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Abstract: This paper discusses the difference between Harsanyi and
Bayesian equilibria for games of incomplete information played on uncount-
able belief spaces. A conjecture belonging to ergodic theory is presented. If
the conjecture were valid ‘then there would exist a game played on an un-
countable belief space with a common prior for which there are Bayesian
equilibria but no Harsanyi equilibrium. '
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1 Introduction

An equilibrium of a game is a set of strategies, one for each player, such that
no player does better by choosing a different strategy, given that the other
players do not change their strategies. In a game of incomplete information,
what does it mean to do no better by choosing a different strategy? Should
one evaluate a player’s actions according to the subjective and local belief of
that player, or should one evaluate according to a common prior probability
distribution determined objectively by the game?

When the subjective beliefs of the players are conditional probabilities of
& COomInon prion, a cenfiral questian is whether there is an essential difference
between the equilibria defined according to the players’ subjective beliefs or
those defined according to a global functional evaluation. J. Harsanyi (1967-
8) showed that there is no essential difference between these two types of
equilibria when the set of all possible situations in the game is finite. [s this
claim correct when the possible situations are infinitely many?

If we mean by equivalence that Bayesian and Harsanyi equilibria should
differ only in sets of measure zero, then the answer is no, In cur conclusion we
present an example of a payofl [unction resulting from a Bayesian equilibrium
in a zero-sum game that cannot not measurable, meaning that the value of
the game cannot be understéod as the expected value of a random variable.
The more interesting question is whether there is an example of a game with
Bayesian equilibria but no Harsanyi equilibrium at all.

We present a conjecture and an example of a4 game played on a sequence
space (with a shift operator) such that if the conjecture is true (and the
axiom of choice is assume) then this game has Bayesian equilibria but none
that are measurable with respect to the completion of the common prior
(implying also that there can be no Harsanyi equilibrium).

The basic idea belongs to Ergodic Theory. One chooses a sequence space
(Cantor set) with a Borel probability distribution that allows for finitely
many non-commuting rneasure preserving involutions &; whose orbits are
almost everywhere dense in the space. (o, o g; is the identity, and for almost
every xz the subset of all the ¢;, © ¢y, ©...0y,(z) iz dense in the space.) For
each i and z, at the point z Player 7 believes that only the points z and oz
are possible, with equal probability to both (and full probability if & = &yx).
The entries in the payoff matrix are determined by the topological position
in the sequence space. The conditions defining Bayesian equilibria pertain



to the orbits of the invelutions o;, and these orbits do not contruct the space
in a measurable way. (With two players a set of representives, one for each
orbit, is a classical non-measurable set.)

In the next section we define Bayesian and Harsanyi equilibria and prove
that the countability of a belief structure implies the existence of Bayesian
equilibria, regardless of whether there exists a common prior. In the third
section we introduce the conjecture. In the fourth section we introduce an
example of a zero-sum game of incomplete information with a common prior
that would have a Bayesian equilibrium but no Harsanyi equilibrium, given
that the conjecture is true. In conclusion, we explore the possible theoretical
implications for zero-sum games.

2 Bayesian and Harsanyi Equilibria

Throughout the rest of this paper, we will assume the axiom of choice. By
distance in a Euclidean space, we will mean the Euclidean distance. When 8
is a topological space, A(S) will stand for the space of regular Borel proba-
bility distribution on §; A(8) will be given the weak topology induced from
the topology on 5.

2.1 Mertens-Zamir belief spaces

There is motre than one definition of a belief space. Qur example satisfies the
exclusive Mertens-Zamir definition for a belief space, and 20 we will present
this definition.

A Mertens-Zamir Belief Space (Mertens and Zamir, 1985) is a tuple
(L, X,1%, N, (& | 7 € N)), where X is a compact parameter set, 2 is a cor-
pact set, 7/ is a continuous map from  to X, N iz a finite set of players, for
every j € N 7 : ) = A(£) is a continous function, and for every player 7 and
every pair of points s, 8’ € Q2if ¢ € support (#(s)) then #/(s) = #/(s') (where
support refers to the unique smallest compact set supporting the measure).

Define a cell of a Mertens-Zamir belief space to a minimal set ¢ with the
property that at every point y in C' every player’s support set for the point
y is contained in C' (without the requirement that C' must be compact).

Of special interest is the definition of mutual consistency for Mertens-
Zamir belief spaces. For every player 7 € NV and define 77 to be the smallest



Borel field of subsets of {2 such that the function #/ is measurable. A proba-
bility distribution 4 on 2 is defined to be consistent if for every Borel subset
A C Q we have that u(A4) = f¢/(y)(A)du(y). Mertens and Zamir (1985)
showed that consistency is equivalent to the stronger statement that for ev-
ery B € 77 and Borel subset 4 C Q) we have u(A N B) = [t (y)(A)du(y).
A consistent p is called a common prior.

If X is a finite set, we define a game modeled on a Mertens-Zamir belief
spaces (O, X, 4, N, (¢ | 7 € N)) in the following way. For each player j, there
is a finite action set A7 with n/ := |.A7|. There are | X'| different n! x...x nlV
matrices (Qz | © € X) corresponding to the set X; every entry of every
matrix is a vector payoff for the players in RY, The players choose actions
in their respective .4’ independently and according to mixed strategies in
A(A7), After the choices are made the payoff to the players at y € 0 is the
vector entry corresponding to their actions in the matrix Q). A Bayesian
equilibrium for a point z € € is an |N|-set of functions (f? | € N), each
f? from the cell that contains z to A(,A7) with the following properties for
every player J €N
1) f7 is constant within all support sets of Player j,

2) for all ' # j, within the support set of ¢ (z) the function f7 is #/'(z)
measurable, and

3) within the support set of #/(z) Player j can do no better than fi(z) €
A(AY) in response to the other functions f7', 4" # 7, as evaluated by #/(z).
When the |N|-set of functions is an equilibrium for all points in a ceil, then
we call it a Bayesian equlibrium for that cell.

Let us assume that p i1s a consistent common prior for the belief space
(Q,X,¥,N,(# | j € N)). A Harsanyi equilibrium is a set of functions (f :
1 — A(AY) | 5 € N), each f7 measurable with respect to the Borel field 77,
guch that no player can attain a higher expected payofl as evaluated by u by
choosing another such measurable function, (given that the strategies of the
other players do not change).

2.2 Countable structures

Now we will restrict ourselves to belief structures that are countable, and
simplify the set-up.

As before, N is the finite set of players and for gach player 7 € N let
F? be a partition of 8§, a countably infinite set. For every A € F7 let
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p"4 be a probability distribution on the set A. As before, for each player
j & N let A7 be the associated finite set of pure actions, with n; := |47].
For every s € & there will be an associated n; % ...ny matrix §, with
entries in RY. The actions chosen by the players at ¢ € § and the matrix
(). determine their payoffs. 'We define a Bayesian equlibrium to be a set of
functions (f7 : F¥ — A(A?) | j € N), one for each player, so that for every
j € N and 4 € F7 Player j cannot attain a higher payoff as evaluated by
p™* (given that the strategies of the other players remain constant).

Proposition 1: If there is a uniform bound M on the absolute value of
all payoffs ta all players, then there exists a Bayesian equilibrium.

Proof: Let the set 5 be enumerated by § = {s1, 52, 53,...}. For every
i=1,2,... define the game T'; to be that played on the set 5; := {4y, ..., 5;}
with the corresponding partitions 7} := {ANS; | A€ F,ANS; # @} and
probability distributions pl'* on 8 defined by p}*(B) := p/4(B)/p"4(8;) for
all B C &;, with any choice for the pi*(B) if p»4(S;) = 0. Since each S, is
finite, for every 7 there exists a Nash equilibrium o, := (oi* A(.A? R
N,A € F}} to the game ;. Assigning any member of A(A47) to o when
AMS; =0 and A € 7/, we have a sequence &; in the set

A:=T] II a4,

JEN AcF7

We give A the product topology. Due to Tychonoft’s Theorem, A is compact,
and we can assume that there exists a convergent subsequence (o;, | n =
1,2,...) of the o; converging to some ¢ € A,

We aim to show that o defines a Bayesian equilibrium of the original
game. Fix an ¢ > 0. We will show that o is an e-perfect Bayesian equilibrium,
meaning that at every A € F7 Player j can gain no more than ¢ by choosing
a different strategy. .

Let Player j and A € F7 be given. Let 7 be so large that p/4(S;) >
1 —¢/10M. Let & be the smallest positive probability by which Player j
chooses some pure action with the strategy o4, Now choose an n so large
so that m = n implies that of*? is within min(e/10M|N|, §/3) of 0*'F for all
the (finitely many) B € F*, k € N, intersecting the set S (including those
with k& = j). Given that all other players k stay with the (c* | k # j}, we
need to show that the differences in expected payoffs for Player j by choosing
different pure actions in support (¢?4) do not exceed €/2, and furthermore

4



that Player 7 cannot tmprove his payoff by at least /2 compared to the best
actions in support (¢7) by choosing an action outside of support (¢%4).
Because support (¢%*) € support (¢7*), both claims are easy to confirm

n

using the equilibrium properties of the oy, in the game I'y_. O

3 The Conjecture

Let A be an n-dimensional simplex (generated by n + 1 extremal points),
and let Ag,..., A, be polytope subsets of A of dimension less than n (not
necessarily convex finite unions of simplices of dimensions n — 1 or less) such
that the affine hull of UL,A4, contains all of A and the intersection M,A;
is empty. Define A := {Ayg,..., A, }, a finite set. Let O := A% where Z is the
- (doubly infinite) set of integers. Let P be the canonical Borel probability
measure on (2, induced from the probabilities on the cylinder sets by giving
each of the members of 4 in each coordinate position independently the
probability of ;_lﬁ Define a function on {2 to be measurable if it is measurable
with respect to the completion of P (meaning that all sets of outer measure
zero are measurable). Let T be the canonical shift operator on £, such
that (Tz)" = xi~!, where for every ¥ € £ y* is the k¥ coordinate of y. Let
f 1 2 = A be a function with the property that for all z € Q we have
$(f(z) + f(Tz)) € 2° (where 2° € A is now perceived as a subset of A),

Conclusion of the conjecture: The function f cannot be measurable.

Let us consider the following example. A = [0,2], 41 = {1/3,4/3},
Ay == {2/3,5/3}, and @ := {4;,4:}%. Due to determination relative to
modulo one, any start in defining the function f for any z € ) will define
f for the rest of the T, 7! orbit of 2. By the axiom of choice, there exists
such a function f defined on all of Q2.

For the sake of contradiction, let us assume that there exists such a func-
tion f that is measurable. By Luzin’s Theorem, we should be able to ap-
proximate our function f in probability with continuous functions, meaning
that for every ¢ > 0 there exists a continuous function g : {4;, 43}% — [0, 2]
such that f and g differ only on a set of measure e. Let € be 1/100. By
the continuity of g there is a cylinder set C' and a value r € {0, 1] such that
within the set C the probability (conditioned on membership in €) that the
value of f is further than ¢ from r (modulo 1) is less than ¢. Without loss



of generality, we can assume that our cylinder set € ig defined by the choice
of coordinates y=*,...,%%,...,y% ! for some positive integer k. Now let us
define the value g (module 1) by it being f(T—*(z)) (modulo 1) forany z € C
with f(z) = r and define the value s to be the corresponding value f(T%(z))
(module 1). As long as z € C is mapped by f to within ¢ of r (modulo
1), T7%(z) and T*(z) will be mapped to within ¢ of ¢ and s, respectively
(modulo 1), The occurances of points in the cylinder set C' in a typical orbit
(by the transformation 7') will be separated by many different sequences of
intermediate values for the O-coordinate. By our assumption, these seperat-
ing sequences must, with near certain probability, connect values within € of
5 to values within ¢ of ¢. This is an absurdity, given that ¢ is small compared
to the distance between 4, and A,.

The difficulty with the conjecture is the degree of freedom in allowing the
function f to be defined for Tz once it is defined for z. We do not know
if we can drop the dimension conditions and require for the A; only that
M;A; = 0, with the conjecture remaining valid. If so, we could prove stronger

statements concerning the non-existence of approximate Harsanyi equilibria.

4 The Example

The following is an example of a belief space with a common prior and
corresponding actions and payoff matrices for which, if the conjecture is
valid, there would exist Bayestan equilibria but no Harsanyi equilibria.

There are three states of nature, wy, wa, and ws, and W = {w,, we, w3 }.
The space is § := W%, where Z is the set of integers, including both the
positive and the negative integers. The 0-coordinate determines the state of
nature, so that if y € £ and y° = w; then the payoff matrix is determined
by the state w;. The Borel probability distribution © on €2 will be that
generated canonically, giving 1/3 probability to each state independently in
each position.

There are two players, and at each state each player has three pure ac-
tions. It is a zero-sum game, so that the payoffs will be those of the first
player and the payoffs for the second player will be their negations. The
following payoffs are for the state w; (modulo 3). The pure actions are also
represented module 3,



If Player One chooses the pure action i, then the payoff is
100 if Player Two chooses i+ 1 or i — 1, and
--100 if Player Two chooses 1.

If Player One chooses the pure action % + 1, then the payoff is
99 if Player Two chooses 1,

100 if Player Two chooses ¢+ 1, and

—100 if Player Two chooses 1 — 1.

If Player One chooses the pure action 7 — 1, then the payoff is
99 if Player Two chooses ¢,

—100 if Player Two chooses ¢ + 1, and

100 if Player Two chooses i — 1.

Next, consider the measure preserving involution ¢, : 2 — {0 defined
by ¢1(y)' := y~%, where z' is the ith coordinate of z. o) is the reflection of
the doubly infinite sequence about the position zero. The measure preserving
involution o5 : @ — Q is defined by o3(y)* := y*~*. It follows that T := ¢p00y
is the shift operator (T'(¥))t = »*~!. The subjective beliefs of the players are
determined as follows: at any point y € {2 Player j considers only y and o;(y)
to be possible, and with equal probability. For j = 1,2 let 77 := {B | B
is Borel and y € B < o;y € B}, the Borel subsets that are invarient with
respect to o;. For both j = 1,2 we define # : Q@ — A(Q) by ¥/(z)(4) :=1
if both = and o,z is in A, #/(z)(A) = 1/2 if one but not both of x and o,z
is in A, and ¢/(z)(A} = 0 if neither z nor o;z is in A. Because the o; are
measure preserving, it follows that the ¢7 are regular conditional probabilities
of 1 with respect to the Borel fields T7; (see Simon, 2000)'.

Notice that Player One always knows the state of nature, but not neces-
sary what Player Two believes.

Lemmsa 1: With regard to the example, any Harsanyi equilibrium will
generate a Bayesian equilibrium that is measurable with respect to the com-
pletion of the common prior p.

Proof: For both j = 1,2 assume that f7 : § — A(A/) are Harsanyi
equilibria, meaning also that they are Borel measurable functions. For both
j=1,2, for all i = 1,2,3, and all positive integers m define U3 (i, m) to be
the subset of {1 such that Player j can improve upon his payofl by at least



1/m through deviation by the pure action 1, as evaluated by ¢*, Since f* for
k # 7 is Borel measurable, implying also that the #/ evaluation of the pure
action i is measurable with respect to 77, the set [Uj(i,m) is also in T4. If
1{U3 (3, m)) were positive for some 7, i, and rmn, then the pair (!, f?) would
not have been a Harsanyi equilibrium (since we could alter f7 on Uj(z m)
to choose the pure action 2 w1th full probability, and Player j would ga.ln in
expected payofl by at least ,u(U"(z m))). We define U to be Uyml3 (4, m)
and U to be U; UJ Because these unions are countable, the sets U-" and
U, are also Borel and of measure zero, with U € 74. Now for alli > 1
and j = 1,2 define inductively the sets U] := {z € Q | #/(U;_;) > 0} and
Uy o= U WUP We claim for all [ and j that Ui is in 77, U, is Borel, and
u(U;) = 0. We proceed by induction, assuming the claim for / — 1. That
U,—; is Borel implies that UJ is in 77, and this implies that U} = U} UU? is
Borel. Due to the formula ,u(U; 1N U”) = fUzJ () (Ui_1)duly) and the fact

that ¢/ (v)(U;-1) = 1/2 forall y € Ui, ,u,(Ul ) = 0 would imply that u(T/_,) >
w(Ui_, N UD = fUJ- () (Ui-1)du(y) = ,U,(UJ) > 0, a contradiction. Since

Uy = U} UUF we conclude that w(Up) =0.

Define U ;= UR,L/;. We have two important properties, that U iz Borel
with u(U) = 0, and also from the structure of the example that U is the
union of cells (orbits of the o; for j = 1,2). We can alter our Harsanyi
equilibrium. We keep the original functions f7 on Q\U, and for all the cells
in the set IV we introduce any Bayesian equilibria obtained from Proposition
1. The result i a Bayesian equilibrium that we seek, 0

Lemma 2: In a Bayesian equilibrium, at every pair of points z and oz
considered possible by Player One, he receives an expected payoff of at least
9,900/299 (which is approximately 33.11}.

Proof: We consider the game of complete information played on any one
of the three symmetric payoff matrices. Without loss of generality, look at
that payoff matrix corresponding to State w,. The result follows by consid-
ering the optimal mixed strategies of (100/292,199/598,199/598) for Player
Two and (99/299, 100/299, 100/299) for Player One. 0

Lemma 3: In a Bayesian equilibrium, at every pair of points = and 07
considered possible by Player Two, Player One receives an expected payoff
of no more than 19, 900/599 (which is approximately 33.222).



Proof: If r and o2z share the same state of nature, then from the atrate-
gies given in the proof of Lemma 2 we know that Player Two can obtain
at least —9,900/299 for himself. If there are two states of nature, due to
symmetry we will consider only the case that these two states are States wy
and we. Consider the following three strategies of Player One:

(i) at either state choose Action 1,

(ii) at State wy choose Action 1 and at State ws choose the Action 2,

(iii) at either state choose Action 2.

The result follows by consider the mixed strategies (200/599, 200/599, 199/599)
for Player Two and (200/599,19%/599, 200/599) for Player One, where for
Player One these are the three pure strategies defined above. Against the
above mixed strategy of Player Two, none of Player One’s six other pure
strategies are superior. O

The difference of 19,900/599 — 9,900/299 (approximately .112) is the
maximal quantity of exploitation that can be obtained by Player One from
his knowing the state of nature.

Lemma 4: In a Bayesian equilibrium, at no pair of points z and oz
does Player One choose only one pure action.

Proof: The proof of Lemma 4 rests on the following claim,

Claim: If Player One chooses any pure action at the pair z and o5 with
at least a probability of 1 — § with 0 < § < 3/10, then at the pair z and
gz and at the pair o1x and a; o 712 Player Two obtains a payoff of at least
—1004 (meaning that Player One gets no more than 1004) and Player One
chooses some pure action at o3z and oy o oz with probability of at least
1—26 —1/200.

Proof of the claim: Without loss of generality, we consider only the
points £ and opz. That Player Two can obtain —1004 follows from the fact
that he can always choose the appropriate action for which at z he obtains
for himself at least 100(1 — §) — 1006 = 100 ~ 2008, (and the worst that can
happen to him at the other point is —100).

We assume that Player One has chosen Action { at x with probability of
at least 1 — 6. Due to § = 3/10 and Lemma 2, we must assume that Player
Two has some reagon to choose some other action than the one which, when
paired with Player One’s Action 4, the payoff for Player One at the point z is
—100. Since Player Two must obtain —1004 from this alternative action when
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averaging between the point z and ooz, the only way to offer Player T'wo at
least an equally desirable payoff is if Player One chooses some action at sz
with a probability of p, where p satisfies (1 —4§)99—4100+100(1 —p) —100p <
2004. This equation deliver the claim.

Now that the claim is proven, let us assume that Flayer One chooses
some pure action with certainty. By induction, we can assume that there
is a sequence z,Tz,...,T% where at all the points Tz to Tz Player One
chooses some action with probability at least 1 — 7/200 = 965 (and some
action is chosen with certainty at T*z). Assigning the value of v to the payoff
of Player One at the point z, because Player One can obtain at least 33 at
the pair z and o,z, we know that the payoff at o1z must be at least 33 — v.
But since at the pair oy and o2 0 o1z = Tw Player Two can hold down
the payoff to 7/2, we must conclude that the payoff at ga017 = T'z cannot
exceed v —26. By induction we conclude that the payoff to Player One at the
point T8z cannot exceed v — 208. But this is impossible, since no difference
of payoffs can exceed 200. O

Lemma 5: At no pair of points  and o3z can the probability that Player
Two chooses some pure action exceed 3/4.

Proof: Due to Lemma 2, at neither z nor g3z can Player One choose the
action that gives —100 when combined with this action of Player Two (since
Player One would get no more than 100 — §100 = 25). We conclude that
Player Two obtains a payoff for himself at z and oz no better than —~99, a
contradiction to Lemma 3. O

Now we will consider the behavior strategy of Player Two,

From Lemma 4 we know that Player Two must act so that at every pair
z and o,x Player One is indifferent between at least two pure actions. Let
us consider the case of 2° = w, first, and the following four possibilities for
the pair z and o2
1) Player One is indifferent between the actions 1 and 2 and does not prefer
Action 3,
2) Player One is indifferent between the actions 1 and 3 and does not prefer
Action 2,
3) Player One is indifferent between the actions 2 and 3 and does not prefer
Action 1,
4) Player One is indifferent between all three actions.
The last case is the easiest to consider. We know from Lemma 2 that the
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average distribution of Player Two's mixed strategies between the pair 5 and
o1z must be the probability vector p, := (100/299, 199/598, 199/598). But
with Case 4 understood, the other cases are also easy to understand. For
Case 1, we obtain the line segment between (0,1,0) and p;. For Case 2,
we obtain the line segment between (0,0,1) and p;. For Case 3, we obtain
the line segment between (1,0,0) and p,. Note, however, that by Lemma 5
we can restrict ourselves to the subset where no pure action of Player T'wo
receives probability greater than 3/4. Define the subset C1 © A({1,2,3})
by €, being the union of these three line segments intersected with {p &
A({1,2,3}) | Vk =1,2,3 p* < 3/4}.

Define the points pe and p; and the sets € and C5 symmetrically, with
respect to the states wy and ws. Notice that C) N Cp N €y is empty, (now
that no pure action of Player Two is used with any probability above 3/4).

Proposition 2: If the conjecture is valid, then the above is an example
of a game with a Bayesian equilibrium but no Harsanyi equilibrium.

Proof: By Proposition 1 (and the axiom of choice) there exists a Bayesian
equilibrium.

For the sake of contradiction suppose that f : © — A({1,2,3}) is the
behavior strategy of Player Two in a Harsanyi equilibrium. By Lemma 1
we can assume without loss of generality that f is the behavior strategy of
Player Two in a Bayesian equilibrium that is measurable with respect to the.
completion of the common prior u.

By Lemmatta 4 and 5, we know for every x € (2 that f must satisfy
L(f(z) + T(f(z)) € Oy with 2° = w,. But the conjecture claims that this is
not compatible with the measurability of f. O

5 Conclusion: The Value of Zero-Sum Games

We are interested in zero-sum games on uncountably large belief spaces be-
cause of the possibilities for violating conventional game theory. In finitely
defined zero-sum games, if an equilibrium exists we say that the game has
a value, namely the payoff to the first player in equilibrium. Equilibrium
strategies are also called optimal strategies, because if one exchanges the
strategies in two pairs of equilibria, one obtains again an equilibrium and the
same value as an expected payoff.
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The lack of a common prior on a cell prevents the usual kind of payoff
evaluation that would justify the exchange property. A point by point evalua-
tion to support an exchange property would be useless, because two different
equilibria could give different expected payoffs to a given point (even with a
finite belief space). This is also the problem behind assigning a value to such
a game. If the only equilibria are non-measurable, then the payoff function
of all equilibria may fail to be measurable, so that a value as the expected
value of a random variable would be meaningless. ‘

One dces not need a game with the complication of our above example to
demonstrate that a zero-sum game may have a Bayesian equlibrium without
a random variable as the payoff function. Let (2 be {0,1}% with the same
helief structure as before, defined by the measure preserving involutions o
and oq, and T = o3 0 0;. We assume that there is only one payoff matrix,
that corresponding to the well known game of matching pennies. Both players
have only two pure actions, 0 and 1, and if the sum of their pure actions is
even then Player One receives 1 and if this sum is odd than Player One
receives —1. Let f/ : (2 — [0,1] represent the probability that Player j
chaoses the pure action 0, and of course we must assume that for both j = 1,2
and every z € Q we have f/(z) = fi(o;(z)).

Consider the following behavior of the players. At some x € {2 we have
fYz) = f*(z) = 1, but also we have fl(oa(z)) = fl(o1 0 o2(z)) = 0 and
F2(51(x)) = f2(ogoen(z)) = 0. Continue defining the strategies f* and f2 on
the cell containing x so that at all ¢ in the cell we have fl(y)+ fl{ca(y)} =1
and f2(y) + f2(o1(y)) = 1, with the values for f! and f% always either O
or 1. Thig defines a Bayesian equilibrium on the cell. To create a Bayesian
equilibrium for all of €, choose such strategies for all the cells of 2 (assuming
the axiom of choice). Notice that the subset of {2 where Player One receives
a payoff of 1 is a T-invarient set, and the same holds for the subset where
Player One receives —1. If the payoff function of this Bayesian equilibrium
were meastrable, then the subset where Player One receives —1 must be a
set of measure 0 or 1 (by the mixing property of the transformation 7). We
would conclude that the global expected payoff for Player One is either —1
or 1, an absurdity.

Of course there does exist a Harsanyi equilibrium for this game, namely
both players at all points choose the probability of 1/2 for the pure action 0.

In spite of the inability to define the value of a zero-sum game with a
Bayesian equilibrium in the conventional way, one could define a value on a

12



cell as the limit of average payoffs radiating from any given point in the cell
(should such a value exist), and then define the global value as a common
(or expected) value for the cells containing almost all points (should it exist).
With games defined on sequence spaces (as modeled above) there should be
hope for proving the existence of such a value.
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