Singular Games in bv'NA

Abraham Neyman^{*}

August 15, 2001

Abstract

Every simple monotonic game in bv'NA is a weighted majority game. Every game $v \in bv'NA$ has a representation $v = u + \sum_{i=1}^{\infty} f_i \circ \mu_i$ where $u \in pNA$, $\mu_i \in NA^1$ and f_i is a sequence of bv' functions with $\sum_{i=1}^{\infty} ||f_i|| < \infty$. Moreover, the representation is unique if we require f_i to be singular and that for every $i \neq j$, $\mu_i \neq \mu_j$.

1 Introduction

Simple games with finitely many players were introduced by von Neumann and Morgenstern [9]. These games are appropriate to the study of political structures in which power is the fundamental driving force. A special class consists of the weighted majority games $[q; w_1, \ldots, w_n]$, where *n* is the number of players, w_i is the number (weight) of votes of player *i*, and *q* is the quota of votes required for a winning coalition.

The seminal paper of Shapley and Shubik [8], interpreting the Shapley value as a measure of voting power in the context of simple games, initiated a long line of research. Special attention was given to weighted majority games with a large number of small voters (see [3], [4], [5], [6]); such games arise naturally in stockholder voting in corporations with one vote per share held.

^{*}Institute of Mathematics, and Center for Rationality and Interactive Decision Theory, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904; Israel. E-mail: aneyman@math.huji.ac.il

This research was in part supported by The Israel Science Foundation grant 382/98.

In these games, the voters are individually insignificant and wield influence only via coalitions. It is fruitful to model them as games with a continuum of players (see the definitive model of Aumann and Shapley [1]).

The underlying set of players is modeled by a measurable space (I, \mathcal{C}) admitting non-atomic (positive) measures. Here I is the set of *players*, and the σ -algebra \mathcal{C} is the set of *coalitions*. A *game* is a real-valued function v on \mathcal{C} with $v(\emptyset) = 0$.

Two spaces of games that play a central role in Aumann and Shapley [1] — pNA and the larger space bv'NA — are generated by non-atomic scalar measure games, i.e., by games of the form $f \circ \mu$, where μ is in NA_1 , the set of all non-atomic probability measures on (I, C); and f is a real-valued function defined on [0, 1] (the range of μ). The space pNA is obtained by considering all functions f in ac, where ac is the set of all absolutely continuous functions with f(0) = 0. The closure (in the bounded variation norm) of the linear span of all games $f \circ \mu$, for $f \in ac$ and $\mu \in NA^1$, is pNA. When we admit more functions $f \in bv'$, where bv' is the set of all functions of bounded variation on [0, 1] which are continuous at $0 = \mu(\emptyset) = f(0)$ and at 1.

For $f \in bv'$, let ||f|| denote the variation of f on [0, 1]. Whenever μ is a non-atomic probability measure, the bounded variation norm $||f \circ \mu||$ of $f \circ \mu$, equals ||f||. Therefore, if $(f_i)_{i=1}^{\infty}$ is a sequence of functions in bv' with $\sum_{i=1}^{\infty} ||f_i|| < \infty$ and μ_i is a sequence of non-atomic probability measures, the series $\sum_{i=1}^{\infty} f_i \circ \mu_i$ converges to a game $v \in bv'NA$. If the functions f_i are in ac the series converges to a game in pNA.

A game of the form $f \circ \mu$ where μ is a non-atomic measure and f is an absolutely continuous function on the range of the scalar measure μ is called an *absolutely continuous scalar measure game*. If f is a polynomial, it is called a *polynomial scalar measure game*. Therefore any game in pNAis approximated in the bounded variation norm by a linear combination of absolutely continuous scalar measure games. Moreover, any absolutely continuous scalar measure game is approximated in the bounded variation norm by a polynomial scalar measure game and therefore any game in pNA is approximated by a linear combination of polynomial scalar measure games.

However, any polynomial of a vector of non-atomic measures that vanishes at the vector 0 is a linear combination of polynomial scalar measure games and therefore the space pNA contains many other games of interest. For example, if μ_1, \ldots, μ_n are non-atomic probability measures and fis a continuously differentiable function on the range of the vector measure (μ_1, \ldots, μ_n) with f(0) = 0 then $f \circ (\mu_1, \ldots, \mu_n)$ is in pNA. Such a vector measure smooth game need not have a representation as a convergent series $\sum_{i=1}^{\infty} f_i \circ \mu_i$ where $f_i \in ac$ and $\mu_i \in NA^1$ where NA^1 .

Any function $f \in bv'$ has a unique representation as a sum $f = f^{ac} + f^s$ where $f^{ac} \in ac$ and f^s is a singular function in bv', i.e., a function whose variation is on a set of measure zero. The subspace of all singular functions in bv' is denoted s'. The closed linear space generated by all games of the form $f \circ \mu$ where $f \in s'$ and $\mu \in NA^1$ is denoted s'NA.

Aumann and Shapley [1] show that bv'NA is the algebraic sum of the two spaces pNA and s'NA and that for any two games, $u \in pNA$ and $v \in s'NA$, ||u + v|| = ||u|| + ||v||.

The present paper demonstrates two results. The first asserts that the only simple monotonic games in bv'NA are the weighted majority games. The second result shows that any game $v \in s'NA$ is the sum of a convergent series $\sum_{i=1}^{\infty} f_i \circ \mu_i$ where $f_i \in s'$ and $\sum_{i=1}^{\infty} ||f_i|| < \infty$.

2 Simple Monotonic Games in bv'NA

The set of all positive and finitely additive games is denoted FA^+ . A weighted majority game is a game of the form

$v(S) = \begin{cases} 1\\ 0 \end{cases}$	if if	$\mu(S) \ge q$ $\mu(S) < q$
$v(S) = \begin{cases} 1\\ 0 \end{cases}$	if if	$\mu(S) > q$ $\mu(S) \le q$

or

where $\mu \in FA^+$ and $0 < q < \mu(I)$. The finitely additive measure μ is called the *weight measure* and q is called the *quota*. Every weighted majority game has a representation with a weighted measure in FA^1 and thus we assume further the normalization $\mu \in FA^1$.

Theorem 1 Every simple monotonic game in bv'NA is a weighted majority

game, and the weighted measure is a non-atomic probability measure.

Proof: Assume that $v \in bv' NA$ is a simple monotonic game. As bv' NAis the closed linear span of all games of the form $f \circ \mu$ where $\mu \in NA^1$ and $f \in bv'$, v can be approximated by linear combinations of the form $\sum_{i=1}^{n} f_i \circ \mu_i$ where $f_i \in bv'$ and $\mu_i \in NA^1$. We can assume w.l.o.g. that $\mu_i \neq \mu_j$ for every $1 \leq i < j \leq n$. As any function $f \in bv'$ is the sum of an absolutely continuous function $f^{ac} \in bv'$ and a singular function $f^s \in s'$, any such linear combination is the sum of a game $u \in pNA$ and a linear combination $\sum_{i=1}^{n} f_i \circ \mu_i$ where each one of the functions f_i is singular, i.e., in s'. Fix $\varepsilon > 0$, and let $S_0 \subseteq \ldots \subseteq S_m$ be an increasing chain of coalitions so that the variation of u over it, $\sum_{0 \le j \le m} |u(S_{j+1}) - u(S_j)|$, is $\ge ||u|| - \varepsilon$. Let $S(t), 0 \leq t \leq 1$, be the increasing path of ideal coalitions defined by $S(t) = S_{i} + (tm - j)(S_{i+1} - S_{i})$ if $j/m \le t \le j + 1/m$. The function $G: [0,1] \to \mathbb{R}$, defined by $G(t) = (v - u - \sum_{i=1}^n f_i \circ \mu_i)(S(t))$, is a sum of an absolutely continuous function, $t \mapsto -u(S(t))$, and a singular function of bounded variation $t \mapsto (v - \sum_{i=1}^{n} f_i \circ \mu_i)(S(t))$. Therefore the variation of the game $v - u - \sum_{i=1}^{n} f_i \circ \mu_i$ over the increasing path $(S(t))_{0 \le t \le 1}$ is greater than or equal to the variation of u over this increasing path which is $\geq ||u|| - \varepsilon$. Therefore

$$||v - u - \sum_{i=1}^{n} f_i \circ \mu_i|| \ge ||u||$$

Therefore, if v is a simple monotonic game in bv'NA it is approximated by games of the form $\sum_{i=1}^{n} f_i \circ \mu_i$ where $f_i \in s'$ and $\mu_i \in NA^1$. Assume $\|v - \sum_{i=1}^{n} f_i \circ \mu_i\| < \varepsilon, f_i \in s' \text{ and w.l.o.g. } \mu_i \neq \mu_j \in NA^1 \text{ for } i \neq j. \text{ Let } T \in \mathcal{C}$ with $\alpha_i := \mu_i(T) \neq \alpha_j := \mu_j(T)$ for every $i \neq j$. For each fixed 0 < r < 1, the functions $f_i^r: [0,1] \to \mathbb{R}$ which are defined by $f_i^r(t) = f_i((1-r)t + r\alpha_i)$ are in s'. By Corollary 8.10 of Aumann and Shapley [1] there is r sufficiently small such that for every $j \neq i$ the functions f_i^r and f_j^r are mutually singular when $i \neq j$. If r is sufficiently small so that the variation of f_i on each of the intervals [0, r] and [1 - r, 1] is at most $\varepsilon/(2n)$, then the variation of f_i^r is at least $||f_i|| - \varepsilon/n$. Let $\chi(t) = (1 - r)t + rT$, $0 \le t \le 1$, and consider the function $F: [0,1] \to \mathbb{R}$ defined by $F(t) = (v - \sum_{i=1}^n f_i \circ \mu_i)(\chi(t))$. Note that $F(t) = v(\chi(t)) - \sum_{i=1}^{n} f_i^r(t)$. As $\chi(t), 0 \le t \le 1$, is an increasing path of ideal coalitions, the variation of F over [0, 1] is bounded by $||v - \sum_{i=1}^{n} f_i \circ \mu_i|| < \varepsilon$. As v is a simple monotonic game, the function $t \mapsto v(\chi(t))$ is singular to all but possibly one, say f_1^r , of the functions f_i^r . Therefore $||F|| \geq \sum_{i=2}^n ||f_i^r|| \geq$ $\sum_{i=2}^{n} \|f_i\| - \varepsilon$. Therefore $\|v - f_1 \circ \mu_1\| < 2\varepsilon$. Therefore v is a limit in the bounded variation norm of games of the form $f \circ \mu$ where $f \in s'$ and $\mu \in NA^1$.

Consider the function g(t) = v(tI). It follows that $||f \circ \mu - g \circ \mu|| = ||f - g|| \le ||f \circ \mu - v||$ and therefore $||g \circ \mu - v|| \le 2||f \circ \mu - v||$ and thus v is a limit in the bounded variation norm of weighted majority games. As the bounded variation distance of any two distinct weighted majority games is at least 1, the result follows.

3 Singular Games in bv'NA

Aumann and Shapley [1] prove that the space bv'NA is the algebraic sum of two spaces: the space pNA and the space s'NA. The space s'NA is the closed linear space spanned by all games of the form $f \circ \mu$ where $f \in s'$ and μ is a non-atomic probability measure.

Theorem 2 Every game $v \in s'NA$ is a countable (possibly finite) sum

$$v = \sum_{i=1}^{\infty} f_i \circ \mu_i$$

where $f_i \in s'$ with $\sum_{i=1}^{\infty} ||f_i|| < \infty$ and $\mu_i \in NA^1$.

Proof Let $(\mu_i)_{i=1}^{\infty}$ be a fixed sequence of distinct non-atomic probability measure. Consider the set $X(\mu_1, \mu_2, ...)$ of all games in s'NA which are a countable sum $\sum_{i=1}^{\infty} f_i \circ \mu_i$ with $f_i \in s'$ and $\sum_{i=1}^{\infty} ||f_i|| < \infty$. Assume that $v = \sum_{i=1}^{\infty} f_i \circ \mu_i \in X$ with $\sum_{i=1}^{\infty} ||f_i|| < \infty$. Then $\sum_{i=1}^{n} f_i \circ \mu_i \to v$ as $n \to \infty$. By Proposition 8.17 of Aumann and Shapley [1], $||\sum_{i=1}^{n} f_i \circ \mu_i|| = \sum_{i=1}^{n} ||f_i||$.

We prove next that $X = X(\mu_1, \mu_2, ...)$ is a closed subspace of s'NA. If $v_k = \sum_{i=1}^{\infty} f_{k,i} \circ \mu_i$ is a Cauchy sequence of games in X, $||v_k - v_m|| \ge ||f_{k,i} - f_{m,i}||$ for each fixed $1 \le i < \infty$, and thus $(f_{k,i})_{k=1}^{\infty}$ is a Cauchy sequence in s' which is a Banach space and therefore has a limit f_i in s'. Moreover, for every n, $\sum_{i=1}^{n} ||f_i|| = \lim_{k \to \infty} \sum_{i=1}^{n} ||f_{k,i}|| \le \sup_{k \ge 1} ||v_k||$ and therefore $v := \sum_{i=1}^{\infty} f_i \circ \mu_i \in X$. As $||v_k - v|| = \sum_{i=1}^{\infty} ||f_{k,i} - f_i||$ and $||v_k - v_m|| = \sum_{i=1}^{\infty} ||f_{k,i} - f_{m,i}||$ we deduce that $||v_k - v|| \le \sup_{m \ge k} ||v_k - v_m|| \to_{k \to \infty} 0$ and therefore $v_k \to v$ as $k \to \infty$.

As any sequence v_k of finite linear combinations of singular scalar measure games is in $X(\mu_1, \mu_2, ...)$ where $\mu_1, \mu_2, ...$ is a sequence of pairwise different non-atomic probability measure containing all non-atomic probability measure appearing in the representations of the v_k s, the result follows.

4 Simple Monotonic Games in 'AN

The space 'AN is introduced in [2]. It is the linear closed span of scalar measure games $f \circ \mu$ where μ is in AN_1 , the set of finitely additive nonatomic positive measure, and f obeys a weakened continuity at $0 = \mu(\emptyset)$ and at $\mu(I)$.

Theorem 3 Every simple monotonic game in 'AN is a weighted majority

game, and the weighted measure is a non-atomic finitely additive probability

measure.

Proof: Assume that $v \in 'NA$ is a simple monotonic game. As 'NA is the closed linear span of all games of the form $f \circ \mu$ where $\mu \in AN^1$ and $f \in '$, v can be approximated by linear combinations of the form $\sum_{i=1}^{n} f_i \circ \mu_i$ where $f_i \in I$ and $\mu_i \in AN^1$ and w.l.o.g. for every $1 \leq i < j \leq n, \ \mu_i \neq \mu_j$. As v has bounded variation, the game $\sum_{i=1}^{n} f_i \circ \mu_i$ has bounded variation. Lemma 3 of [2] implies that each function f_i is a sum of a function $g_i \in s'$ and a function h_i which is continuous on [0, 1] and absolutely continuous on its interior. Set $u = \sum_{i=1}^{n} h_i \circ \mu_i$. Let $\chi_0 \leq \chi_2 \leq \ldots \leq \chi_m$ be an increasing chain of ideal coalitions so that the variation of u over this chain is $\geq ||u|| - \varepsilon$. We can assume w.l.o.g that for some $\delta > 0$ we have $\delta < \chi_0 \leq \chi_m < 1 - \delta$. The proof proceeds as in the proof of Theorem 1; the only modification required is replacing the increasing path S(t) with the increasing path $\chi(t)$ where $\chi(t) = \chi_j + (tm - j)(\chi_{j+1} - \chi_j)$ if $j/m \leq t \leq (j+1)/m$ and replacing the non-atomic probability measures μ_i with finitely additive non-atomic probability measures. This shows that v can be approximated by the sum $\sum_{i=1}^{n} f_i \circ \mu_i$, where $f_i \in s'$ and $\mu_i \in AN_1$.

References

- [1] Aumann, R.J. and Shapley, L.S. (1974), Values of Non-Atomic Games, Princeton University Press, Princeton, NJ.
- [2] Mertens, J.F. and Neyman, A. (2001), A Value on AN.
- [3] Milnor, J.W. and Shapley, L.S. (1978), Values of Large Games II: Oceanic Games, *Mathematics of Operations Research* **3**: 290-307.
- [4] Neyman, A. (1981), Singular Games Have Asymptotic Values, Mathematics of Operations Research 6: 205-212.
- [5] _____ (1988), Weighted Majority Games Have Asymptotic Value, Mathematics of Operations Research 13: 556-580.
- [6] Shapiro, N. Z. and Shapley, L.S. (1978), Values of Large Games I: A Limit Theorem, *Mathematics of Operations Research* 3: 1-9.
- [7] Shapley, L. S. (1962), Simple Games: An Outline of the Descriptive Theory, *Behavioral Science* 7: 59-66.
- [8] Shapley, L. S. and Shubik, M. (1954), A Method for Evaluating the Distribution of Power in a Committee System, American Political Science Review 48: 787-792.
- [9] von Neuman, J. and Morgenstern, O. (1944), *Theory of Games and Economic Behavior*, Princeton University Press, Princeton, NJ.