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Abstract

Auctions are considered with a (non-symmetric) independent-private-value
model of valuations. It shall be demonstrated that a utility equivalence prin-
ciple holds for an agent if and only if such agent has a constant absolute
risk-attitude.

1 Introduction

Most of the research in Auction Theory focuses on the seller’s perspective. The

most well-known examples are the Revenue Equivalence Theorem1, which provides

conditions under which a seller is indifferent between various auctions, and the Op-

timal Auction Theorem (Myerson(1981)), which characterizes auction mechanisms

that maximize the seller’s revenue. However, when following Myerson’s proof for

the Revenue Equivalence Theorem, it can be seen that the Revenue Equivalence

Principle follows from a Utility Equivalence Principle for risk neutral agents, and

that these two principles almost coincide. In other words, the seller is indifferent

∗I am grateful to Dov Monderer for his generous help and encouragement.
1Vickrey (1961), Ortega-Reichert(1968), Holt (1980), Harris and Raviv (1981), Myerson(1981),

Riley and Samuelson (1981).
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between two auction mechanisms if and only if every potential buyer is indiffer-

ent between them. Matthews (1987) was the first attempt to compare auction

mechanisms from the buyers point of view, when the buyers were not risk neutral.

Matthews compared first- and second-price auctions, and showed relationships be-

tween monotonicity properties of the Arrow-Pratt measure of risk aversion (−u′′(x)
u′(x)

)

and the preferences of agents over these two auction mechanisms2. In particular,

Mattehews showed that when an agent has constant absolute risk aversion, she is

indifferent between first- and second- price auctions. This theorem was generalized

by Monderer and Tennenholtz (2000a) to all k-price auctions, and to agents that

may have constant absolute risk attitude (CART)3. In this discussion we prove a

general utility equivalence principle, that holds for agents with constant absolute

risk attitude. Furthermore, we show that this equivalence principle holds if and

only if the agents have CART.

We shall consider a seller that wishes to sell a single4 item by an auction mech-

anism to one of n potential buyers. We assume the (non symmetric) independent-

private-value model of valuations5. Each potential buyer a is characterized by her

utility for money function ua, and by her valuation structure (distribution of types).

The set of possible types of a is an interval [αa, βa]. However, we assume the most

general structure of distribution functions, and in particular our model treats atoms

as well as atomless distributions. The auction mechanism is typically described by

a set of messages, one set for each agent, and by functions (of vector of message)

2Maskin and Rily(1984) discussed the revenue of the seller in first price auctions with risk averse
agents.

3An agent has constant absolute risk attitude if her Arrow-Pratt measure is a constant function.
It is well-known that such an agent has a utility function, which has the form

u(x) = c
1− e−λx

λ
, for all x in R,

where c > 0, and λ ∈ R. By convention, u(x) = cx when λ = 0. If λ ≥ 0, the agent has constant
absolute risk aversion (CARA), and if λ ≤ 0, the agent has constant absolute risk seeking (CARS).

4This work does not deal with mechanisms for selling several items –combinatorial auctions
mechanisms. Lately, Krishna and Perry (1998) generalized Myerson’s utility equivalence to such
auctions, keeping the assumption of risk neutrality.

5This assumption was made in all previous works that dealt with utility (or revenue) equiva-
lence. However, there are several issues in auction theory that have been analyzed without the
independence assumption. The first , and classical work to remove this assumption was Milgrom
and Weber (1982).
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that define the probability of winning the object by each agent, and the expected

payment functions for each agent6. The auction mechanism together with the valu-

ation structure define a Bayesian game – the auction game.

For a fixed equilibrium profile in this game, let Qa(t), t ∈ [αa, βa], be the probability

that agent a wins the object in equilibrium given that her valuation is t, and let

Ua(t) be the expected utility of this agent in equilibrium. Myerson (1981) showed

that,

Ua(t) =
∫ t

z=αa
u′(0)Qa(z)dz + Ua(αa) for every t ∈ [αa, βa].

Therefore , for every auction games A and B and equilibrium profiles in this games,

such that Qa
A(t) = Qa

B(t) for every t ∈ [αa, βa],

Ua
A(t)− Ua

B(t) = Ua
A(s)− Ua

B(s) for every t, s ∈ [αa, βa].

We refer to this result as Myerson’s utility equivalence theorem7. We show that:

• Myerson’s utility equivalence theorem holds only for risk neutral buyers.

We state a utility equivalence theorem, which holds for an agent if and only if

she has constant absolute risk-attitude. Since the buyers are not necessarily risk

neutral, we split the expected utility function Ua, Ua(t) = Ua
g (t) + Ua

l (t), where

Ua
g (t), Ua

l (t) are the expected gain and loss utility functions.

We prove that for a CART agent, a, there exists two functions: g(Qa, Ua
l , t) and

f(t) such that f(t) > 0 for every type t, and

Ua(t) =
∫ t

z=αa
g(Qa, Ua

l , z)dz + f(t)Ua(αa) for every t ∈ [αa, βa].

From this result we deduce our utility equivalence principle, which generalizes My-

erson’s utility equivalence principle:

6There are two such payment functions for each agent. One function describes the payment
paid by her, when she wins the item, and the other one gives her payment when she does not win.
This splitting of payments is necessary when dealing with agents that are not risk neutral.

7Note that Myerson’s theorem implies that for every two auction games A and B such that
Qa

A(t) = Qa
B(t) for every t ∈ [αa, βa] and Ua

A(αa) = Ua
B(αa),

Ua
A(t) = Ua

B(t) for every t ∈ [αa, βa].

3



• Let a be a CART agent. There exists a positive function h such that:

For every auction games A and B and equilibrium profiles in these games, for

which Qa
A = Qa

B and Ua
l,A = Ua

l,B,

h(t)(Ua
A(t)− Ua

B(t)) = h(s)(Ua
A(s)− Ua

B(s)), for every t, s ∈ [αa, βa].

We further prove that :

• Our utility equivalence principle holds for CART agents only.

An important consequence of the utility equivalence principle is:

• Let a be a CART agent. For every two auction games and associated equilib-

rium profiles, if Qa
A = Qa

B, Ua
l,A = Ua

l,B,and Ua
A(αa) = Ua

B(αa), then

UA(t) = UB(t), for every t ∈ [αa, βa].

In order to prove the utility equivalence theorem we analyze the equilibrium struc-

ture in auction games. The properties which are obtained have their own significance

and are proved for the most general utility functions.

We show that for every equilibrium in an auction game, Ua
A is a Liptchitz non-

decreasing function. In addition we state an equation that should be satisfied in

equilibrium (the equilibrium equation). All explicit formulas for the bidding func-

tions in equilibrium may be derived from this equation (see e.g, Maskin and Ri-

ley(1984) and Monderer and Tennenholtz (2000a) ).

2 Preliminaries

This section presents the basic notations and assumptions that will be used to

describe the auction environment throughout this discussion. This environment

includes a single owner (a seller), who wishes to sell an item to one of n ≥ 1 agents

(potential buyers) through an action mechanism.

2.1 The agents description

The set of agents is denoted by N .

We assume N = {1, 2, ..., n}, n ≥ 1. Every agent a has a Von-Neumann Morgenstern

utility function for money, ua(x),−∞ < x < ∞, such that
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• ua(0) = 0.

• ua is twice differentiable.

• (ua)′(x) > 0 for every x ∈ R,

where R denotes the set of the real numbers. Throughout the paper, whenever

possible, we will omit the agent superscript.

In this paper we will mainly deal with agents who have constant absolute risk

attitude (CART ). We refer to such an agent as a CART agent. The set of all

utility functions of the CART agents is denoted by CART . Recall that an agent

has a CART if and only if there exists a constant λ such that u′′(x)
u′(x)

= λ for all x.

Note that, for such agent, the Arrow-Pratt measure of risk attitude is constant and

it is −λ. If λ = 0 the agent is risk neutral and the utility function has the form

u(x) = cx for some c > 0. If λ < 0, the agent has constant absolute risk aversion

and u(x) = c(1− eλx), c > 0. If λ > 0, the agent has constant absolute risk seeking

and u(x) = c(eλx − 1), c > 0.

The following is a useful characterization of CART .

Lemma 1 u ∈ CART if and only if there exists Γ ∈ R such that

u(a + b) = u(a) + u(b) + Γu(a)u(b) ∀a, b. (2.1)

Proof: If u ∈ CART , then (2.1) is satisfied by Γ = λ/u′(0).

Suppose there exists Γ such that (2.1) is satisfied. Differentiating both sides of

(2.1) with respect to a yields:

u′(a + b) = u′(a)[1 + Γu(b)] ∀b.

Differentiating both sides again according to a yields:

u′′(a + b) = u′′(a)[1 + Γu(b)] ∀b.

By dividing the two equations (note that (u)′(x) > 0 for every x ∈ R) we get that

u′′(x)/u′(x) is constant. Hence, u ∈ CART

We will use the following equality derived from the proof of Lemma 1:

u′(a) = u′(0)[1 + Γu(a)] ∀a. (2.2)
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We proceed to discuss the agents valuations. We use the (non-symmetric) independent-

private-value model. In this model, every agent a ∈ N knows her own valuation

(type, willingness to pay), ta ∈ T a, where T a = [αa, βa], 0 ≤ αa ≤ βa. This val-

uation is a realization of a random variable Z̃a which takes values in T a and has

a distribution function F a 8. Let F (t) =
∏n

a=1 F a(ta) be the common distribution

function on T = ×n
a=1T

a. The triplet (N, T, F ) is called a valuation structure.

2.2 The auction mechanism

The auction mechanism comprises of sets of messages, one for each agent, as well as

rules that determine the winner and the payments.

An agent a ∈ N has a message set Ma that contains a message ea that is called

a null message. Such a message is never actually sent, but if a does not send any

actual message, the seller relates to it as if a sent ea.

Let M = ×a∈NMa be the set of vector of messages, and let e ∈ M be the vector of

null messages. We assume that

• Ma \ {ea} is a subset of some Euclidean space for every a ∈ N .9

Note that Ma is a metric space with the natural metric of Euclidean spaces, and

with agreeing that the distance between ea and a real message m is 1. Hence, Ma

and M have a natural Borel structure. A subset Ba of Ma is bounded if Ba \ {ea}
is bounded.

The rest of the auction mechanism is defined by three functions

τ : M → [0, 1]n, x : M → <n, y : M → <n.

If the agents send the vector of messages m ∈ M , the seller conducts a lottery to

determine the winner. The probability that a is the winner is τa(m). The seller

may keep the item to himself. Hence,

∑
a∈N

τa(m) ≤ 1 and τa(m) ≥ 0, ∀a ∈ N, ∀m ∈ M.

8That is, F a(ta) = Prob(z̃a ≤ ta). Note that our model covers both a continuous and a discrete
distribution of types.

9Note that we do not exclude finite sets of messages.
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xa(m) is the amount of money that agent a has to pay if she gets the object

and, ya(m) is the amount of money that agent a has to pay if she does not get the

object.

We assume that

• τ, x, y are Borel measurable, and x and y are bounded on bounded subsets of

M .

Naturally a non participant agent neither wins nor pays. Hence, we assume

• τa(m) = xa(m) = ya(m) = 0, whenever ma = ea.

Every auction mechanism C = C(N, M, τ, x, y), along side a valuation structure

I = (N, T, F ) defines a Bayesian game, A = A(C, I), which we call an auction

game.

A strategy of agent a is a

• bounded Borel measurable function ba : T a → Ma.

For a ∈ N we denote T−a = ×i∈N,i6=aT
i. For t ∈ T we denote by t−a the projection

of t on T−a.

Let b = (ba)a∈N be a fixed strategy profile in the auction game A. Consider a fixed

agent a ∈ N . Let Qa
A(ma|ta) and Ua

A(ma|ta) be the probability that a is the winner

and the expected utility of a respectively, when a sends the message ma, given that

her type is ta and all the other players use their strategies in b. More precisely,

Qa
A(ma|ta) = ET−a

{
τa(ma, b−a)

}
and

Ua
A(ma|ta) = ET−a

{
ua

(
ta − xa(ma, b−a)

)
τa(ma, b−a) + ua

(
−ya(ma, b−a)

) [
1− τa(ma, b−a)

]}
,

where b−a(t−a) is the vector (bj(tj), j 6= a) .

Recall that b is an equilibrium strategy profile if for every agent a,

Ua
A(b(ta)|ta) ≥ Ua

A(ma|ta)

for every ta ∈ T a and ma ∈ Ma.

The expected utility function Ua
A is decomposed to an expected gain function Ua

A,g

and an expected loss function Ua
A,l, where

Ua
A,g(m

a|ta) = ET−a

{
ua

(
ta − xa(ma, b−a)

)
τa(ma, b−a)

}
7



and

Ua
A,l(m

a|ta) = ET−a

{
ua

(
−ya(ma, b−a)

) [
1− τa(ma, b−a)

]}
.

When b is a fixed equilibrium strategy profile in A, we denote Ua
A(ba(ta))|ta) by U(t),

and Qa
A(ba(ta)|ta) by Q(t).

3 Myerson’s utility equivalence theorem

Myerson (1981) proved that risk neutral agent is indifferent up to a constant between

any two auction mechanisms which have the same probability of winning function,

Q. We will prove that such a result holds only for risk neutral agents.

Theorem (Myerson 1981) Let a be a fixed risk-neutral agent. Let T a = [αa, βa].

Then the following holds: Let A and B be two auction games in which the set of

types of a is T a, and let b and d be fixed equilibrium profiles in A and B respectively.

If

Qa
A(t) = Qa

B(t) for Borel almost every t ∈ T a,

then,

Ua
A(t)− Ua

B(t) = Ua
A(s)− Ua

B(s), (3.1)

for every t, s ∈ T a.

We proceed to show that Myerson’s equivalence principle holds only for risk neutral

agents.

Theorem 1 Let a be an agent with a utility function u, and let T a = [αa, βa],

αa < βa. If the the following condition holds, a is risk-neutral:

Let A and B be two auction games, in which the set of types of a is T a, and let

b and d be fixed equilibrium profiles in A and B respectively. If

Qa
A(t) = Qa

B(t) for Borel almost every t ∈ T a,

then (3.1) holds.
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Proof: We will consider auctions in which the set of agents is N = {a}. Let z be

a real number. Let k be a positive integer satisfying

u(−z) + (k − 1)u(1) ≥ 0. (3.2)

let Az,k be the following direct auction mechanism;

For every m ∈ Ma {ea},
τa(m) = 1

k
, xa(m) = z, and ya(m) = −1.

Obviously, Az,k generates a truth telling auction game, in which Qa
Az,k

(ta) = 1
k

for

every ta ∈ T a.

Note that (3.2) is satisfied for z = 0. Hence, the auction games Az,k and A0,k satisfy

Qa
Az,k

= Qa
A0,k

.

Therefore,

u(t− z)− u(t) = u(s− z)− u(s), for all t, s ∈ T a. (3.3)

Recall that (3.3) holds for every real number, z, and differentiate (3.3) with respect

to z to get:

u′(t− z) = u′(s− z) for every t, s ∈ [αa, βa], and for every −∞ < z < ∞.

Hence u′ is a constant function. Therefore u(x) = cx, c > 0, for every x.

A slight modification in the proof of Theorem 1 shows that this theorem holds

also for a fixed set of agents. That is, given a set of agents if an agent is indifferent

up to a constant between any two auctions which have the same probability to win

function, then she must be a risk neutral agent.

4 The utility equivalence theorem

We introduce a generalized utility equivalence theorem which holds if and only if

the agent is a CART agent.

In order to prove it, we present important properties of the expected utility and

probability to win in-equilibrium functions. Although those properties will be used

for CART agents only, we state and prove the results for an agent with an arbitrary

attitude to risk.

Theorem 2 Let A be an auction game, b be a fixed equilibrium profile in A and let

a be a fixed agent with the utility function u.
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Then Ua
A is a Liptchitz non-decreasing function.

Moreover for Borel almost every t in [αa, βa],

[Ua
A(t)]′ = ET−a

{[
ua

(
t− xa(ba(t), b−a)

)]′
τa(ba(t), b−a)

}
. (4.1)

Proof: Consider an auction game A.

First we prove that U is a non-decreasing function.

Let s, t be in T a, and note

U(s)− U(t) =

ET−a

{
u

(
s− x(ba(s), b−a)

)
τ(ba(s), b−a) + u

(
−y(ba(s), b−a)

) [
1− τ(ba(s), b−a)

]}
−

ET−a

{
u

(
t− x(ba(t), b−a)

)
τ(ba(t), b−a) + u

(
−y(ba(t), b−a)

) [
1− τ(ba(t), b−a)

]}
.

(4.2)

Given s, to bid ba(s) is at least good as ba(t). Therefore, by plugging in (4.2)

ba(t) instead of ba(s) we get:

U(s)− U(t) ≥
ET−a

{(
u(s− x(ba(t), b−a)

)
τ(ba(t), b−a) + u

(
−y(ba(t), b−a)

) [
1− τ(ba(t), b−a)

]}
−

ET−a

{(
u(t− x(ba(t), b−a)

)
τ(ba(t), b−a) + u

(
−y(ba(t), b−a)

) [
1− τ(ba(t), b−a)

]}
.

That is,

U(s)− U(t) ≥ ET−a

{[
u

(
s− x(ba(t), b−a)

)
− u

(
t− x(ba(t), b−a)

)]
τ(ba(t), b−a)

}
.

(4.3)

For every s > t, we get U(s)− U(t) ≥ 0 and therefore u is non-decreasing.

We show that U is a Liptchitz function:

Given t, to bid ba(t) is at least good as ba(s). Therefore, by plugging in (4.2) ba(s)

instead of ba(t) we get, analogously to the way we got (4.3):

U(s)− U(t) ≤ ET−a

{[
u

(
s− x(ba(s), b−a)

)
− u

(
t− x(ba(s), b−a)

)]
τ(ba(s), b−a)

}
.

(4.4)

As u itself is a Liptchitz function on bounded intervals, and Qa is bounded, there

exists a constant C > 0 such that,

U(s)− U(t) ≤ C(s− t),
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and hence

|U(s)− U(t)| ≤ C|s− t|, for all s, t ∈ T a.

We proceed to prove (4.1). As U is a Liptchitz function U ′(t) exists Borel almost

everywhere in T a. Let U ′(t) exists at t, αa < t < βa.

Let s > t, by (4.3)

U(s)− U(t)

s− t
≥ ET−a {[u (s− x(ba(t), b−a))− u (t− x(ba(t), b−a))] τ(ba(t), b−a)}

s− t
.

(4.5)

The limit of the left-hand-side of (4.5) when s → t is U ′(t).

On the other hand by Lebesqe Converges Theorem the right-hand-side of (4.5)

converges to ET−a {u′ (t− x(ba(t), b−a)) τ(ba(t), b−a)} . That is,

U ′(t) ≥ ET−a

{
u′

(
t− x(ba(t), b−a)

)
τ(ba(t), b−a)

}
.

Similarly, by (4.4) we get:

U ′(t) ≤ ET−a

{
u′

(
t− x(ba(t), b−a)

)
τ(ba(t), b−a)

}
.

Therefore

U ′(t) = ET−a

{
u′

(
t− x(ba(t), b−a)

)
τ(ba(t), b−a)

}
.

In order to prove the utility equivalence, Myerson (1981) proved that for risk

neutral agent, for every t ∈ [αa, βa],

Ua
A(t) =

∫ t

z=αa
u′(0)Qa

A(z)dz + Ua
A(αa).

We generalizes this to CART agents.

Theorem 3 Let A be an auction game, b be a fixed equilibrium profile in A, and let

a be a fixed CART agent with the utility function u.

Then,

Ua
A(t) = u′(0)

∫ t

z=αa
eu′(0)Γ(t−z)[Qa

A(z)− ΓUa
A,l(z)]dz + Ua

A(αa)eu′(0)Γ(t−αa).
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Proof: Recall that U is a Liptchitz function, and let t ∈ T a, such that U ′(t) exists.

By (4.1),

U ′(t) = ET−a

{
u′

(
t− x(ba(t), b−a)

)
τ(ba(t), b−a)

}
.

Moreover, for CART agent, by (2.2), u′(a) = u′(0)[1 + Γu(a)].

Therefore

U ′(t) = u′(0)[ET−a

{
τ(ba(t), b−a)

}
+ ΓET−a

{
u

(
t− x(ba(t), b−a)

)
τ(ba(t), b−a)

}
].

Hence,

U ′(t) = u′(0)[Q(t) + Γ(U(t)− Ul(t))]. (4.6)

Multiplying both sides of (4.6) by e−u′(0)Γt and rewriting, yields

(U(t)e−u′(0)Γt)′ = u′(0)e−u′(0)Γt(Q(t)− ΓUl(t)).

As U(t) is a Liptchitz function, U(t)e−u′(0)Γt is absolutely continuous in T a, and it

is the integral of its derivative.

Therefore,

U(t) = u′(0)eu′(0)Γt
∫ t

z=α
e−u′(0)Γz(Q(z)− ΓUl(z))dz + U(α)eu′(0)Γ(t−α). (4.7)

Note that, U depends only on u,Q , Ul(.) and U(α).

In addition, for risk neutral agent, U depends only on Q and U(α).

The following theorem generalizes Myerson utility equivalence theorem to CART

agents:

Theorem 4 Let a be a CART agent with the utility function u, and let T a =

[αa, βa]. Then there exists a positive function h(t), t ∈ T a such that the following

holds: Let A and B be two auction games, in which the set of types of a is T a, and

let b and d be fixed equilibrium profiles in A and B respectively. If

Qa
A(t) = Qa

B(t) for Borel almost every t ∈ T a, (4.8)

and

Ua
A,l(t) = Ua

B,l(t) for Borel almost every t ∈ T a, (4.9)

then,

h(t) (Ua
A(t)− Ua

B(t)) = h(s) (Ua
A(s)− Ua

B(s)) , (4.10)
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for every t, s ∈ T a.

Moreover, when u(x) = c(1 − eλx), λ < 0, or u(x) = c(eλx − 1), λ > 0, one can

choose h(t) = eλ(α−t) for every t ∈ T a.

In addition, if a is risk neutral then (4.8) without (4.9) implies (4.10) with h(t) = 1

for every t ∈ T a.

Proof: Let A and B be two auction games.

By Theorem 3:

Ua
A(t) = u′(0)

∫ t

z=αa
eu′(0)Γ(t−z)[Qa

A(z)− ΓUa
A,l(z)]dz + Ua

A(αa)eu′(0)Γ(t−αa).

And,

Ua
B(t) = u′(0)

∫ t

z=αa
eu′(0)Γ(t−z)[Qa

B(z)− ΓUa
B,l(z)]dz + Ua

B(αa)eu′(0)Γ(t−αa).

Therefore, if Qa
A(t) = Qa

B(t) and Ua
A,l(t) = Ua

B,l(t) for Borel almost every t, then,

UA(t)− UB(t) = eu′(0)Γ(t−α)(Ua
A(α)− Ua

B(α)) for every t ∈ T a.

Therefore, for h(t) = eu′(0)Γ(α−t) = eλ(α−t), t ∈ T a,

h(t) (UA(t)− UB(t)) = h(s) (UA(s)− UB(s)) for every t, s ∈ T a.

Finally note that if a is risk neutral, Γ = 0, and therefore h(t) = 1 and the right

side of (4.7) depends on Q and U(αa) only.

One can conclude that h(t) must has the form h(t) = ceλ(α−t), for every t ∈ T a,

where c > 0.

The following is an important corollary of Theorem 4:

Corollary 1 Let a be a fixed CART agent with the utility function u. Let A and

B be two auction games with the same set of types for a, and let b and d be fixed

equilibrium profiles in A and B respectively. Assume that Qa
A(t) = Qa

B(t), Ua
A,l(t) =

Ua
B,l(t) for Borel almost every t ∈ T a , and Ua

A(αa) = Ua
B(αa). Then,

Ua
A(ta) = Ua

B(ta) for every ta ∈ T a. (4.11)

We proceed to prove a converse to Theorem 4.
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Theorem 5 Let a be a fixed agent with the utility function u and a set of types T a

such that αa < βa. Assume there exists a positive function h(ta), ta ∈ T a such that

the following holds: For every two auction games A and B, in which the set of types

of a is T a, and for every equilibrium profiles b and d in A and B respectively such

that Qa
A(.) = Qa

B(.) and Ua
A,l(.) = Ua

B,l(.),

h(ta) (Ua
A(ta)− Ua

B(ta)) = h(sa) (UA(sa)− UB(sa)) for every t, s ∈ T a. (4.12)

Then a is a CART agent.

Proof: We consider the auctions A = Az,k and B = A0,k defined in the proof

of Theorem 1. Recall that, UAz,k
(t) = 1

k
u(t − z) + [1 − 1

k
]u(1) and UA0,k

(t) =
1
k
u(t) + [1− 1

k
]u(1).

By (4.12),

h(t) ((u(t− z)− u(t)) = h(s) (u(s− z)− u(s)) (4.13)

for every s, t ∈ T a = [αa, βa], and −∞ < z < ∞. Twicely differentiating both sides

of (4.13) with respect to z yields

h(t)u′(t− z) = h(s)u′(s− z)

and

h(t)u′′(t− z) = h(s)u′′(s− z).

Therefore, u′′

u′
is a constant function, and therefore u ∈ CART .

A slight modification in the proof of Theorem 5, as in Theorem 1, shows that this

theorem holds also for a fixed set of agents.

5 Random Participation

In the common definition of auction mechanisms, like the one given in the previous

sections, the whole model is commonly known to all agents. That means, that every

agent a ∈ N consider participation in the auction. That is, agent a knows the rules

of the auctions, the set of agents, and the valuations’ distribution. She may choose

not to participate, but this would be a strategic decision10.

10in most of auction theory it is further assumed that every agent must participate. In these
models, the agent always have a safe bid that guarantees to her a non-negative expected utility.
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In this section we follow Monderer and Tennenholtz (2000b), and we model a sit-

uation in which not all agents consider participation. This model incorporates an

assumption, introduced by McAfee and McMillan(1987), to the effect that a agent

need not know how many other buyers will participate. We assume that for each

agent there exists a {0, 1} random variable δ̃a such that if δ̃a = 1 this agent consid-

ers participation, and if δ̃a = 0 she does not. Let t̃a be the random variable that

determines a′s valuation. Hence an agent type is a pair (δa, ta). We do not assume

that δ̃a and t̃a are stochastically independent. After all, it is likely that they are

positively correlated. Therefore we noted the probability of δ̃a = 1 given t̃a = ta by

pa(ta), and the probability of t̃a ≤ ta given δ̃a = 1 by Ga(ta). However we continue

to assume the independent-private-value model in the sense that the random vari-

ables (δ̃a, t̃a), a ∈ N are independent. A strategy of agent a is a Borel measurable

function ba : T a → Ma, which represents the bid if δa = 1, recall that otherwise

(δa = 0) she bids ea. Every auction mechanism, A, (together with the valuation and

participation structure) define a Bayesian game, which we call random participation

auction game. Let b = (ba)a∈N be a fixed strategy profile in this game. Consider a

fixed agent a ∈ N which considers to send the message ma, given that her type is ta.

Consider also, that all the other players use their strategies in b according to their

valuations and participation parameters, which are in T−a and ∆−a = ×i∈N,i6=a∆
a

respectively. As in the previous sections, let Qa
A(ma|ta) and Ua

A(ma|ta) be the prob-

ability that a is the winner and the expected utility of a respectively.

More precisely,

Qa
A(m|ta) = E(∆−a,T−a)

{
τa(m, b−a)

}
and

Ua
A(m|ta) = E(∆−a,T−a)

{
ua

(
ta − xa(m, b−a)

)
τa(m, b−a) + ua

(
−ya(m, b−a)

) [
1− τa(m, b−a)

]}
.

Where b−a is the bids vector of the other agents.

It is assumed in the above formulas that bj(tj, 0) = ej. Recall that b is an equilibrium

strategy profile if for every agent a, and for every ta ∈ T a such that pa(ta) > 0,

Ua
A(ba(ta)|ta) ≥ Ua

A(m|ta)

for every m ∈ Ma.

In this paper we deal only with equilibrium profiles that satisfy a sort of subgame

perfection condition.
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We required the equilibrium condition to hold for every ta ∈ T a.

All theorems proved in the previous sections continue to hold (with some obvious

and natural modifications) in the model of random participation. We omit the

obvious proofs.
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