Singular Games in $b v^{\prime} N A$

Abraham Neyman*

August 15, 2001

Abstract

Every simple monotonic game in $b v^{\prime} N A$ is a weighted majority game. Every game $v \in b v^{\prime} N A$ has a representation $v=u+\sum_{i=1}^{\infty} f_{i} \circ \mu_{i}$ where $u \in p N A, \mu_{i} \in N A^{1}$ and f_{i} is a sequence of $b v^{\prime}$ functions with $\sum_{i=1}^{\infty}\left\|f_{i}\right\|<\infty$. Moreover, the representation is unique if we require f_{i} to be singular and that for every $i \neq j, \mu_{i} \neq \mu_{j}$.

1 Introduction

Simple games with finitely many players were introduced by von Neumann and Morgenstern [9]. These games are appropriate to the study of political structures in which power is the fundamental driving force. A special class consists of the weighted majority games $\left[q ; w_{1}, \ldots, w_{n}\right]$, where n is the number of players, w_{i} is the number (weight) of votes of player i, and q is the quota of votes required for a winning coalition.

The seminal paper of Shapley and Shubik [8], interpreting the Shapley value as a measure of voting power in the context of simple games, initiated a long line of research. Special attention was given to weighted majority games with a large number of small voters (see [3], [4], [5], [6]); such games arise naturally in stockholder voting in corporations with one vote per share held.

[^0]In these games, the voters are individually insignificant and wield influence only via coalitions. It is fruitful to model them as games with a continuum of players (see the definitive model of Aumann and Shapley [1]).

The underlying set of players is modeled by a measurable space (I, \mathcal{C}) admitting non-atomic (positive) measures. Here I is the set of players, and the σ-algebra \mathcal{C} is the set of coalitions. A game is a real-valued function v on \mathcal{C} with $v(\emptyset)=0$.

Two spaces of games that play a central role in Aumann and Shapley [1] $-p N A$ and the larger space $b v^{\prime} N A$ - are generated by non-atomic scalar measure games, i.e., by games of the form $f \circ \mu$, where μ is in $N A_{1}$, the set of all non-atomic probability measures on (I, \mathcal{C}); and f is a real-valued function defined on $[0,1]$ (the range of μ). The space $p N A$ is obtained by considering all functions f in $a c$, where $a c$ is the set of all absolutely continuous functions with $f(0)=0$. The closure (in the bounded variation norm) of the linear span of all games $f \circ \mu$, for $f \in a c$ and $\mu \in N A^{1}$, is $p N A$. When we admit more functions $f \in b v^{\prime}$, where $b v^{\prime}$ is the set of all functions of bounded variation on $[0,1]$ which are continuous at $0=\mu(\emptyset)=f(0)$ and at 1 .

For $f \in b v^{\prime}$, let $\|f\|$ denote the variation of f on $[0,1]$. Whenever μ is a non-atomic probability measure, the bounded variation norm $\|f \circ \mu\|$ of $f \circ \mu$, equals $\|f\|$. Therefore, if $\left(f_{i}\right)_{i=1}^{\infty}$ is a sequence of functions in $b v^{\prime}$ with $\sum_{i=1}^{\infty}\left\|f_{i}\right\|<\infty$ and μ_{i} is a sequence of non-atomic probability measures, the series $\sum_{i=1}^{\infty} f_{i} \circ \mu_{i}$ converges to a game $v \in b v^{\prime} N A$. If the functions f_{i} are in $a c$ the series converges to a game in $p N A$.

A game of the form $f \circ \mu$ where μ is a non-atomic measure and f is an absolutely continuous function on the range of the scalar measure μ is called an absolutely continuous scalar measure game. If f is a polynomial, it is called a polynomial scalar measure game. Therefore any game in $p N A$ is approximated in the bounded variation norm by a linear combination of absolutely continuous scalar measure games. Moreover, any absolutely continuous scalar measure game is approximated in the bounded variation norm by a polynomial scalar measure game and therefore any game in $p N A$ is approximated by a linear combination of polynomial scalar measure games.

However, any polynomial of a vector of non-atomic measures that vanishes at the vector 0 is a linear combination of polynomial scalar measure games and therefore the space $p N A$ contains many other games of interest. For example, if μ_{1}, \ldots, μ_{n} are non-atomic probability measures and f is a continuously differentiable function on the range of the vector measure $\left(\mu_{1}, \ldots, \mu_{n}\right)$ with $f(0)=0$ then $f \circ\left(\mu_{1}, \ldots, \mu_{n}\right)$ is in $p N A$. Such a vector
measure smooth game need not have a representation as a convergent series $\sum_{i=1}^{\infty} f_{i} \circ \mu_{i}$ where $f_{i} \in a c$ and $\mu_{i} \in N A^{1}$ where $N A^{1}$.

Any function $f \in b v^{\prime}$ has a unique representation as a sum $f=f^{a c}+f^{s}$ where $f^{a c} \in a c$ and f^{s} is a singular function in $b v^{\prime}$, i.e., a function whose variation is on a set of measure zero. The subspace of all singular functions in $b v^{\prime}$ is denoted s^{\prime}. The closed linear space generated by all games of the form $f \circ \mu$ where $f \in s^{\prime}$ and $\mu \in N A^{1}$ is denoted $s^{\prime} N A$.

Aumann and Shapley [1] show that $b v^{\prime} N A$ is the algebraic sum of the two spaces $p N A$ and $s^{\prime} N A$ and that for any two games, $u \in p N A$ and $v \in s^{\prime} N A$, $\|u+v\|=\|u\|+\|v\|$.

The present paper demonstrates two results. The first asserts that the only simple monotonic games in $b v^{\prime} N A$ are the weighted majority games. The second result shows that any game $v \in s^{\prime} N A$ is the sum of a convergent series $\sum_{i=1}^{\infty} f_{i} \circ \mu_{i}$ where $f_{i} \in s^{\prime}$ and $\sum_{i=1}^{\infty}\left\|f_{i}\right\|<\infty$.

2 Simple Monotonic Games in $b v^{\prime} N A$

The set of all positive and finitely additive games is denoted $F A^{+}$. A weighted majority game is a game of the form

$$
v(S)=\left\{\begin{array}{lll}
1 & \text { if } & \mu(S) \geq q \\
0 & \text { if } & \mu(S)<q
\end{array}\right.
$$

or

$$
v(S)=\left\{\begin{array}{lll}
1 & \text { if } & \mu(S)>q \\
0 & \text { if } & \mu(S) \leq q
\end{array}\right.
$$

where $\mu \in F A^{+}$and $0<q<\mu(I)$. The finitely additive measure μ is called the weight measure and q is called the quota. Every weighted majority game has a representation with a weighted measure in $F A^{1}$ and thus we assume further the normalization $\mu \in F A^{1}$.

Theorem 1 Every simple monotonic game in $b v^{\prime} N A$ is a weighted majority game, and the weighted measure is a non-atomic probability measure.

Proof: Assume that $v \in b v^{\prime} N A$ is a simple monotonic game. As $b v^{\prime} N A$ is the closed linear span of all games of the form $f \circ \mu$ where $\mu \in N A^{1}$ and $f \in b v^{\prime}, v$ can be approximated by linear combinations of the form $\sum_{i=1}^{n} f_{i} \circ \mu_{i}$ where $f_{i} \in b v^{\prime}$ and $\mu_{i} \in N A^{1}$. We can assume w.l.o.g. that $\mu_{i} \neq \mu_{j}$ for every $1 \leq i<j \leq n$. As any function $f \in b v^{\prime}$ is the sum of an absolutely continuous function $f^{a c} \in b v^{\prime}$ and a singular function $f^{s} \in s^{\prime}$, any such linear combination is the sum of a game $u \in p N A$ and a linear combination $\sum_{i=1}^{n} f_{i} \circ \mu_{i}$ where each one of the functions f_{i} is singular, i.e., in s^{\prime}. Fix $\varepsilon>0$, and let $S_{0} \subseteq \ldots \subseteq S_{m}$ be an increasing chain of coalitions so that the variation of u over it, $\sum_{0 \leq j<m}\left|u\left(S_{j+1}\right)-u\left(S_{j}\right)\right|$, is $\geq\|u\|-\varepsilon$. Let $S(t), 0 \leq t \leq 1$, be the increasing path of ideal coalitions defined by $S(t)=S_{j}+(t m-j)\left(S_{j+1}-S_{j}\right)$ if $j / m \leq t \leq j+1 / m$. The function $G:[0,1] \rightarrow \mathbb{R}$, defined by $G(t)=\left(v-u-\sum_{i=1}^{n} f_{i} \circ \mu_{i}\right)(S(t))$, is a sum of an absolutely continuous function, $t \mapsto-u(S(t))$, and a singular function of bounded variation $t \mapsto\left(v-\sum_{i=1}^{n} f_{i} \circ \mu_{i}\right)(S(t))$. Therefore the variation of the game $v-u-\sum_{i=1}^{n} f_{i} \circ \mu_{i}$ over the increasing path $(S(t))_{0 \leq t \leq 1}$ is greater than or equal to the variation of u over this increasing path which is $\geq\|u\|-\varepsilon$. Therefore

$$
\left\|v-u-\sum_{i=1}^{n} f_{i} \circ \mu_{i}\right\| \geq\|u\|
$$

Therefore, if v is a simple monotonic game in $b v^{\prime} N A$ it is approximated by games of the form $\sum_{i=1}^{n} f_{i} \circ \mu_{i}$ where $f_{i} \in s^{\prime}$ and $\mu_{i} \in N A^{1}$. Assume $\left\|v-\sum_{i=1}^{n} f_{i} \circ \mu_{i}\right\|<\varepsilon, f_{i} \in s^{\prime}$ and w.l.o.g. $\mu_{i} \neq \mu_{j} \in N A^{1}$ for $i \neq j$. Let $T \in \mathcal{C}$ with $\alpha_{i}:=\mu_{i}(T) \neq \alpha_{j}:=\mu_{j}(T)$ for every $i \neq j$. For each fixed $0<r<1$, the functions $f_{i}^{r}:[0,1] \rightarrow \mathbb{R}$ which are defined by $f_{i}^{r}(t)=f_{i}\left((1-r) t+r \alpha_{i}\right)$ are in s^{\prime}. By Corollary 8.10 of Aumann and Shapley [1] there is r sufficiently small such that for every $j \neq i$ the functions f_{i}^{r} and f_{j}^{r} are mutually singular when $i \neq j$. If r is sufficiently small so that the variation of f_{i} on each of the intervals $[0, r]$ and $[1-r, 1]$ is at most $\varepsilon /(2 n)$, then the variation of f_{i}^{r} is at least $\left\|f_{i}\right\|-\varepsilon / n$. Let $\chi(t)=(1-r) t+r T, 0 \leq t \leq 1$, and consider the function $F:[0,1] \rightarrow \mathbb{R}$ defined by $F(t)=\left(v-\sum_{i=1}^{n} f_{i} \circ \mu_{i}\right)(\chi(t))$. Note that $F(t)=v(\chi(t))-\sum_{i=1}^{n} f_{i}^{r}(t)$. As $\chi(t), 0 \leq t \leq 1$, is an increasing path of ideal coalitions, the variation of F over $[0,1]$ is bounded by $\left\|v-\sum_{i=1}^{n} f_{i} \circ \mu_{i}\right\|<\varepsilon$. As v is a simple monotonic game, the function $t \mapsto v(\chi(t))$ is singular to all but possibly one, say f_{1}^{r}, of the functions f_{i}^{r}. Therefore $\|F\| \geq \sum_{i=2}^{n}\left\|f_{i}^{r}\right\| \geq$ $\sum_{i=2}^{n}\left\|f_{i}\right\|-\varepsilon$. Therefore $\left\|v-f_{1} \circ \mu_{1}\right\|<2 \varepsilon$. Therefore v is a limit in the bounded variation norm of games of the form $f \circ \mu$ where $f \in s^{\prime}$ and $\mu \in N A^{1}$.

Consider the function $g(t)=v(t I)$. It follows that $\|f \circ \mu-g \circ \mu\|=\|f-g\| \leq$ $\|f \circ \mu-v\|$ and therefore $\|g \circ \mu-v\| \leq 2\|f \circ \mu-v\|$ and thus v is a limit in the bounded variation norm of weighted majority games. As the bounded variation distance of any two distinct weighted majority games is at least 1, the result follows.

3 Singular Games in $b v^{\prime} N A$

Aumann and Shapley [1] prove that the space $b v^{\prime} N A$ is the algebraic sum of two spaces: the space $p N A$ and the space $s^{\prime} N A$. The space $s^{\prime} N A$ is the closed linear space spanned by all games of the form $f \circ \mu$ where $f \in s^{\prime}$ and μ is a non-atomic probability measure.

Theorem 2 Every game $v \in s^{\prime} N A$ is a countable (possibly finite) sum

$$
v=\sum_{i=1}^{\infty} f_{i} \circ \mu_{i}
$$

where $f_{i} \in s^{\prime}$ with $\sum_{i=1}^{\infty}\left\|f_{i}\right\|<\infty$ and $\mu_{i} \in N A^{1}$.
Proof Let $\left(\mu_{i}\right)_{i=1}^{\infty}$ be a fixed sequence of distinct non-atomic probability measure. Consider the set $X\left(\mu_{1}, \mu_{2}, \ldots\right)$ of all games in $s^{\prime} N A$ which are a countable sum $\sum_{i=1}^{\infty} f_{i} \circ \mu_{i}$ with $f_{i} \in s^{\prime}$ and $\sum_{i=1}^{\infty}\left\|f_{i}\right\|<\infty$. Assume that $v=\sum_{i=1}^{\infty} f_{i} \circ \mu_{i} \in X$ with $\sum_{i=1}^{\infty}\left\|f_{i}\right\|<\infty$. Then $\sum_{i=1}^{n} f_{i} \circ \mu_{i} \rightarrow v$ as $n \rightarrow \infty$. By Proposition 8.17 of Aumann and Shapley [1], $\left\|\sum_{i=1}^{n} f_{i} \circ \mu_{i}\right\|=\sum_{i=1}^{n}\left\|f_{i}\right\|$. Therefore $\|v\|=\sum_{i=1}^{\infty}\left\|f_{i}\right\|$.

We prove next that $X=X\left(\mu_{1}, \mu_{2}, \ldots\right)$ is a closed subspace of $s^{\prime} N A$. If $v_{k}=\sum_{i=1}^{\infty} f_{k, i} \circ \mu_{i}$ is a Cauchy sequence of games in $X,\left\|v_{k}-v_{m}\right\| \geq\left\|f_{k, i}-f_{m, i}\right\|$ for each fixed $1 \leq i<\infty$, and thus $\left(f_{k, i}\right)_{k=1}^{\infty}$ is a Cauchy sequence in s^{\prime} which is a Banach space and therefore has a limit f_{i} in s^{\prime}. Moreover, for every n, $\sum_{i=1}^{n}\left\|f_{i}\right\|=\lim _{k \rightarrow \infty} \sum_{i=1}^{n}\left\|f_{k, i}\right\| \leq \sup _{k \geq 1}\left\|v_{k}\right\|$ and therefore $v:=\sum_{i=1}^{\infty} f_{i} \circ$ $\mu_{i} \in X$. As $\left\|v_{k}-v\right\|=\sum_{i=1}^{\infty}\left\|f_{k, i}-f_{i}\right\|$ and $\left\|v_{k}-v_{m}\right\|=\sum_{i=1}^{\infty}\left\|f_{k, i}-f_{m, i}\right\|$ we deduce that $\left\|v_{k}-v\right\| \leq \sup _{m \geq k}\left\|v_{k}-v_{m}\right\| \rightarrow_{k \rightarrow \infty} 0$ and therefore $v_{k} \rightarrow v$ as $k \rightarrow \infty$.

As any sequence v_{k} of finite linear combinations of singular scalar measure games is in $X\left(\mu_{1}, \mu_{2}, \ldots\right)$ where μ_{1}, μ_{2}, \ldots is a sequence of pairwise different non-atomic probability measure containing all non-atomic probability measure appearing in the representations of the $v_{k} \mathrm{~s}$, the result follows.

4 Simple Monotonic Games in 'AN

The space ' $A N$ is introduced in [2]. It is the linear closed span of scalar measure games $f \circ \mu$ where μ is in $A N_{1}$, the set of finitely additive nonatomic positive measure, and f obeys a weakened continuity at $0=\mu(\emptyset)$ and at $\mu(I)$.

Theorem 3 Every simple monotonic game in 'AN is a weighted majority game, and the weighted measure is a non-atomic finitely additive probability measure.

Proof: Assume that $v \in{ }^{\prime} N A$ is a simple monotonic game. As ' $N A$ is the closed linear span of all games of the form $f \circ \mu$ where $\mu \in A N^{1}$ and $f \in{ }^{\prime}$, v can be approximated by linear combinations of the form $\sum_{i=1}^{n} f_{i} \circ \mu_{i}$ where $f_{i} \in{ }^{\prime}$ and $\mu_{i} \in A N^{1}$ and w.l.o.g. for every $1 \leq i<j \leq n, \mu_{i} \neq \mu_{j}$. As v has bounded variation, the game $\sum_{i=1}^{n} f_{i} \circ \mu_{i}$ has bounded variation. Lemma 3 of [2] implies that each function f_{i} is a sum of a function $g_{i} \in s^{\prime}$ and a function h_{i} which is continuous on $[0,1]$ and absolutely continuous on its interior. Set $u=\sum_{i=1}^{n} h_{i} \circ \mu_{i}$. Let $\chi_{0} \leq \chi_{2} \leq \ldots \leq \chi_{m}$ be an increasing chain of ideal coalitions so that the variation of u over this chain is $\geq\|u\|-\varepsilon$. We can assume w.l.o.g that for some $\delta>0$ we have $\delta<\chi_{0} \leq \chi_{m}<1-\delta$. The proof proceeds as in the proof of Theorem 1 ; the only modification required is replacing the increasing path $S(t)$ with the increasing path $\chi(t)$ where $\chi(t)=\chi_{j}+(t m-j)\left(\chi_{j+1}-\chi_{j}\right)$ if $j / m \leq t \leq(j+1) / m$ and replacing the non-atomic probability measures μ_{i} with finitely additive non-atomic probability measures. This shows that v can be approximated by the sum $\sum_{i=1}^{n} f_{i} \circ \mu_{i}$, where $f_{i} \in s^{\prime}$ and $\mu_{i} \in A N_{1}$.

References

[1] Aumann, R.J. and Shapley, L.S. (1974), Values of Non-Atomic Games, Princeton University Press, Princeton, NJ.
[2] Mertens, J.F. and Neyman, A. (2001), A Value on 'AN.
[3] Milnor, J.W. and Shapley, L.S. (1978), Values of Large Games II: Oceanic Games, Mathematics of Operations Research 3: 290-307.
[4] Neyman, A. (1981), Singular Games Have Asymptotic Values, Mathematics of Operations Research 6: 205-212.
[5] ___ (1988), Weighted Majority Games Have Asymptotic Value, Mathematics of Operations Research 13: 556-580.
[6] Shapiro, N. Z. and Shapley, L.S. (1978), Values of Large Games I: A Limit Theorem, Mathematics of Operations Research 3: 1-9.
[7] Shapley, L. S. (1962), Simple Games: An Outline of the Descriptive Theory, Behavioral Science 7: 59-66.
[8] Shapley, L. S. and Shubik, M. (1954), A Method for Evaluating the Distribution of Power in a Committee System, American Political Science Review 48: 787-792.
[9] von Neuman, J. and Morgenstern, O. (1944), Theory of Games and Economic Behavior, Princeton University Press, Princeton, NJ.

[^0]: *Institute of Mathematics, and Center for Rationality and Interactive Decision Theory, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904; Israel. E-mail: aneyman@math.huji.ac.il
 This research was in part supported by The Israel Science Foundation grant 382/98.

