ≠ i. It then follows from our induction

hypothesis (which we apply to the (n–1)-member society I \ {i}) that there is a

permutation π of K such that π(1) = 1 and π(σj) = τj for all j ≠ i. This completes the proof

of our claim in the case in which n1 = 1. Suppose now that n'1 ≥ n1 > 1. Since σ is

segregating and C1 ≤ Ck for all k, the characteristic of every individual j such that σj = 1 is

less than or equal to the characteristic of every individual j' such that σj' > 1, and is

(strictly) less than it if σ is non-detaching. Since n'1 ≥ n1, this implies Ĉ 1 ≤ Ĉ '1, where

Ĉ 1 is the average characteristic of all individuals j ≠ i such that σj = 1 and Ĉ '1 is the

average characteristic of all individuals j ≠ i such that τj = 1. Furthermore, if σ is non-

detaching then Ĉ 1 = Ĉ '1 only if, for every individual j, σj = 1 ⇔ τj = 1. Therefore,

ψ(n1) ( Ĉ '1 – ci) ≥ ψ(n1) ( Ĉ 1 – ci) = di(σ) ≥ di(τ) = φ(n'τi
) (C'τi 

– ci) ≥ ψ(n'1) ( Ĉ '1 – ci),

where the last inequality follows from (4) and C'τi
 ≥ C'1 if τi ≠ 1 and is an equality if

τi = 1. But, by (5), ψ(n1) ≤ ψ(n'1), and therefore all the inequalities in the previous
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sentence must, in fact, be equalities. In particular, di(σ) = di(τ) and Ĉ '1 = Ĉ 1. If σ is non-

detaching then, as pointed out above, the latter equality implies that the set of all

individuals j such that σj = 1 coincides with the set of all individuals j such that τj = 1. We

may therefore complete the proof of our claim by applying the induction hypothesis to the

society whose members are all individuals j such that σj ≠ 1.

   Very similar arguments prove our claim in the case in which n'm ≥ nm. (In this case, it is

the highest-index individual i such that σi = m which has to be considered.) Therefore, if

m ≤ 2 then the proof is complete. It may be assumed, then, that m ≥ 3.

   If k is a group such that Ck ≤ C'k  and i is an individual such that σi < k ≤ τi, then di(σ) ≥

di(τ) ≥ φ(n'τi
) (C'τi 

– ci) ≥ φ(n'τi
) (C'k – ci) ≥ ψ(nk+1) (Ck – ci) by (4), and the last inequality

is strict if Ck ≠ ci. On the other hand, since σ is stable, ψ(nk+1) (Ck – ci) ≥ di(σ). Therefore,

di(σ) = di(τ) and Ck = ci. Since σi ≠ k, the latter equality implies that σ cannot be non-

detaching, and the proof is complete. Similarly, if there is a group k and an individual i

such that Ck ≥ C'k  and σi > k ≥ τi, then we are done. Assume, then, that, for every

individual i and every group k, if Ck ≤ C'k and σi < k then τi < k, and if Ck ≥ C'k and σi > k

then τi > k.

   If C2 ≤ C'2 or Cm−1 ≥ C'm−1, this assumption implies that n'1 ≥ n1 or n'm ≥ nm, respectively.

By our previous results, this completes the proof. Conversely, if C2 > C'2 and  Cm−1 <

C'm−1, then there is some k > 1 such that Ck−1 ≥ C'k−1 and Ck ≤ C'k (recall that we are

assuming m ≥ 3). Then, for every individual i, σi < k ⇔ τi < k. We may therefore apply

our induction hypothesis to the two complementary societies, those individuals i with

σi < k and those individuals j with σj ≥ k, and thus complete the proof. n

   The proof of Theorem 4.1 may now be completed. It only has to be shown that, in both

“distance from the average” models, all stable partitions are segregating.
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Proof of Theorem 4.1. Let σ be a stable partition. For a given pair of distinct groups k and

l such that Ck ≤ Cl, set C = (Ck + Cl)/2. To prove that σ is segregating, it suffices to show

that ci ≤ C for all the individuals i in group k; C ≤ ci for all the individuals i in group l; and

if ci = C for some individual i in group k or in group l, then similar equalities hold for all

the individuals in both groups.

   If σi = k then, by the assumed stability of σ, φ(nk) |Ck – ci| ≤ ψ(nl+1) |Cl – ci|. It follows,

by (4), that |Ck – ci| ≤ |Cl – ci|, and equality holds only if both sides are zero, that is, only if

Ck = Cl = ci. Therefore, ci ≤ C. Similarly, if σi = l then C ≤ ci. If ci = C, and hence |Ck – ci| =

|Cl – ci|, for some individual i in group k or in group l, then, as just shown, Ck = Cl. In this

case, |Ck – ci| = |Cl – ci|, and hence ci = C, for every individual i in group k or in group l.   n

   To prove Theorem 5.1, we will need three lemmas. All lemmas refer to the “distance

from the average” model with self-effect. The following notation is used. The average

characteristic (c1 + c2 + … + cn)/n of all individuals is denoted c . If the number of groups

is two, then σ(j) (j = 1, 2, …, n−1) denotes the nondecreasing partition defined by σi
(j) = 1

for i ≤ j and σi
(j) = 2 for i > j.

LEMMA A.1. For a given nondecreasing partition σ, let i and j be two individuals in the

same group k such that Ck ≤ ci ≤ cj or cj ≤ ci ≤ Ck. If i u-objects to σ, then j also u-objects

to it. And if i d-objects to σ, then j also d-objects to it.

Proof. Since σ is nondecreasing, Ck ≤ ci ≤ cj ≤ Ck+1 or cj ≤ ci ≤ Ck ≤ Ck+1. Therefore,

φ(nk) |Ck – cj| – ψ(nk+1+1) |Ck+1 – cj| = φ(nk) |Ck – ci| – ψ(nk+1+1) |Ck+1 – ci| + [φ(nk) |ci – cj| –

ψ(nk+1+1) (ci – cj)]. By (4), the expression in square brackets is nonnegative. Therefore, if i

u-objects to σ, then so does j. The proof for d-objections is similar. n

LEMMA A.2. Suppose that m = 2. If c1 + cn ≤ 2 c , then individual n does not d-object to

any nondecreasing partition. If c1 + cn ≥ 2 c , then individual 1 does not u-object to any

nondecreasing partition.
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Proof. By symmetry, it suffices to prove the first assertion. Suppose, then, that there is

some 1 ≤ j < n − 1 such that individual n d-objects to the partition σ(j). Then, φ(j + 1) (cn −

(c1 + c2 + … + cj + cn)/(j + 1)) < ψ(n − j) (cn – (cj+1 + cj+2 + … + cn−1)/(n − j − 1)), and

therefore (c1 + c2 + … + cj + cn)/(j + 1) > (cj+1 + cj+2 + … + cn−1)/(n − j − 1) by (4). Since

(c2 + … + cj)/(j − 1) ≤ (cj+1 + cj+2 + … + cn−1)/(n − j − 1) if j ≥ 2, the last inequality implies

(c1 + cn)/2 > (cj+1 + cj+2 + … + cn−1)/(n − j − 1) ≥ (c2 + … + cn−1)/(n − 2), and therefore

(c1 + cn)/2 > c . n

LEMMA A.3. Suppose that m = 2. If j < n is such that there is some individual who

u-objects to the partition σ(j), then there is an individual 2 ≤ i ≤ j who u-objects to the

partition σ(i), and hence does not d-object to the partition σ(i–1).

Proof. Suppose the contrary, that such an i does not exist. Then, for all 2 ≤ i ≤ j,

φ(i) (ci – (c1 + c2 + … + ci)/i) ≤ φ(n + 1 − i) ((ci + ci+1 + … + cn)/(n + 1 − i) – ci).

In particular, individual j does not u-object to σ(j). However, by assumption, someone

u-objects to σ(j), and it therefore follows from Lemma A.1 that individual 1 u-objects to it.

Hence,

φ(j) ((c1 + c2 + … + cj)/j – c1) > ψ(n + 1 − j) ((cj+1 + cj+2 + … + cn)/(n − j) – c1).

All of the above inequalities involve only the differences between the characteristics of

the various individuals. It can therefore be assumed without loss of generality that c = 0,

and hence c1 + c2 + … + ci ≤ 0 for all 1 ≤ i ≤ n. Denoting the last partial sum by Σi, and

using (3), the above inequalities can be written as

(6) [φ(n + 1 − i) + ψ(i)] Σi ≤ [φ(i) + ψ(n + 1 − i)] Σi–1,

for 2 ≤ i ≤ j, and

[φ(j) − ψ(n + 1 − j) + φ(n + 1 − j) − ψ(j)] Σj > [φ(j) – ψ(n + 1 − j)] Σ1.

By (4) and Σj ≤ 0, the last inequality implies Σj > Σ1. On the other hand, (6) implies
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where Φ(i) = φ(i) + ψ(n + 1 − i) for all i. However, by (3) and (4), Φ(i) − Φ(n + 1 − i) =

φ(i)/i − ψ(n + 1 − i)/(n − i) > 0 when i ≤ n − i. Therefore, (7) implies Σj ≤ Σ1, a

contradiction. n

Proof of Theorem 5.1. Suppose, first, that c1 + cn ≤ 2 c . By Lemma A.3, for every

nondecreasing partition σ to which some individual u-objects, there is a partition τ > σ

such that the lowest-index individual in group 2 does not d-object to τ. By Lemma A.2,

the highest-index individual in group 2, namely n, also does not d-object to τ. Therefore,

by Lemma A.1, no one d-objects to τ. It follows that the greatest nondecreasing partition

to which no one d-objects is stable. A similar argument shows that if c1 + cn ≥ 2 c  then the

smallest nondecreasing partition to which no one u-objects is stable. n

   It remains to prove the two lemmas in Section 7.

Proof of Lemma 7.2. For 1 < k < m, say that a partition σ is k-segregating if there is a

subset K' of K with k elements such that (i) ci ≤ (maxl∈K' Cl + minl∉K' Cl)/2 for every

individual i who is a member of one of the groups in K' and (ii) if all the groups in K'

were united into a single group, then σ would become a segregating partition. Here, as

elsewhere, Cl denotes the average characteristic in group l when the partition is σ.

Extending the above definition, we will consider all partitions to be m-segregating. Given

a k-segregating partition σ (1 < k ≤ m), we will show that there is an improvement path—

which is a best-reply improvement path if there is no self-effect—with the initial point σ

and a terminal point which is segregating or is k'-segregating for some 1 < k' < k. Note

that if k < m then condition (i) implies maxl∈K' Cl ≤ minl∉K' Cl. We may therefore assume

(re-indexing groups, if necessary) that C1 ≤ C2 ≤ ⋅ ⋅ ⋅ ≤ Cm and K' = {1, 2, …, k}. Condition

(i) now reads: ci ≤ (Ck + Ck+1)/2 for every individual i such that σi ≤ k.
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   Denote (Ck–1 + Ck)/2 by C. Either (a) ci > C for some individual i such that σi < k;

(b) there are no such individuals, but ci > C for some individual i such that σi = k; or

(c) ci ≤ C for every individual i such that σi ≤ k. Note that in case (b) we may assume that

Ck−1 < Ck. (If this inequality did not hold then the indices of groups k and k−1 could be

interchanged, and case (a) would hold.) Suppose, first, that either (a) or (b) (but not (c))

holds. The construction of the improvement path will proceed in three steps.

   Step One. Consider the longest path σ(0), σ(1),…, σ(T) such that σ(0) = σ ; all

deviators move to group k; and, for 1 ≤ t ≤ T, the deviator in σ(t) is the highest-index

individual i such that σi(t−1) < k and ci > (maxl<k Cl(t−1) + Ck(t−1))/2. Here, Cl(t) denotes

the average characteristic in group l when the partition is σ(t). Note that maxl<k Cl(t) <

Ck(t) for all t ≥ 1. It therefore follows from (4) that this is an improvement path. To prove

that this is, in fact, a best-reply improvement path if there is no self-effect, it suffices to

show that if k < m then, for all 1 ≤ t ≤ T, the deviator i in σ(t) is such that ci ≤ (Ck(t−1) +

Ck+1)/2. If Ck(t−1) ≥ Ck, this follows immediately from condition (i) in the definition of

k-segregation. If Ck(t−1) < Ck, then the average characteristic of the deviators preceding i

must be smaller than Ck. All these individuals have a higher index than i, and their

characteristics are therefore greater than or equal to that of i. It follows that ci < Ck(t−1) <

(Ck(t−1) + Ck+1)/2, as had to be shown. Note that, if (a) holds, then T ≥ 1, and therefore

maxl<k Cl(T) < Ck(T). If (b) holds, then T = 0. However, as pointed out in the previous

paragraph, without loss of generality it may be assumed that the last inequality holds in

this case, too.  

   Step Two. Denote (maxl<k Cl(T) + Ck(T))/2 by C(T). By the maximality of T, ci ≤ C(T) for

every individual i such that σi(T) < k. Consider the path σ(T), σ(T+1),…, σ(T') in which

all the individuals i such that σi(T) = k and ci ≤ C(T) leave group k, one after the other, and

join one of the groups 1, 2, …, k−1. (If there are no such individuals, then T' = T.) The

first deviator is the highest-index individual for whom these two conditions hold, then the

second-highest, and so no. Each of these individuals joins the lowest-index group l such

that there is no alternative group l' < k that individual i would prefer to l. Note that the
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average characteristic of the (remaining) individuals in group k increases after each

deviation. The average characteristic in each of the groups 1, 2, …, k−1 may increase (to

a value which is less than C(T)), decrease, or remain the same. However, since higher-

index individuals leave first, if the average characteristic in a group l < k decreases as a

result of an individual moving there from k, the new average characteristic in l must be

higher than the characteristic of all subsequent deviators. Therefore, for each deviator i,

minl<k |Cl* − ci| ≤ |Ck(T) − ci| ≤ minl≥k |Cl* − ci|, where Cl* is the average characteristic in

group l immediately prior to i’s deviation. It follows, by (4), that the above path is an

improvement path, and is moreover a best-reply improvement path if there is no self-

effect. For every individual i, ci ≤ C(T) if σi(T') < k, and ci > C(T) if σi(T') = k. Therefore,

if k = 2 then σ(T') is segregating.

   Step Three. If k > 2, then repeat Step One, starting with the initial partition σ(T'). That

is, consider the longest path σ(T'), σ(T'+1),…, σ(T") such that, for every T'+1 ≤ t ≤ T",

the deviator in σ(t) moves to group k and is the highest-index individual i such that

σi(t−1) < k and ci > (maxl<k Cl(t−1) + Ck(t−1))/2. If there are no such individuals for

t = T'+1, then T" = T'. This is clearly an improvement path, and is moreover a best-reply

improvement path if there is no self-effect. Since each deviator is the highest-index

individual who is a member of one of the groups in {1, 2, …, k−1}, the average

characteristic in each of these groups either decreases after each deviation or remains the

same. The average characteristic in group k (where initially all individuals have a

characteristic greater than C(T)) decreases after each deviation. Therefore, ci >

(maxl<k Cl(T") + Ck(T"))/2 for every individual i who is a deviator in the above path. On

the other hand, because of the maximality of T", ci ≤ (maxl<k Cl(T") + Ck(T"))/2 for every

individual i such that σi(T") < k. Hence, ci < cj for every i and j such that σi(T") < k =

σj(T"). It follows that σ(T") is (k−1)-segregating.

   Suppose now that (c) holds, that is, ci ≤ C (= (Ck–1 + Ck)/2) for every individual i such

that σi ≤ k. Averaging over all individuals in group k, we get Ck ≤ Ck–1. Since the reverse

inequality is also assumed to hold, ci must be equal to C, for every individual i such that
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σi = k or σi = k−1. Let k' (< k) be the lowest index such that Ck' = C. If k' = 1, then the

proof is complete: In this case, σ is segregating. Suppose, then, that k' > 1. As before, we

proceed in (no more than) three steps. Step One. Consider the best-reply improvement

path σ(0) (= σ), σ(1), …, σ(T) in which all the individuals i such that σi < k' and ci = C

move to group k'. If ci ≤ (maxl<k' Cl(T) + C)/2 for every individual i such that σi(T) < k',

then σ(T) is segregating if k' = 2 and is (k'−1)-segregating if k' > 2. Suppose, then, that the

reverse inequality, ci > (maxl<k' Cl(T) + C)/2, holds for the highest-index individual i such

that σi(T) < k'. Step Two. Let σ(T), σ(T+1) be the improvement path of length one (best-

reply improvement path if there is no self-effect) in which the sole deviator is individual

i, who moves to group k'. Step Three. Let σ(T+1), …, σ(T') be the best-reply

improvement path in which all the individuals in group k' with characteristic C move to

group k'+1. Because maxl≤k' Cl(T') = ci and minl>k' Cl(T') = C (> ci), the partition σ(T') is

k'-segregating.

   This completes the construction of the improvement path leading from σ to a

segregating partition, or a k'-segregating partition for some 1 < k' < k. Obviously, in the

latter case, the construction may be iterated. After at most m−1 iterations, a segregating

partition is reached. To complete the proof of Lemma 7.2 it remains to show that the total

number of deviations does not exceed 2(m−1)(n−m).

   Step Two of the above construction (both if (a) or (b) hold or if (c) holds) describes an

improvement path in which some individuals leave a particular group. There can be no

more than n−m such deviators, because there is always at least one member in each

group. The total number of deviations in the (at most m−1) repetitions of Step Two is

therefore no more than (m−1)(n−m). In Step Three, there is an improvement path in which

some individuals join a particular group. The same is true in Step One. However,

individuals who, at the end of Step Three, are in the destination group for that step do not

move in Step One of the following iteration. Therefore, the total number of individuals

moving in these two successive steps does not exceed n−m. If the initial partition in the

last iteration is 2-segregating, then there is no Step Three. We therefore conclude that the
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total number of deviations in Steps One and Three combined does not exceed

(m−1)(n−m).  n

Proof of Lemma 7.3. Let σ be a segregation partition. Without loss of generality, it may

be assumed that σ is nondecreasing.

Case One: The “average distance” model, or the “distance from the average” model

without self-effect. Suppose that some individual i d-objects to σ. It follows from

Lemma 2.5 that, without loss of generality, i may be assumed to be the lowest-index

individual in his group. The first step in our best-reply improvement path will be moving

i to group σi−1. We may then continue in this manner until, after no more than

(m−1)(n−m) deviations, a nondecreasing partition σ' to which none of the individuals

d-objects is reached. (The total number of deviations is equal to ∑i (σi − σ'i). Since, in

both σ and σ', each group has at least one member, the difference between ∑i σi and ∑i σ'i

cannot exceed (n−m)(m−1).) In the proof of Theorem 2.4 we showed that either no one

u-objects to σ'—in which case this partition is stable—or else there is an individual, i,

who u-objects to σ' and, by moving to group σ'i+1, transforms σ' into another

nondecreasing partition, τ > σ', to which none of the individuals d-objects. The best-reply

improvement path generated by the repeated use of this result must be finite. A stable

partition must, in fact, be reached after no more than (m−1)(n−m) deviations. Since this

partition is nondecreasing, it must be segregating (see the remarks preceding

Theorem 2.4).

Case Two: The “distance from the average” model with self-effect and m = 2. Suppose

that c1 + cn ≤ 2 c  (the proof for the case in which c1 + cn ≥ 2 c  is similar). There exists an

improvement path comprising only nondecreasing partitions whose initial point is σ,

whose length is at most n−2, and whose terminal point σ' is such that the highest-index

individual in group 1 does not u-object to σ' and the lowest-index individual in group 2

does not d-object to σ'. The length of this improvement path is exactly n−2 if and only if

σ = σ(1) and σ' = σ(n–1), or vice versa. It follows from Lemma A.3 that, in this case,

individual 1 does not u-object to σ'. (If he did so, then σ(1), σ(2), …, σ(n–1) would not be an
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improvement path, because some individuals 1 < i < n would have u-objected to the

nondecreasing partition σ(i), in which he is the highest-index individual in group 1.) This,

by Lemmas A.1 and A.2, implies that σ' is stable, and the proof is complete. Assume,

then, that individual 1 does u-object to σ', and that the length of the above improvement

path is therefore no more than n−3.

   Consider the partition τ that results from moving individual 1 to group 2. At τ, the

average characteristic in group 2 is lower than the average characteristic in group 1.

(Otherwise, individual 1 would not have wanted to move there.) But, since σ' was

nondecreasing, the characteristic of every individual other than 1 in group 2 is at least as

high as the average characteristic in group 1, which implies that all such individuals are

better off moving to group 1. Furthermore, if the lowest-index individual moves first,

then the second-lowest individual, and so on, then when the time comes for each of these

individuals to leave group 2, he can still make himself better off by moving to group 1. In

the end, a partition τ' is reached in which only individual 1 is in group 2. To conform with

the notation of previous results, it is convenient at this point to interchange the indices of

the two groups, so that τ' becomes a nondecreasing partition.

   Consider the longest improvement path with the initial point τ' in which each deviator

is the current lowest-index individual in group 2. We claim that the terminal point τ'' of

this improvement path is stable. By Lemmas A.1 and A.2 and the maximality of the

length of the path, no one in group 2 d-objects to τ''. If there were an individual in

group 1 who u-objected to τ'' then, by Lemma A.3, there would be an individual 1 < i < n

in that group that did not d-object to the nondecreasing partition in which he is the

lowest-index individual in group 2. But this would contradict the definition of the above

improvement path. This contradiction proves our claim. It also proves that not all of the

individuals who were in individual 1’s group when the partition was σ' are in his group

when the partition is τ''. Therefore, the length of the improvement path with initial point

σ' and the terminal point is τ'' is less than n. Hence, the total number of deviations

leading from σ to τ'' is no more than 2n − 4 (= (n − 3) + (n − 1)). n
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