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Abstract

Every simple monotonic game in bv′NA is a weighted majority
game. Every game v ∈ bv′NA has a representation v = u+

∑∞
i=1 fi◦µi

where u ∈ pNA, µi ∈ NA1 and fi is a sequence of bv′ functions with∑∞
i=1 ‖fi‖ < ∞. Moreover, the representation is unique if we require

fi to be singular and that for every i 6= j, µi 6= µj .

1 Introduction

Simple games with finitely many players were introduced by von Neumann
and Morgenstern [9]. These games are appropriate to the study of political
structures in which power is the fundamental driving force. A special class
consists of the weighted majority games [q; w1, . . . , wn], where n is the number
of players, wi is the number (weight) of votes of player i, and q is the quota
of votes required for a winning coalition.

The seminal paper of Shapley and Shubik [8], interpreting the Shapley
value as a measure of voting power in the context of simple games, initiated a
long line of research. Special attention was given to weighted majority games
with a large number of small voters (see [3], [4], [5], [6]); such games arise
naturally in stockholder voting in corporations with one vote per share held.
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In these games, the voters are individually insignificant and wield influence
only via coalitions. It is fruitful to model them as games with a continuum
of players (see the definitive model of Aumann and Shapley [1]).

The underlying set of players is modeled by a measurable space (I, C)
admitting non-atomic (positive) measures. Here I is the set of players, and
the σ-algebra C is the set of coalitions. A game is a real-valued function v on
C with v(∅) = 0.

Two spaces of games that play a central role in Aumann and Shapley [1]
— pNA and the larger space bv′NA — are generated by non-atomic scalar
measure games, i.e., by games of the form f ◦µ, where µ is in NA1, the set of
all non-atomic probability measures on (I, C); and f is a real-valued function
defined on [0, 1] (the range of µ). The space pNA is obtained by considering
all functions f in ac, where ac is the set of all absolutely continuous functions
with f(0) = 0. The closure (in the bounded variation norm) of the linear
span of all games f ◦ µ, for f ∈ ac and µ ∈ NA1, is pNA. When we admit
more functions f ∈ bv′, where bv′ is the set of all functions of bounded
variation on [0, 1] which are continuous at 0 = µ(∅) = f(0) and at 1.

For f ∈ bv′, let ‖f‖ denote the variation of f on [0, 1]. Whenever µ is
a non-atomic probability measure, the bounded variation norm ‖f ◦ µ‖ of
f ◦ µ, equals ‖f‖. Therefore, if (fi)

∞
i=1 is a sequence of functions in bv′ with∑∞

i=1 ‖fi‖ < ∞ and µi is a sequence of non-atomic probability measures, the
series

∑∞
i=1 fi ◦ µi converges to a game v ∈ bv′NA. If the functions fi are in

ac the series converges to a game in pNA.
A game of the form f ◦ µ where µ is a non-atomic measure and f is

an absolutely continuous function on the range of the scalar measure µ is
called an absolutely continuous scalar measure game. If f is a polynomial,
it is called a polynomial scalar measure game. Therefore any game in pNA
is approximated in the bounded variation norm by a linear combination of
absolutely continuous scalar measure games. Moreover, any absolutely con-
tinuous scalar measure game is approximated in the bounded variation norm
by a polynomial scalar measure game and therefore any game in pNA is
approximated by a linear combination of polynomial scalar measure games.

However, any polynomial of a vector of non-atomic measures that van-
ishes at the vector 0 is a linear combination of polynomial scalar measure
games and therefore the space pNA contains many other games of inter-
est. For example, if µ1, . . . , µn are non-atomic probability measures and f
is a continuously differentiable function on the range of the vector measure
(µ1, . . . , µn) with f(0) = 0 then f ◦ (µ1, . . . , µn) is in pNA. Such a vector
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measure smooth game need not have a representation as a convergent series∑∞
i=1 fi ◦ µi where fi ∈ ac and µi ∈ NA1 where NA1.
Any function f ∈ bv′ has a unique representation as a sum f = fac + f s

where fac ∈ ac and f s is a singular function in bv′, i.e., a function whose
variation is on a set of measure zero. The subspace of all singular functions
in bv′ is denoted s′. The closed linear space generated by all games of the
form f ◦ µ where f ∈ s′ and µ ∈ NA1 is denoted s′NA.

Aumann and Shapley [1] show that bv′NA is the algebraic sum of the two
spaces pNA and s′NA and that for any two games, u ∈ pNA and v ∈ s′NA,
‖u + v‖ = ‖u‖+ ‖v‖.

The present paper demonstrates two results. The first asserts that the
only simple monotonic games in bv′NA are the weighted majority games.
The second result shows that any game v ∈ s′NA is the sum of a convergent
series

∑∞
i=1 fi ◦ µi where fi ∈ s′ and

∑∞
i=1 ‖fi‖ < ∞.

2 Simple Monotonic Games in bv′NA

The set of all positive and finitely additive games is denoted FA+. A weighted
majority game is a game of the form

v(S) =

{
1 if µ(S) ≥ q
0 if µ(S) < q

or

v(S) =

{
1 if µ(S) > q
0 if µ(S) ≤ q

where µ ∈ FA+ and 0 < q < µ(I). The finitely additive measure µ is called
the weight measure and q is called the quota. Every weighted majority game
has a representation with a weighted measure in FA1 and thus we assume
further the normalization µ ∈ FA1.

Theorem 1 Every simple monotonic game in bv′NA is a weighted majority

game, and the weighted measure is a non-atomic probability measure.
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Proof: Assume that v ∈ bv′NA is a simple monotonic game. As bv′NA
is the closed linear span of all games of the form f ◦ µ where µ ∈ NA1

and f ∈ bv′, v can be approximated by linear combinations of the form∑n
i=1 fi ◦ µi where fi ∈ bv′ and µi ∈ NA1. We can assume w.l.o.g. that

µi 6= µj for every 1 ≤ i < j ≤ n. As any function f ∈ bv′ is the sum of
an absolutely continuous function fac ∈ bv′ and a singular function f s ∈ s′,
any such linear combination is the sum of a game u ∈ pNA and a linear
combination

∑n
i=1 fi ◦ µi where each one of the functions fi is singular, i.e.,

in s′. Fix ε > 0, and let S0 ⊆ . . . ⊆ Sm be an increasing chain of coalitions
so that the variation of u over it,

∑
0≤j<m |u(Sj+1) − u(Sj)|, is ≥ ‖u‖ − ε.

Let S(t), 0 ≤ t ≤ 1, be the increasing path of ideal coalitions defined by
S(t) = Sj + (tm − j)(Sj+1 − Sj) if j/m ≤ t ≤ j + 1/m . The function
G : [0, 1] → IR, defined by G(t) = (v − u − ∑n

i=1 fi ◦ µi)(S(t)), is a sum of
an absolutely continuous function, t 7→ −u(S(t)), and a singular function of
bounded variation t 7→ (v−∑n

i=1 fi ◦µi)(S(t)). Therefore the variation of the
game v−u−∑n

i=1 fi ◦µi over the increasing path (S(t))0≤t≤1 is greater than
or equal to the variation of u over this increasing path which is ≥ ‖u‖ − ε.
Therefore

‖v − u−
n∑

i=1

fi ◦ µi‖ ≥ ‖u‖

Therefore, if v is a simple monotonic game in bv′NA it is approximated
by games of the form

∑n
i=1 fi ◦ µi where fi ∈ s′ and µi ∈ NA1. Assume

‖v−∑n
i=1 fi◦µi‖ < ε, fi ∈ s′ and w.l.o.g. µi 6= µj ∈ NA1 for i 6= j. Let T ∈ C

with αi := µi(T ) 6= αj := µj(T ) for every i 6= j. For each fixed 0 < r < 1,
the functions f r

i : [0, 1] → IR which are defined by f r
i (t) = fi((1− r)t + rαi)

are in s′. By Corollary 8.10 of Aumann and Shapley [1] there is r sufficiently
small such that for every j 6= i the functions f r

i and f r
j are mutually singular

when i 6= j. If r is sufficiently small so that the variation of fi on each of
the intervals [0, r] and [1− r, 1] is at most ε/(2n), then the variation of f r

i is
at least ‖fi‖ − ε/n. Let χ(t) = (1 − r)t + rT , 0 ≤ t ≤ 1, and consider the
function F : [0, 1] → IR defined by F (t) = (v−∑n

i=1 fi ◦ µi)(χ(t)). Note that
F (t) = v(χ(t))−∑n

i=1 f r
i (t). As χ(t), 0 ≤ t ≤ 1, is an increasing path of ideal

coalitions, the variation of F over [0, 1] is bounded by ‖v−∑n
i=1 fi ◦µi‖ < ε.

As v is a simple monotonic game, the function t 7→ v(χ(t)) is singular to all
but possibly one, say f r

1 , of the functions f r
i . Therefore ‖F‖ ≥ ∑n

i=2 ‖f r
i ‖ ≥∑n

i=2 ‖fi‖ − ε. Therefore ‖v − f1 ◦ µ1‖ < 2ε. Therefore v is a limit in the
bounded variation norm of games of the form f◦µ where f ∈ s′ and µ ∈ NA1.
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Consider the function g(t) = v(tI). It follows that ‖f ◦µ−g◦µ‖ = ‖f−g‖ ≤
‖f ◦ µ − v‖ and therefore ‖g ◦ µ − v‖ ≤ 2‖f ◦ µ − v‖ and thus v is a limit
in the bounded variation norm of weighted majority games. As the bounded
variation distance of any two distinct weighted majority games is at least 1,
the result follows.

3 Singular Games in bv′NA

Aumann and Shapley [1] prove that the space bv′NA is the algebraic sum
of two spaces: the space pNA and the space s′NA. The space s′NA is the
closed linear space spanned by all games of the form f ◦ µ where f ∈ s′ and
µ is a non-atomic probability measure.

Theorem 2 Every game v ∈ s′NA is a countable (possibly finite) sum

v =
∞∑

i=1

fi ◦ µi

where fi ∈ s′ with
∑∞

i=1 ‖fi‖ < ∞ and µi ∈ NA1.

Proof Let (µi)
∞
i=1 be a fixed sequence of distinct non-atomic probability

measure. Consider the set X(µ1, µ2, . . .) of all games in s′NA which are a
countable sum

∑∞
i=1 fi ◦ µi with fi ∈ s′ and

∑∞
i=1 ‖fi‖ < ∞. Assume that

v =
∑∞

i=1 fi ◦ µi ∈ X with
∑∞

i=1 ‖fi‖ < ∞. Then
∑n

i=1 fi ◦ µi → v as n →∞.
By Proposition 8.17 of Aumann and Shapley [1], ‖∑n

i=1 fi ◦ µi‖ =
∑n

i=1 ‖fi‖.
Therefore ‖v‖ =

∑∞
i=1 ‖fi‖.

We prove next that X = X(µ1, µ2, . . .) is a closed subspace of s′NA. If
vk =

∑∞
i=1 fk,i◦µi is a Cauchy sequence of games in X, ‖vk−vm‖ ≥ ‖fk,i−fm,i‖

for each fixed 1 ≤ i < ∞, and thus (fk,i)
∞
k=1 is a Cauchy sequence in s′ which

is a Banach space and therefore has a limit fi in s′. Moreover, for every n,∑n
i=1 ‖fi‖ = limk→∞

∑n
i=1 ‖fk,i‖ ≤ supk≥1 ‖vk‖ and therefore v :=

∑∞
i=1 fi ◦

µi ∈ X. As ‖vk − v‖ =
∑∞

i=1 ‖fk,i − fi‖ and ‖vk − vm‖ =
∑∞

i=1 ‖fk,i − fm,i‖
we deduce that ‖vk − v‖ ≤ supm≥k ‖vk − vm‖ →k→∞ 0 and therefore vk → v
as k →∞.
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As any sequence vk of finite linear combinations of singular scalar measure
games is in X(µ1, µ2, . . .) where µ1, µ2, . . . is a sequence of pairwise different
non-atomic probability measure containing all non-atomic probability mea-
sure appearing in the representations of the vks, the result follows.

4 Simple Monotonic Games in ′AN

The space ′AN is introduced in [2]. It is the linear closed span of scalar
measure games f ◦ µ where µ is in AN1, the set of finitely additive non-
atomic positive measure, and f obeys a weakened continuity at 0 = µ(∅) and
at µ(I).

Theorem 3 Every simple monotonic game in ′AN is a weighted majority

game, and the weighted measure is a non-atomic finitely additive probability

measure.

Proof: Assume that v ∈ ′NA is a simple monotonic game. As ′NA is the
closed linear span of all games of the form f ◦ µ where µ ∈ AN1 and f ∈ ′,
v can be approximated by linear combinations of the form

∑n
i=1 fi ◦µi where

fi ∈ ′ and µi ∈ AN1 and w.l.o.g. for every 1 ≤ i < j ≤ n, µi 6= µj. As v has
bounded variation, the game

∑n
i=1 fi ◦µi has bounded variation. Lemma 3 of

[2] implies that each function fi is a sum of a function gi ∈ s′ and a function
hi which is continuous on [0, 1] and absolutely continuous on its interior. Set
u =

∑n
i=1 hi ◦ µi. Let χ0 ≤ χ2 ≤ . . . ≤ χm be an increasing chain of ideal

coalitions so that the variation of u over this chain is ≥ ‖u‖ − ε. We can
assume w.l.o.g that for some δ > 0 we have δ < χ0 ≤ χm < 1 − δ. The
proof proceeds as in the proof of Theorem 1; the only modification required
is replacing the increasing path S(t) with the increasing path χ(t) where
χ(t) = χj + (tm − j)(χj+1 − χj) if j/m ≤ t ≤ (j + 1)/m and replacing
the non-atomic probability measures µi with finitely additive non-atomic
probability measures. This shows that v can be approximated by the sum∑n

i=1 fi ◦ µi, where fi ∈ s′ and µi ∈ AN1.
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