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Abstract

The objective of this paper is both to examine the performance and to
show properties of statistical techniques used to estimate learning models
on experimental game data. We consider a game with unique mixed strat-
egy equilibrium. We discuss identiÞcation of a general learning model and
its special cases, reinforcement and belief learning, and propose a parame-
terization of the model. We conduct Monte Carlo simulations to evaluate
the Þnite sample performance of two kinds of estimators of a learning
model�s parameters: Maximum likelihood estimators of period to period
transitions and mean squared deviation estimators of the entire path of
play. In addition, we investigate the performance of a log score estimator
of the entire path of play and a mean squared deviation estimator of pe-
riod to period transitions. Finally, we evaluate a mean squared estimator
of the entire path of play with observed actions averaged over blocks, in-
stead of behavioral strategies. We propose to estimate the learning model
by maximum likelihood estimation as this method performs well on the
sample size used in practice if enough cross sectional variation is observed.

There is an extensive and growing literature on learning in experimental
economics. It has been observed that quite simple learning models can track
aspects of observed behavior on a collection of games, both when the observed
behavior conforms to the equilibrium predictions and when it does not Roth and
Erev (1995). There is also a growing segment of the literature attempting to
compare the empirical performance of learning models (Erev and Roth (1998),
Camerer and Ho (1996), Camerer and Ho (1998), Camerer and Ho (1999a),
Camerer and Ho (1999b), Feltovich (2000)). Learning models are speciÞed up
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to some parameters. In order to compare the empirical performance of the
learning models, one needs to choose �best performing parameters� for each of
the learning models. It turns out this is not a trivial task.
We consider three issues in estimating learning models in a game with unique

mixed strategy equilibrium, Mookherjee and Sopher�s Matching Pennies (1994),
using the framework of the Experience Weighted Attraction (EWA) learning
model of Camerer and Ho (1996, 1998, 1999a, 1999b). This learning model pro-
vides a convenient framework to address various estimation issues as it includes
two representative learning models as special cases: belief learning models and
reinforcement learning models. Thus it allows us to address estimation issues
for both learning models in a single framework at once.
The Þrst estimation issue we consider is what we mean by �best performing

parameters�. An estimator is typically deÞned via some objective function so
this is equivalent to considering how we should choose the objective function
that deÞnes an estimator. In the literature Camerer and Ho (1999b) uses the
maximum likelihood estimator (MLE) and Erev and Roth (1998) deÞnes the
minimum distance estimator based on the average prediction error, for example.
The MLE is known as the most efficient estimator under a given speciÞ-

cation of a probability model which satisÞes some regularity conditions. The
regularity conditions are typically satisÞed by the learning model we investigate
if there are enough cross section observations, that is when enough players are
observed. Thus the answer to the question �what objective function� is unam-
biguously likelihood under the assumption that a learning model�s speciÞcation
and sampling satisÞes the regularity conditions. Note that MLE gains efficiency
by exploiting the full details of the model speciÞcation. However we may not
really place too much conÞdence in the details of the full learning model and
instead we may want to just exploit some feature of the model we are conÞdent
about. Thus there are two distinct cases to consider when analyzing objective
functions that are different from the likelihood: a case where we do not have
enough cross sectional observations and another case where we wish to just
exploit part of the implications of the speciÞed learning model.
We investigate MLE and other objective functions to examine identiÞcation

issues. In particular we study the objective functions to understand the rela-
tionship between the parameters of the learning models and the variations in
the data that are exploited to estimate them.
Clearly it will be desirable if we can estimate parameters with weakest pos-

sible information but doing so will result in inefficient (inaccurate) estimator.
Hence as the second estimation issue, we investigate via asymptotic approxi-
mation and via Monte Carlo simulation, how the alternative methods perform
relative to the MLE applied to the case the regularity conditions are satisÞed.
A Monte Carlo simulation study is conducted using the sample size typically
available in the literature to assess (1) whether the alternative estimators can
obtain accurate enough information and (2) whether asymptotic distributions
approximate Þnite sample performance of the estimators so that we can carry
out inference adequately (asymptotics to be added).
Finally we further examine the Þnite sample variance covariance matrix to
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Table 1: Mookheree and Soher�s Matching Pennies
action R action L

action R 4.00,0.00 0.00,4.00
action L 0.00,4.00 4.00,0.00

understand what kind of data we should collect. SpeciÞcally we examine the
marginal efficiency gain of having longer time series observation holding number
of players constant and compare it with that of having more players holding the
repetition of games constant. This information should help us to design an
appropriate experiment under a budget constraint.

0.1 Sections

The organization of the paper is as follows: Section 1 describes the matching
pennies game and the EWA model. Section 2 describes the estimation methods
we investigate. Section 3 discusses identiÞcation of the EWA model and spe-
cialize the result to the reinforcement and belief learning models. We discusses
what variation in the data is exploited to estimate which parameter. Section 4
reports Monte Carlo results. Section 5 concludes with comments and outlines
future research.

1 Data Generating Process

The data generating process is speciÞed by the learning model and the game
environment. In this section, we describe both.

1.1 Game

The game studied in this paper is the Matching Pennies. It is a 2x2 constant
sum game. It has a unique mixed strategy equilibrium involving 50% mixing of
each strategy. The game in normal form is shown in table 1.
The game was used in Mookherjee and Sopher�s (1994) experimental study,

for example. Players are indexed by i (i = 1, 2). The strategy space is the same
for both players and consists of 2 discrete choices, R and L. It is denoted as
S, and thus S = {R,L}. An element si in S denotes a strategy of player i.
The scalar valued payoff function of player i is πi(s1, s2). We denote the actual
strategy chosen by player i in period t by si (t) and his/her opponent�s strategy
by s−i (t). In this situation, with some abuse of notation we denote ith player�s
payoff as πi(si (t) , s−i (t)).

1.2 EWA, Belief and Reinforcement Learning Models

At the core of the EWA learning model are three state variables, Ni(t) and ARi (t)
and ALi (t), for each i in period t. Here Ni(t) is referred to as �observation-
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equivalent� and controls the speed of learning. Asi (t) is an indicator of player i�s
�attraction� to strategy s after period t has taken place. These state variables
jointly determine individual choice probabilities in the learning model. The
EWA model speciÞes initial �observation equivalent� and �attractions�, how
Ni(t) and Asi (t) (s = R and L) are updated, and how attractions determine
choice probabilities.
At the beginning of the Þrst round of play �observation equivalent� is given

by a parameter Ni (0) = N (0) and an initial attraction of both strategies are
also left as some parameters: i.e.

ARi (0) and ALi (0) for i = 1, 2.

After each period, attractions and observation equivalents of player i are
updated. The updating rule of observation equivalents is:

Ni(t) = ρ ·Ni(t− 1) + 1, t ≥ 1,

where ρ denotes the discount rate of observation-equivalents. Note that since
we assume the same initial condition for both players and ρ is the same, Ni (t)
is the same for both players. Hence we drop the i subscript from Ni (t) from
now on.
Let I {A} = 1 if statement A is true and 0 otherwise. The updating rules of

attractions are speciÞed as

Asi (t) =
φ ·N(t− 1) ·Asi (t− 1) + [δ + (1− δ) · I {si(t) = s}] · πi(s, s−i(t))

N(t)
, t ≥ 1,

where φ denotes a discount factor of attractions and δ denotes �imagination�. A
key component of the updating rule is the payoff that a strategy either yielded,
or would have yielded, in a period. The model weights hypothetical payoffs
that unchosen strategies would have earned by a parameter δ and weights payoffs
actually received from a chosen strategy si(t) by an additional 1−δ. Attractions
are then a weighted average of past discounted attractions and those actual or
imagined payoffs, normalized by observation equivalents.
Attractions determine how frequently players choose a particular strategy.

The probability that player i chooses a strategy s in period t+1 is given by the
following logit choice rule:

P si (t+ 1) =
eλ·A

s
i (t)

eλ·ARi (t) + eλ·ALi (t)
, t ≥ 0,

where λ denotes sensitivity of players to attractions1. An implicit assumption in
the logit model is that disturbances are added to attractions that have a double
exponential form (McFadden (1974), Yellot (1977)).

1Recall that we deÞned As
i (t) to be an indicator of player i�s attraction to strategy s after

period t has taken place. Alternatively, As
i (t) could be interpreted as denoting player i�s

attraction to strategy s at the beginning of period t. Then, the choice rule would be

P s
i (t) =

eλ·A
s
i (t)

eλ·A
R
i (t) + eλ·A

L
i (t)

, t ≥ 0
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The model is a reinforcement learning model if δ = 0, N (0) = 1 and ρ = 0.
This implies that individuals react only to the actual reward and that N (t) = 1.
Attractions are called propensities to choose strategies in the context of the
reinforcement learning model. Propensities are stock variables of past actual
payoffs and initial propensities. Let Qsi (t) denote the propensity of strategy s
of player i. The updating rule of propensities is:

Qsi (t) = φ ·Qsi (t− 1) + I(si(t) = s) · πi(s, s−i(t)), t ≥ 1.

One can verify that this is a special case of the EWA speciÞcation when δ = 0,
N (0) = 1, and ρ = 0. The autoregressive form of the updating equation is

Qsi (t) = φt ·Qsi (0) +
t−1X
τ=0

φτ · I(si(t− τ) = s) · πi(s, s−i(t− τ)), t ≥ 1.

The model is a belief learning model if δ = 1, φ = ρ and initial attractions are
equal to expected payoffs given initial beliefs. Attractions are expected payoffs of
strategies in the context of the belief learning model. Let Esi (t) denote player i�s
expected payoff of strategy s. The autoregressive form of the updating equation
is2

Esi (t) =
φt·Es(0)N(0)+

t−1P
τ=0

φτ ·δ·πi(s,s−i(t−τ))

1+φ+···+φt−1+φtN(0)
, t ≥ 1.

Note that, in the EWA model, the parameter δ measures the relative weight
given to foregone payoffs, compared to actual payoffs, in updating attractions. In
reinforcement learning, foregone payoffs do not count towards updating propen-
sities. In belief learning, actual and foregone payoffs do count with equal weight
towards updating expected payoffs of chosen and unchosen strategies, respec-
tively.

1.2.1 Simulation

Once the values of the parameters of the learning model are chosen, the corre-
sponding model can be simulated. Each sample is a panel of I×T observations
where I is the size of the subject pool and T is the number of rounds. In the
next section, we will describe estimation methods for the learning models on
the simulated data.

2 Estimation techniques

One way to view learning models is as forecasting rules that, given information
from previous rounds, predict (possibly probabilistically) a subject�s choices in
the current round. Another way to view learning theories is as predictors of

2 See section 3 for the derivation of the general form of the updating equation.
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typical behavior in all rounds, given only some initial conditions. The learning
model can be estimated in either way.
First, we describe estimation procedures that minimizes the error of the

period to period transitions. These transitions are based on the observed data
on payoffs and actions up to the current round. We will use two measures of
closeness of predictions to actual choices.
Then we describe estimation procedures that minimize the error between the

entire simulated path of play and the observed choices. We will use two measures
of closeness of the predicted trajectory to observed actions. In addition, we
describe an estimator of the entire path of play with observed actions averaged
over blocks, instead of behavioral strategies, as used by, among others, Erev and
Roth (1998) and Feltovich (2000).

2.1 Estimation of Behavior in the current round given the
history of t plays up to the current round

In this subsection, we will describe estimation procedures which use a measure
of accuracy of the forecasts of the model. The individual level predictions of
the model in particular situations will be compared with the decisions made by
players in those situations. The predictions of individual decisions are made
given histories of the play up to the current round. Hence, in the reinforcement
learning model, we assume that the propensity for playing action R in round t
is equal to the (discounted) sum of payoffs received in rounds up to t− 1 (plus
the initial propensity). Given their propensities, players� predicted probabilities
are obtained as discussed in Section 2.2.
We discuss two estimation methods that correspond to using two different

measures of closeness of predictions to actual choices: mean squared deviation
(MSD) and log likelihood. Both criteria are derived by pairing the predicted
probability of R being chosen by player i in round t, PRi (t), according to the
model and the actual probability that R was chosen � which is either zero or
one � for each choice made by either type of player. We Þrst describe maximum
likelihood estimation and then mean squared deviation estimation.
Each player has two actions. Let DRi (t) = 1 if action R is chosen by player

i in period t and let DRi (t) = 0 if action L is chosen by player i in period t. Let
T denote the length of the repeated game. Let I denote the number of players.
The likelihood function, the formula for the joint probability distribution, of

the Matching Pennies data is

L =
IY
i=1

TY
t=1

PRi (t)D
R
i (t) · (1− PRi (t))1−DR

i (t).

The log likelihood function for Matching Pennies data is

lnL =
IX
i=1

TX
t=1

DRi (t) · lnPRi (t) + (1−DRi (t)) · ln(1− PRi (t)).
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The probabilities, PRi (t), are given by the choice rule. The maximum likelihood
estimates of the parameters are the values that give the greatest probability of
obtaining the observed data.
The objective function of the mean squared deviation estimator is

MSD =
1

I � T
IX
i=1

TX
t=1

[DRi (t)− PRi (t)]2

Note that I � T gives the total number of observations, the sample size.
The MSD statistic is a measure of how closely the probabilistic predictions

of a learning model conform to observed events. The MSD statistic used here
is equivalent to the �quadratic scoring rule�, whose theoretical properties are
examined in Selten (1998). It is proposed in Brier (1956) and used in Tang
(1996), Chen and Tang (1998) and Feltovich (2000), among others.
From a statistical point of view, the MSD objective function ignores the

presence of heteroskedasticity in the error term. This leads to an efficiency loss.
The efficiency loss is larger when there is more variation in PRi (t).

2.2 Estimation of Behavior in all rounds, given some ini-
tial conditions

In this subsection, we will describe estimation procedures using measures of
closeness of the entire simulated path of play and the observed choices during
the play. The predictions of the entire aggregate play are made by running
additional simulations given some parameters. We then see how close simu-
lation trajectories track either observed aggregate experimental trajectories or
observed individual choices over time. Players� predicted probabilities are ob-
tained as discussed above and always aggregated over simulated players.
First, we use two measures of closeness of predictions to actual behavioral

strategies: mean squared deviation, MSDRA, and a log score, log scoreRA.
Second, we use a measure of closeness of predictions averaged over blocks to
observed choices averaged over blocks: MSDRA_ave.
The former criteria are derived by pairing the predicted probability of R

being chosen by a representative agent, PRRA(t) = K−1
PK
i=1 P

R
i (t), in round t,

according to the model (and its parameters) and the actual choice of, DRi (t),
which is either zero or one, for each choice made by a player. Hence, we perform
K sets of simulations to predict PARA(t).3 The latter criterion is derived by
pairing the predicted probability ofR being chosen, PRRA(t), averaged over blocks
to the actual probability that R was chosen, DR

i (t), averaged over blocks and
players. Let b designate B different blocks of time. Then, for T/B blocks,
T = 40 and B = 4, we have b = 1 for periods 1 to T/B, b = 2 for periods
2 · T/B +1 to 3 · T/B ... and b = B for periods (B − 1) · T/B + 1 to T . The

3Following common practise, we set K equal to some number. For the Monte Carlo study,
we choose K = 50.
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formula below is given for this kind of aggregation.4

The three objective functions5 of these three estimators are

MSDRA =
1

I · T
IX
i=1

TX
t=1

¡
PRRA(t)−DRi (t)

¢2

log scoreRA =
1

I · T
IX
i=1

TX
t=1

¡
DRi (t) · logPRRA(t) + (1−DRi (t)) · log(1− PRRA(t))

¢

MSDRA_ave =
1

B

 BX
b=1

 1

T/B

bT/BX
t=(b−1)T/B+1

PRRA(t)

−
 1

T/B

1

I

IX
i=1

b·T/BX
t=(b−1)·T/B+1

DRi (t)

2

.

Note that I � T gives the total number of observations and that B gives the
total number of blocks.
To estimate the parameters we minimize the error between the entire sim-

ulated path of play and the observed choices. Erev and Roth (1998), among
others, compare the predictions of different learning models by computing the
mean-squared deviation (MSDRA and MSDRA_ave) of the predicted and ob-
served behavior, period by period, for each experimental game, both for all sub-
jects and individual pairs (when individual level data are available). Roth, Erev,
and Slonim (1998) propose the log scoring rule for estimation (log scoreRA), but
evaluate the closeness of predictions to the data using both MSD scores.

3 Identification of Parameters and Model Diag-
nostics

In this section, we discuss identiÞcation of Camerer and Ho�s (1999b) general
EWA learning model and its special case, the reinforcement learning model.
Recall that

N (t) = 1 + ρ+ · · ·+ ρt−1 + ρtN (0)

and that the updating rules of attractions for t ≥ 1 is speciÞed is

Asi (t) =
φ ·N(t− 1) ·Asi (t− 1) + [δ + (1− δ) · I {si(t) = s}] · πi(s, s−i(t))

N(t)
.

DeÞning Xs
i (t) = Asi (t)N(t), we have

Xs
i (t) = φ ·Xs

i (t− 1) + [δ + (1− δ) · I {si(t) = s}] · πi(s, s−i(t)),
4For the Monte Carlo, we set (T/B) equal to 25 for sample (a) and (T/B) equal to 10 for

sample (b). This is common practice.
5To be precise, the measures have to be calculated separetly for either type (row or column

player) of player and then averaged. We leave that out for simplicity.
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so that for t ≥ 1

Xs
i (t) = φt ·Xs

i (0) +
t−1X
τ=0

φτ · [δ + (1− δ) · I {si(t− τ) = s}] · πi(s, s−i(t− τ)),

and that for t ≥ 1

Asi (t) =

φt ·As(0)N (0) +
t−1P
τ=0

φτ · [δ + (1− δ) · I {si(t− τ) = s}] · πi(s, s−i(t− τ))

1 + ρ+ · · ·+ ρt−1 + ρtN (0)
.

Camerer and Ho (1999b) speciÞes the link between attractions and proba-
bility as the logit choice rule:

P si (t+ 1) =
eλ·A

s
i (t)

eλ·ARi (t) + eλ·ALi (t)
, t ≥ 0.

This implies that the choice probability depends only on λ
£
ARi (t)−ALi (t)

¤
and

that for t ≥ 1:

λ
£
ARi (t)−ALi (t)

¤
= λ

£
1 + ρ+ · · ·+ ρt−1 + ρtN (0)

¤ ©
φt · £AR(0)−AL(0)

¤
N (0)

+
t−1X
τ=0

φτδ [πi(R, s−i(t− τ))− πi(L, s−i(t− τ))]

+ φτ (1− δ) [I {si(t− τ) = R}πi(R, s−i(t− τ))− I {si(t− τ) = L}πi(L, s−i(t− τ))]} .
By further exploiting the structure of the payoff we obtain for t ≥ 1

λ
£
ARi (t)−ALi (t)

¤
= λ

£
1 + ρ+ · · ·+ ρt−1 + ρtN (0)

¤ ©
φt · £AR(0)−AL(0)

¤
N (0)

+ 4
t−1X
τ=0

φτ (δ · [I {si (t− τ) 6= s−i (t− τ)}+ I {si (t− τ) = s−i (t− τ)}]) (−1)I{L=s−i(t−τ)}o
.

As Camerer and Ho note the choice probabilities are the same if AR(0) −
AL(0) takes the same value, other things equal, so without a loss of generality,
we set AL (0) = 0. With this normalization they estimate

λ, ρ, N (0) , φ, AR (0) , and δ.

With this speciÞcation when λ is 0, none of the other parameters of the
model is identiÞable. Note that λ = 0 represents the equilibrium prediction.
We have shown elsewhere that the matching pennies experiment might very
well conform with the equilibrium prediction. This implies that the speciÞcation
does not allow accurate estimation of all of the rest of the parameters.
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We examine the likelihood using the following parametrization:

ρ, N (0) , λAR(0)N (0) , φ, λδ, and λ.

That is, we study for t ≥ 1

λ
£
ARi (t)−ALi (t)

¤
=
£
1 + ρ+ · · ·+ ρt−1 + ρtN (0)

¤ ©
φt · λAR(0)N (0)

+ 4
t−1X
τ=0

φτ (λδ · [I {si (t− τ) 6= s−i (t− τ)}+ λ · I {si (t− τ) = s−i (t− τ)}]) (−1)I{L=s−i(t−τ)}o
.

The idea is to separate out the contribution of the effect of sensitivity parameter
λ on initial condition and on δ without excluding the equilibrium prediction.
While the reparametrization is not going to resolve the identiÞcation of δ, when
λ is close to zero, parameters λAR(0)N (0), λδ, and λ may well be estimated
well while AR (0) and δ will not be so that the likelihood is easier to optimize.
In fact this is consistent with our experience. More concretely our inspection of
the original likelihood function clearly shows a ridge over the area where λδ is
constant, holding other parameter values at the true values. This explains the
difficulty we faced in optimizing the original likelihood. The reparametrization
is important in carrying out the Monte Carlo simulation study where repeated
optimization is required.
Another point this derivation implies is the importance of cross section vari-

ation in estimating N (0) and λAR(0)N (0) when |ρ| < 1 and |φ| < 1. In
these cases as T goes to inÞnity, the impact of the initial conditions declines
and hence large T does not help to improve efficiency of estimators of N (0) and
λAR(0)N (0). In fact for consistency of the estimators ofN (0) and λAR(0)N (0),
theoretically the cross sectional sample size needs to diverge to inÞnity. On the
other hand, ρ, φ, λδ, and λ may be estimated consistently with only time series
variation. This is indeed so even holding the cross sectional variation constant.
As we discussed earlier, large T observations are not affected by initial condi-
tions and hence inconsistency of the initial condition parameters do not impact
consistent estimation of the rest of the parameters.
Our observation that the parameter δ is not be identiÞed when λ = 0 is

not unimportant. As Camerer and Ho note, the parameter δ �is the most
important in EWA because it shows most clearly the different ways in which
EWA, reinforcement and belief learning capture two basic principles of learning
� the actual law of actual effect and the law of simulated effect.� In EWA, if
δ = 0 then only chosen but not unchosen strategies receive reward. If δ 6= 0, like
in belief learning (where δ = 1) then unchosen strategies that would have yielded
high payoffs are more likely to be chosen subsequently. One of the conclusions
Camerer and Ho reach after examining the matching pennies data is that the
data do not distinguish the two types of learning models.
We agree with their observation with some qualiÞcation. It seems to us that

if we are to use EWA as an encompassing model of belief based and reinforce-
ment based learning, then matching penny may not be an appropriate game to
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attempt to distinguish the two learning models. This is so because if we use
the EWA model, in the neighborhood of equilibrium play of Matching Pennies,
these two models are hard to distinguish. On the other hand if there is some
other type of encompassing model that does not have the identiÞcation problem
we discussed or if there are matching pennies games in which play is not close
to equilibrium play, then it seems to us that Matching Pennies may well be a
suitable game to study learning behavior.

4 Monte Carlo study

In this section, we report on a Monte Carlo simulation study to evaluate the per-
formance of the maximum likelihood estimator and four alternative estimators
which are described above.
The data generating process is speciÞed by Matching Pennies and the rein-

forcement learning model. The EWA model is a reinforcement learning model
if ρ = 0, δ = 0, and N(0) = 1.6 The parameters of the reinforcement learning
model are ω = λAR(0),λ and φ.7

Each sample is a panel of I × T observations where I is the population size
and T is the number of rounds. We use MATLAB 5.2�s simplex procedure
(�fmins�) to obtain the estimates for 100 simulations.
The performance of the estimators is evaluated on two kinds of data sets:

sample (a) and sample (b). In sample (a), we hold the number of subject pairs
constant and vary the length of play. We chose to investigate a sample with 1
subject pair and 50, 125, 200, and 500 rounds of play.8 In sample (b), we hold
the length of play constant and vary the number of subject pairs. We chose to
investigate a sample with 40 rounds of play and 5, 10, 20 and 40 subject pairs.9

For the maximum likelihood estimator, we report on simulation results for
eight sets of true values of the three parameters. For the alternative estimators,
we specialize to four sets of true values of the three parameters. The sets of true
values used in the study are reported in table 2.

4.1 Finite Sample Results for Maximum Likelihood Esti-
mator

We report on the performance of the maximum likelihood estimator for two
kinds of data sets: sample (a) and sample (b).

4.1.1 Sample (a): 1 pair of player and a varying number of rounds

The Þrst part of the experiment was carried out for I = 2 and four values of
T : T = 50, 125, 200 and 500. The results are summarized in tables 1 and 2

6See section 2.2.
7 See section 4 for identiÞcation of the model.
8Roth et al (1998) had Þxed pairs of subjects play games with unique mixed strategy

equilibrium for 500 rounds.
9Mookherjee and Sopher had 10 subject pairs playing a Matching Pennies for 40 rounds.

11



Table 2: 8 sets of true values of the 3 parameters of the reparameterized rein-
forcement learning model

Q0 ω φ λ
Set 1 0.00 0.00 0.20 0.20
Set 2 0.00 0.00 0.20 -0.20
Set 3 0.00 0.00 0.80 0.20
Set 4 0.00 0.00 0.80 -0.20
Set 5 4.00 0.80 0.20 0.20
Set 6 4.00 -0.80 0.20 -0.20
Set 7 4.00 0.80 0.80 0.20
Set 8 4.00 -0.80 0.80 -0.20

in the appendix. Each cell in that table reports on a summary statistic of the
empirical distribution of the MLE for a set of true values and for a particular
sample size.
For instance, the mean, standard deviation and median of the empirical

distribution of the MLE of ω on data generated by 1 pair of players playing 50
rounds and by set 1 of true values (i.e ω0 = 0.00, φ0 = 0.20 and λ0 = 0.20) are
−73.644, 225.48 and −0.0034 respectively.
The mean, standard deviation and median of the empirical distribution of

the MLE of ω on the data generated by 1 pair of players playing 125 rounds and
by set 1 of true values (i.e ω0 = 0.00, φ0 = 0.20 and λ0 = 0.20) are −41.194,
170.45, and −0.0015 respectively.
For the true values ω0 = 0.00, φ0 = 0.20, and λ0 = 0.20, the kernel density

estimates of the sampling distribution of ω̂, φ̂, and λ̂ are shown in Þgure 1 in
the appendix.
The salient features of the performance of the MLE for one pair of players

are as follows. For the entire set of true values, the distributions of parameter
estimates of ω display a large variation. This is consistent with our discussion
in the identiÞcation section. Consistency of the MLE of ω requires I →∞ and
with one pair of players data is just not informative about ω0. This is especially
so when φ0 is small. When φ0 is small, the information about ω0 decreases
quickly toward zero over time. Reßecting this the variation is less pronounced
when the true value of the discount parameter, φ0, is 0.80. However the variation
does not substantially decrease while the time series dimension is increased. As
discussed, the estimator is inconsistent even when T → ∞ when I is Þxed.
There is a huge bias in the estimated means of ω. The estimation of φ is much
better. It is more accurate for a true value φ0 = 0.8 than for a value φ0 = 0.2.
This is also consistent with the theoretical consideration that smaller φ0 implies
less time series information about it. The estimation of λ is also more accurate
when φ0 is larger.

Summary 1 The performance of the maximum likelihood estimator applied to
a pair of players on the 8 sets of true values is not satisfactory for the initial
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choice propensity ω. This is consistent with the theoretical prediction that cross
sectional variation is needed to consistently estimate ω. The smaller the discount
factor φ, the harder it is to obtain information from time series observation and
that effect shows up on all estimators.

4.1.2 Sample (b): 40 rounds of play and a varying number of pairs

The second part of the experiment was carried out for four values of I : I =
10, 20, 40 and 80 and T = 40. The means, standard deviations, and medians of
the empirical distributions of the estimators ω̂, φ̂, and λ̂ are shown in tables 3
and 4 in the appendix. For the true values ω0 = 0.00, φ0 = 0.20 and λ0 = 0.20
(that is set 1), the kernel density estimates of the sampling distributions of ω̂,
φ̂, λ̂ are shown in the Þgure 2 in the appendix.
The salient features of the performance of the MLE are as follows. For the

entire set of true values, the distribution of parameter estimates of ω displays
some variation. The variation does decrease while increasing the sample size.
The estimation of ω is more accurate when φ0 = 0.80. The estimation of
parameter φ is more reliable. It is more accurate for a true value φ0 = 0.8 than
for φ0 = 0.2. The estimation of λ is very accurate across the entire set of true
values.

Summary 2 On sample (b), the performance of the maximum likelihood esti-
mator of the three parameters on the 8 sets of true values is good.

Finally, we compare the performance of the maximum likelihood estimator
for two samples of equal size: a sample with 5 pairs of players playing matching
pennies for 40 rounds and a sample with 1 pair of player playing matching
pennies for 200 rounds. The estimation of the parameters is more accurate for
the sample in which we observe more cross sectional variation: the standard
deviation of the empirical distribution of the three parameters is smaller 16 out
of 24 times; the parameter ω is clearly better estimated, since both bias and
standard deviation are smaller. The standard deviation of the distribution of
φ̂ is smaller 7 out of 8 times, the standard deviation of the distribution of λ̂ is
smaller only 2 out of 8 times, but the maximal difference between the standard
deviations is very small.

Summary 3 Exploiting cross sectional variation in the data helps to accurately
estimate the model by maximum likelihood estimation.

4.2 Finite Sample Results of the MSD estimator

We repeat the Monte Carlo experiment and evaluate the performance of the
MSD estimator. We specialize the set of true values to sets 1�4 as reported in
table 2. Once again, in the Þrst part of the experiment we vary the number
of rounds holding the number of players constant (sample (a)). In the second
part of the experiment, we vary the number of pairs of players holding the
number of rounds constant. The means, standard deviations and medians of
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the empirical distributions of the estimators minimizing the objective function
MSD are displayed in tables 5 and 6 in the appendix. For the true values
ω0 = 0.00, φ0 = 0.20 and λ0 = 0.20, the kernel density estimates of the sampling
distribution of ω̂, φ̂ and λ̂ are shown in Þgures 3 and 4 in the appendix. The
panel to the top reports results obtained from sample (a) and the panel to
the bottom displays results obtained from sample (b). For both samples, the
MSD estimator of the model performs well. Estimation of the parameter λ
is most accurate with little bias in the estimated means and small standard
deviation even in small samples. The larger the true value of the parameter
φ, the more accurate the estimation of both φ and ω. In sample (a) with little
cross sectional variation, there is a large bias in the estimated means of ω. The
standard deviation is large, too. Observing cross sectional variation, as we do
in sample (b), greatly helps to accurately estimate ω.

Summary 4 On sample (a) and (b), the performance of the MSD estimator of
λ and φ is good. On sample (a), the MSD estimation of ω is not satisfactory,
whereas it is much better on sample (b).

The performance of the MSD estimator is similar to the performance of
the MLE. We calculate the ratios of the standard deviation of the empirical
distribution of the MSD estimator to the standard deviation of the empirical
distribution of the MLE for both sample (a) and (b) and for each of the 4 sets
of true values. We report on the results in table 13 in the appendix. Recall the
bias in the estimated means of the parameter ω on sample (a) when estimated
by both MSD estimation and ML estimation. Therefore, we specialize to the
parameters φ and λ for sample (a). On this subset, the MLE is more accurate
than MSD 22 out of 32 times. The average ratio across 16 values for parameter
φ is 1.000 and the average ratio across 16 values for parameter λ is 1.024.
For sample (b), the MLE estimator is more accurate than the MSD estimator

37 out of 48 times. The average ratio across 16 values for parameters ω,φ and
λ is 1.036, 1.009 and 1.027 respectively.

Summary 5 On Þnite samples, the maximum likelihood estimator is more ef-
Þcient than the MSD estimator.

4.3 Finite Sample Results of the Deviation Estimators

In this subsection, we report on the performance of estimators minimizing the
prediction error the entire path of play. A Monte Carlo study was carried out as
described above. We report the summary statistics of the sampling distributions
of the three deviation estimators, MSDRA, log scoreRA and MSDRA_ave in
tables 7 and 8, 9 and 10, 11 and 12 in the appendix, respectively. The kernel
density estimator of the sampling distributions of the three estimators are shown
in Þgures 5-10 in the appendix, both for sample (a) and sample (b). First, note
that the sampling distributions of the estimators minimizing the distance of the
predictions to the behavioral strategies, MSDRA_ave and log scoreRA are very
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similar. They are so for both sample (a), as depicted in Þgures 5 and 7 in the
appendix, and sample (b), as depicted in Þgures 6 and 8 in the appendix. The
salient features of the performance of the MSDRA and log scoreRA estimators
are as follows. Estimation of the parameter ω is very accurate. The parameter
λ is estimated well, whereas parameter φ is estimated satisfactory. The larger
the true value of φ, the better the estimation of all three parameters, ω,φ and
λ. There is some bias, at times large, in the estimated means of the estimators
of φ and λ. In addition the bias does not always get smaller as sample size
increases.

Summary 6 The deviation estimators MSDRA and log scoreRA perform satis-
factory on both sample (a) and (b). The estimation is most accurate for ω and
satisfactory for φ and λ.

Next, we compare the performance of the two deviation estimators with the
performance of the MLE. Recall the large bias in the estimated means of ω of
the MLE on sample (a). We specialize our comparison to parameters φ and λ for
this subset. We note the bias in the estimated means of those two parameters for
the deviation estimators. Nevertheless, we calculated the ratios of the standard
deviation of the empirical distribution of the deviation estimator to the standard
deviation of the empirical distribution of the MLE for sample (a). We report
on the results in table 14 in the appendix. The average ratio across 16 values
for parameter φ is 1.96 and 1.53 for the MSDRA and log scoreRA estimator,
respectively. The average ratio across 16 values for parameter λ is 3.26 and 3.10
for the MSDRA and log scoreRA estimator, respectively. For sample (b), the
average ratio across 16 values for parameter ω is 0.03 and 0.06, for parameter φ
2.58 and 3.00 and for λ 2.57 and 3.00 for the MSDRA and log scoreRA estimator,
respectively.

Summary 7 The maximum likelihood estimator is more efficient than the de-
viation estimators for the parameter φ and λ, but less efficient for parameter
ω.

Next, we compare the performance of the two deviation estimators for two
samples of equal size: a sample with 5 pairs of players playing matching pennies
for 40 rounds and a sample with 1 pair of player playing matching pennies for
200 rounds. Observing more cross sectional variation appears to help a tiny bit
with accurate estimation of ω, whereas observing more time variation helps a
bit with estimation of λ and φ.

Summary 8 The different kinds of variations in the data hardly can be ex-
ploited for accurate estimation by the deviation estimators.

Next, we report on the performance of the estimator minimizing the distance
of the predictions to the aggregate behavior, MSDRA_ave.
The salient features of the performance of the estimator are as follows. The

sampling distributions of φ̂ and λ̂ are at times not correctly centered and the
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bias does at times increase while increasing the sample size. Even for some of
the largest sample size, the bias is substantial both for φ̂ and λ̂. The sampling
distributions of ω̂ are correctly centered and display a tiny variation.
The standard deviations of the empirical distributions of the three estimators

decrease by a factor of 2 while increasing the sample size by a factor of 4 23
out of 48 times. The standard deviations of the empirical distributions of the
estimator ω̂ decrease by a factor of 2 while increasing the sample size by a factor
of 4 10 out of 16 times. The standard deviations decrease 4 out of 16 times for
the estimator φ̂. The standard deviations decrease 9 out of 16 times for the
estimator λ̂.

Summary 9 MSDRA_ave estimator does not perform satisfactory.

5 Concluding Remarks and Future Research

The paper makes three basic contributions. First, we discuss identiÞcation of
the EWAmodel and its special cases, reinforcement and belief learning. We note
that on Matching Pennies Camerer and Ho�s model speciÞcation does not al-
low identiÞcation of learning models when players follow equilibrium play. This
implies that estimation of learning model parameters leads to larger standard
errors when players choose strategies closer to equilibrium play. Another im-
plication is that numerical optimization using their parameterization becomes
hard to carry out. This hinders Monte Carlo simulation as it requires repeated
estimation of the parameters. We derive an explicit solution to the difference
equation that deÞnes the learning model and show that a certain reparameter-
ization overcomes this difficulty.
Second, we have investigated, via Monte Carlo simulation, Þve estimators of

the reparameterized reinforcement learning model. The estimators fall in two
broad classes: Estimators minimizing the error of the period to period transitions
and estimators minimizing the error of the entire simulated path of play and
observed choices. We have addressed questions about both the way variation in
the data helps to estimate parameters and the performance of the estimators
on the sample size used in practise. We have shown that the MLE of period
to period transitions performs well (on the sample sizes used in practise). The
payoff sensitivity parameter λ and the discounting parameter φ are accurately
estimated. Observing cross sectional variation is crucial in obtaining more pre-
cise estimates of the parameter ω which determines the initial conditions of
the model. When we have 40 pairs of players the sampling distributions are
correctly centered. The standard deviations of the distributions do always de-
crease substantially as sample size increases. We have compared the maximum
likelihood-like MSD estimator to the MLE. We have found that the MSD es-
timator performs very similar and almost as well as the MLE. Estimators of
the entire path of play, MSDRA and log scoreRA, do not perform as well as the
estimators of period to period transitions. While those estimators provide more
accurate estimation of ω, even if there is little cross sectional variation, the two
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other parameters are not as well estimated. The sampling distribution of those
two parameters slightly tend not to be correctly centered. The standard devi-
ations of the distributions are at times large and they do not always decrease
as sample size increases. The estimator of the entire path of play, MSDRA_ave,
which averages both predictions and observations over time into blocks, does
not perform satisfactory as at times both the bias and the standard deviations
of the sampling distributions are large.
We propose to estimate the reinforcement learning model by maximum like-

lihood estimation as this technique performs well on the sample size used in
practice. To accurately estimate the parameters of the model, it is important
to observe cross sectional variation. This implies that one should collect exper-
imental data with shorter time series and a larger number of players. This is
the main contribution of the paper.
In future research, we intend to expand on our analysis by both investigating

identiÞcation of the EWA model on alternative data sets and evaluating the
performance of the estimators of the general and belief learning models.
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Table 1: Results of the Monte Carlo simulations for 8 sets of true values of 3 parameters of the reinforcement
learning model; maximum likelihood estimation; sample (a): 50, 125, 200 and 500 rounds of play of 1 pair of
players

ML Estimators 50, 125, 200 and 500 rounds
Set 1 ω0 = 0.0 φ0 = 0.20

ω̂ φ̂
Mean -73.644 -41.194 -25.702 -7.8865 0.2372 0.2092 0.2166 0.1995
Stdev 225.48 170.45 129.70 76.001 0.4252 0.2235 0.1833 0.1231
Med -0.0034 -0.0015 -0.0004 -0.0002 0.2376 0.2005 0.2038 0.1927
Set 2 ω0 = 0.0 φ0 = 0.20

ω̂ φ̂
Mean -43.557 -65.471 -49.819 -21.641 0.2047 0.1616 0.1625 0.1673
Stdev 170.87 210.95 183.97 128.05 0.4254 0.2883 0.2130 0.1265
Med 0.0020 0.0010 0.0009 0.0004 0.1101 0.1272 0.1606 0.1805
Set 3 ω0 = 0.00 φ0 = 0.80

ω̂ φ̂
Mean 0.0398 0.0021 0.0045 0.0447 0.7856 0.7895 0.7914 0.7946
Stdev 1.2880 1.1046 0.7490 0.7413 0.0777 0.0368 0.0278 0.0183
Med 0.0002 0.0002 0.0002 0.0001 0.8002 0.7957 0.7929 0.7943
Set 4 ω0 = 0.00 φ0 = 0.80

ω̂ φ̂
Mean -0.3007 -0.2248 -0.0581 -0.1370 0.7899 0.7962 0.8029 0.8021
Stdev 2.9156 1.8914 0.8974 0.7046 0.2336 0.1155 0.0700 0.0401
Med -0.0002 0.0001 0.0001 0.0001 0.8421 0.8142 0.8153 0.8057
Set 5 ω0 = 0.80 φ0 = 0.20

ω̂ φ̂
Mean -38.801 -16.687 -9.4718 -3.2638 0.2210 0.2087 0.2152 0.1989
Stdev 180.29 129.43 95.561 75.965 0.3662 0.2302 0.1783 0.1211
Med 0.8368 0.5098 0.4092 0.3813 0.1818 0.1927 0.1867 0.1927
Set 6 ω0 = −0.80 φ0 = 0.20

ω̂ φ̂
Mean -84.705 -74.996 -109.90 -33.953 0.1885 0.1610 0.1628 0.1660
Stdev 224.284 214.10 258.71 146.46 0.4032 0.2818 0.2120 0.1275
Med -0.6133 -0.4407 -0.3422 -0.4201 0.1020 0.1215 0.1469 0.1780
Set 7 ω0 = 0.80 φ0 = 0.80

ω̂ φ̂
Mean 1.1495 0.9782 0.9676 0.9706 0.7734 0.7865 0.7912 0.7946
Stdev 1.6770 1.2202 1.2259 1.1650 0.0897 0.0405 0.0280 0.0181
Med 0.9335 1.0342 1.0459 1.0663 0.7891 0.7924 0.7945 0.7957
Set 8 ω0 = −0.80 φ0 = 0.80

ω̂ φ̂
Mean -10.304 -0.9667 -0.8810 -0.8470 0.8046 0.7949 0.8023 0.8027
Stdev 75.744 1.2020 1.0747 1.0152 0.1838 0.1052 0.0709 0.0395
Med -0.7832 -0.8571 -0.8292 -0.7826 0.8400 0.8137 0.8125 0.8084
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Table 2: Results of the Monte Carlo simulations for 8 sets of true values of 3 parameters of the reinforcement
learning model; maximum likelihood estimation; sample (a): 50, 125, 200 and 500 rounds of play of 1 pair of
players

ML Estimator 50, 125, 200 and 500 rds
Set 1 λ0 = 0.20

λ̂
Mean 0.1916 0.1966 0.1966 0.2001
Stdev 0.0960 0.0484 0.0405 0.0258
Med 0.1878 0.1945 0.1923 0.2028
Set 2 λ0 = −0.20

λ̂
Mean -0.1989 -0.1972 -0.1982 -0.1980
Stdev 0.0799 0.0505 0.0389 0.0245
Med -0.1893 -0.2008 -0.1975 -0.1974
Set 3 λ0 = 0.20

λ̂
Mean 0.2115 0.2099 0.2069 0.2051
Stdev 0.0611 0.0365 0.0267 0.0177
Med 0.2111 0.2028 0.2070 0.2059
Set 4 λ0 = −0.20

λ̂
Mean -0.2302 -0.2070 -0.2030 -0.1965
Stdev 0.0682 0.0461 0.0364 0.0193
Med -0.2202 -0.2026 -0.1971 -0.1950
Set 5 λ0 = 0.20

λ̂
Mean 0.1954 0.1956 0.1968 0.2001
Stdev 0.0921 0.0500 0.0403 0.0258
Med 0.1937 0.1935 0.1922 0.2031
Set 6 λ0 = −0.20

λ̂
Mean -0.1989 -0.1977 -0.1977 -0.1977
Stdev 0.0798 0.0510 0.0388 0.0245
Med -0.1918 -0.2008 -0.1984 -0.1975
Set 7 λ0 = 0.20

λ̂
Mean 0.2119 0.2093 0.2059 0.2047
Stdev 0.0617 0.0361 0.0267 0.0177
Med 0.2071 0.2022 0.2046 0.2050
Set 8 λ0 = −0.20

λ̂
Mean -0.2323 -0.2093 -0.2042 -0.1971
Stdev 0.0738 0.0464 0.0363 0.0194
Med -0.2261 -0.2073 -0.2010 -0.1964
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Table 3: Results of the Monte Carlo simulations for 8 sets of true values of the 3 parameters of the reinforcement
learning model; maximum likelihood estimation; sample (b): 40 rounds played by 5,10,20 and 40 pairs of players

ML Estimators 5, 10, 20 and 40 pairs
Set 1 ω0 = 0.0 φ0 = 0.20

ω̂ φ̂
Mean 0.0289 0.0404 0.0292 -0.0017 0.2037 0.1977 0.2024 0.1973
Stdev 0.7208 0.4377 0.3245 0.2071 0.1930 0.1187 0.0748 0.0597
Med -0.0125 0.0008 0.0041 -0.0004 0.2030 0.2054 0.2028 0.2035
Set 2 ω0 = 0.0 φ0 = 0.20

ω̂ φ̂
Mean 0.0278 0.0487 0.0327 0.0003 0.2188 0.2117 0.2014 0.2064
Stdev 0.7152 0.4484 0.3306 0.2076 0.1683 0.1370 0.0887 0.0618
Med 0.0015 0.0074 0.0004 0.0000 0.2094 0.2217 0.2047 0.2117
Set 3 ω0 = 0.00 φ0 = 0.80

ω̂ φ̂
Mean 0.0082 0.0273 0.0226 0.0098 0.7982 0.8008 0.7996 0.7988
Stdev 0.3989 0.2519 0.1968 0.1055 0.0349 0.0222 0.0186 0.0119
Med 0.0002 0.0002 0.0002 0.0001 0.8056 0.7984 0.7998 0.8009
Set 4 ω0 = 0.00 φ0 = 0.80

ω̂ φ̂
Mean 0.0460 0.0384 0.0453 0.0084 0.7881 0.8022 0.8011 0.8040
Stdev 0.4750 0.3115 0.2242 0.1312 0.0760 0.0509 0.0350 0.0265
Med 0.0002 0.0003 0.0004 0.0001 0.8019 0.8038 0.8015 0.8056
Set 5 ω0 = 0.80 φ0 = 0.20

ω̂ φ̂
Mean 1.0060 0.8972 0.8455 0.8199 0.1978 0.1953 0.2014 0.1975
Stdev 0.9208 0.5068 0.3484 0.2467 0.1723 0.1101 0.0708 0.0598
Med 0.8616 0.7954 0.8108 0.8231 0.2038 0.1989 0.2053 0.1999
Set 6 ω0 = −0.80 φ0 = 0.20

ω̂ φ̂
Mean -8.4570 -0.8168 -0.7960 -0.8101 0.2020 0.2083 0.2014 0.2055
Stdev 74.4259 0.5332 0.3176 0.2213 0.1690 0.1345 0.0881 0.0604
Med -0.9240 -0.7422 -0.7598 -0.8306 0.2014 0.2256 0.1982 0.2086
Set 7 ω0 = 0.80 φ0 = 0.80

ω̂ φ̂
Mean 0.8780 0.8661 0.8288 0.8242 0.7968 0.7987 0.7997 0.7988
Stdev 0.4237 0.3167 0.2181 0.1488 0.0349 0.0242 0.0170 0.0103
Med 0.8553 0.8435 0.8149 0.8205 0.7983 0.7989 0.8003 0.7987
Set 8 ω0 = −0.80 φ0 = 0.80

ω̂ φ̂
Mean -0.8115 -0.7522 -0.7588 -0.7821 0.7817 0.7987 0.7996 0.8025
Stdev 0.4357 0.2978 0.2190 0.1302 0.0813 0.0498 0.0340 0.0257
Med -0.7887 -0.7295 -0.7511 -0.7858 0.8001 0.8000 0.8026 0.8025
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Table 4: Results of the Monte Carlo simulations for 8 sets of true values of the 3 parameters of the reinforcement
learning model; maximum likelihood estimation; sample (b): 40 rounds played by 5,10,20 and 40 pairs of players

ML Estimator 5, 10, 20 and 40 pairs
Set 1 λ0 = 0.20

λ̂
Mean 0.1986 0.2003 0.1983 0.1981
Stdev 0.0442 0.0320 0.0210 0.0139
Med 0.1995 0.2023 0.1979 0.1984
Set 2 λ0 = −0.20

λ̂
Mean -0.2065 -0.1990 -0.1977 -0.1977
Stdev 0.0388 0.0267 0.0185 0.0145
Med -0.2020 -0.1970 -0.1974 -0.1985
Set 3 λ0 = 0.20

λ̂
Mean 0.1998 0.1989 0.2004 0.2003
Stdev 0.0252 0.0213 0.0164 0.0096
Med 0.1997 0.1973 0.2020 0.2006
Set 4 λ0 = −0.20

λ̂
Mean -0.2103 -0.1999 -0.2006 -0.1989
Stdev 0.0361 0.0240 0.0175 0.0123
Med -0.2086 -0.1997 -0.2029 -0.1992
Set 5 λ0 = 0.20

λ̂
Mean 0.1993 0.2004 0.1985 0.1979
Stdev 0.0433 0.0318 0.0204 0.0133
Med 0.1979 0.2002 0.1977 0.1988
Set 6 λ0 = −0.20

λ̂
Mean -0.2056 -0.1985 -0.1976 -0.1976
Stdev 0.0394 0.0273 0.0190 0.0145
Med -0.2020 -0.1956 -0.1979 -0.1981
Set 7 λ0 = 0.20

λ̂
Mean 0.2000 0.2005 0.2013 0.2007
Stdev 0.0282 0.0212 0.0140 0.0086
Med 0.1976 0.1998 0.2016 0.1998
Set 8 λ0 = −0.20

λ̂
Mean -0.2089 -0.2009 -0.2009 -0.1991
Stdev 0.0343 0.0231 0.0177 0.0124
Med -0.2114 -0.1993 -0.2004 -0.2010
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Table 5: Results of the Monte Carlo simulations for 4 sets of true values of 3 parameters of the reparameterized
reinforcement learning model; MSD estimator; panel to the top: sample (a): 50, 125, 200 and 500 rounds of play
of 1 pair of players; panel to the bottom: sample (b): 40 rounds of play of 5,10,20 and 40 pairs of players

MSD Estimators 50, 125, 200 and 500 rounds
Set 1 ω0 = 0.0 φ0 = 0.20

ω̂ φ̂
Mean -4.5e+24 -7.1e+10 -6.9e+21 -3.1e+10 0.2232 0.2075 0.2203 0.2012
Stdev 3.9e+25 7.1e+11 6.9e+22 3.1e+11 0.4167 0.2321 0.1830 0.1249
Med -0.0028 -0.0010 -0.0006 -0.0001 0.2431 0.2140 0.2192 0.1963
Set 2 ω0 = 0.0 φ0 = 0.20

ω̂ φ̂
Mean -2.7e+25 -5.8e+17 -8.5e+17 9.055 0.2014 0.1660 0.1722 0.1705
Stdev 2.7e+26 5.8e+18 8.5e+18 92.57 0.4031 0.2751 0.2058 0.1272
Med 0.0065 0.0009 0.0008 0.0003 0.1308 0.1520 0.1632 0.1805
Set 3 ω0 = 0.0 φ0 = 0.80

ω̂ φ̂
Mean 0.2216 0.0334 0.0957 0.1346 0.7824 0.7881 0.7906 0.7945
Stdev 2.495 1.975 2.213 3.323 0.0810 0.0412 0.0310 0.0182
Med 0.0000 0.0002 0.0001 0.0001 0.7965 0.7936 0.7925 0.7932
Set 4 ω0 = 0.0 φ0 = 0.80

ω̂ φ̂
Mean 6.942 -0.1672 -0.0528 -0.059 0.7842 0.7926 0.8012 0.8024
Stdev 71.01 1.536 1.096 0.9479 0.2267 0.1137 0.0725 0.0395
Med -0.0015 0.0001 0.0001 0.0001 0.8358 0.8079 0.8114 0.8082

MSD Estimators 5, 10, 20 and 40 pairs
Set 1 ω0 = 0.0 φ0 = 0.20

ω̂ φ̂
Mean 0.0226 0.0414 0.0078 -0.0016 -2.3342 -1.7960 -0.8532 0.1983
Stdev 0.7043 0.4383 0.2768 0.2077 10.824 6.7380 4.1121 0.0593
Med 0.0000 -0.0000 0.0000 -0.0001 0.2008 0.2008 0.2000 0.2034
Set 2 ω0 = 0.0 φ0 = 0.20

ω̂ φ̂
Mean 0.3426 0.0477 0.0232 0.0002 0.2143 0.2103 0.2074 0.2050
Stdev 3.3630 0.4526 0.3241 0.2080 0.1737 0.1377 0.1442 0.0622
Med 0.0021 0.0064 0.0373 -0.0002 0.2085 0.2178 0.2197 0.2135
Set 3 ω0 = 0.0 φ0 = 0.80

ω̂ φ̂
Mean 0.0234 0.0330 -0.0017 0.0098 0.7975 0.8003 0.8013 0.7986
Stdev 0.4042 0.2786 0.1792 0.1199 0.0344 0.0229 0.0306 0.0124
Med 0.0003 0.0002 0.0001 0.0001 0.8024 0.7980 0.7993 0.7999
Set 4 ω0 = 0.0 φ0 = 0.80

ω̂ φ̂
Mean 0.0446 0.0341 0.0169 0.0130 0.7903 0.8027 0.7936 0.8042
Stdev 0.4731 0.3141 0.2186 0.1317 0.0751 0.0508 0.0496 0.0264
Med 0.0004 0.0005 0.0222 0.0002 0.8024 0.8060 0.7992 0.8062

5



Table 6: Results of the Monte Carlo simulations for 4 sets of true values of 3 parameters of the reparameterized
reinforcement learning model; MSD estimator; panel to the top: sample (a): 50, 125, 200 and 500 rounds of play
of 1 pair of players; panel to the bottom: sample (b): 40 rounds of play of 5,10,20 and 40 pairs of players

MSD Estimator 50, 125, 200, 500 rds
Set 1 λ0 = 0.20

λ̂
Mean 0.1970 0.1978 0.1968 0.2000
Stdev 0.0948 0.0498 0.0410 0.0260
Med 0.1970 0.1939 0.1917 0.2034
Set 2 λ0 = −0.20

λ̂
Mean -0.2053 -0.1995 -0.1995 -0.1982
Stdev 0.0814 0.0498 0.0393 0.0248
Med -0.1971 -0.2021 -0.1988 -0.1968
Set 3 λ0 = 0.20

λ̂
Mean 0.2259 0.2134 0.2091 0.2047
Stdev 0.0817 0.0453 0.0318 0.0178
Med 0.2190 0.2009 0.2086 0.2051
Set 4 λ0 = −0.20

λ̂
Mean -0.2337 -0.2087 -0.2047 -0.1972
Stdev 0.0723 0.0475 0.0376 0.0204
Med -0.2268 -0.2009 -0.2009 -0.1954
MSD Estimator 5, 10, 20 and 40 pairs
Set 1 λ0 = 0.20

λ̂
Mean -3.3529 -2.4569 -1.2900 0.1981
Stdev 11.562 7.2036 4.3320 0.0140
Med 0.2008 0.2009 0.2000 0.1985
Set 2 λ0 = −0.20

λ̂
Mean -0.2061 -0.1988 -0.1971 -0.1975
Stdev 0.0388 0.0269 0.0292 0.0143
Med -0.2027 -0.1962 -0.1965 -0.1982
Set 3 λ0 = 0.20

λ̂
Mean 0.2028 0.1999 0.2046 0.2004
Stdev 0.0295 0.0221 0.0258 0.0104
Med 0.1987 0.1990 0.2067 0.2010
Set 4 λ0 = −0.20

λ̂
Mean -0.2107 -0.1998 -0.1973 -0.1988
Stdev 0.0374 0.0244 0.0266 0.0127
Med -0.2125 -0.1991 -0.1962 -0.1996
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Table 7: Results of the Monte Carlo simulations for 4 sets of true values of 2 parameters of the reinforcement
learning model; MSD RA estimator; panel to the top: sample (a): 50, 125, 200 and 500 rounds of play of 1 pair
of players; panel to the bottom: sample (b): 40 rounds of play of 5,10,20 and 40 pairs of players

MSDRA Estimators 50, 125, 200, 500 rounds
Set 1 ω0 = 0.00 φ0 = 0.20

ω̂ φ̂
Mean -0.0016 -0.0054 -0.0029 -0.0031 0.2417 0.1164 0.1494 0.1922
Stdev 0.1319 0.1152 0.09438 0.0485 0.5715 0.4425 0.3812 0.2108
Med 0.0003 0.0005 0.0004 0.0004 0.2814 0.1925 0.2000 0.1989
Set 2 ω0 = 0.00 φ0 = 0.20

ω̂ φ̂
Mean 0.0067 -0.0009 0.0002 -0.0015 0.2469 0.2331 0.2201 0.1997
Stdev 0.0808 0.0541 0.0324 0.0177 0.3770 0.2452 0.3027 0.1980
Med -0.0002 0.0001 0.0007 0.0002 0.2044 0.2075 0.2046 0.2000
Set 3 ω0 = 0.00 φ0 = 0.80

ω̂ φ̂
Mean 0.0004 0.0011 0.0004 -0.0004 0.7158 0.7902 0.8009 0.8008
Stdev 0.0820 0.0433 0.0196 0.0100 0.3637 0.0782 0.0518 0.0536
Med -0.0001 0.0001 0.0000 0.0001 0.8258 0.7903 0.8017 0.8035
Set 4 ω0 = 0.00 φ0 = 0.80

ω̂ φ̂
Mean -0.0170 —0.0001 0.0001 0.0000 0.7436 0.8115 0.8053 0.8136
Stdev 0.0822 0.0006 0.0008 0.0002 0.2390 0.0672 0.0663 0.0455
Med -0.0002 -0.0000 0.0000 0.0000 0.8026 0.8225 0.8229 0.8189

MSDRA Estimators 5, 10, 20 and 40 pairs
Set 1 ω0 = 0.00 φ0 = 0.20

ω̂ φ̂
Mean -0.0135 -0.0094 -0.0103 0.0070 0.0915 0.1590 0.1426 0.2895
Stdev 0.0675 0.0640 0.0437 0.0379 0.3755 0.2953 0.2076 0.1203
Med -0.0001 -0.0003 0.0000 -0.0003 0.2186 0.2026 0.1817 0.2633
Set 2 ω0 = 0.00 φ0 = 0.20

ω̂ φ̂
Mean -0.0121 0.0020 -0.0042 -0.0077 0.2290 0.1689 0.3011 0.2800
Stdev 0.0513 0.0242 0.0273 0.0372 0.3825 0.2821 0.2413 0.1499
Med -0.0009 -0.0001 -0.0001 -0.0007 0.2366 0.1896 0.2526 0.2791
Set 3 ω0 = 0.00 φ0 = 0.80

ω̂ φ̂
Mean 0.0003 0.0019 0.0006 0.0001 0.7702 0.7621 0.7527 0.8107
Stdev 0.0027 0.0244 0.0024 0.0001 0.0818 0.0708 0.0753 0.0287
Med 0.0001 0.0001 0.0003 0.0000 0.7651 0.7676 0.7618 0.8108
Set 4 ω0 = 0.00 φ0 = 0.80

ω̂ φ̂
Mean 0.0001 0.0004 0.0003 -0.0002 0.8114 0.8304 0.7919 0.8190
Stdev 0.0005 0.0006 0.0036 0.0002 0.0931 0.0845 0.0741 0.0138
Med 0.0000 0.0002 0.0001 -0.0002 0.8071 0.8365 0.8034 0.8227
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Table 8: Results of the Monte Carlo simulations for 4 sets of true values of 3 parameters of the reparameterized
reinforcement learning model; MSD RA estimator; panel to the top: sample (a): 50, 125, 200 and 500 rounds of
play of 1 pair of players; panel to the bottom: sample (b): 40 rounds of play of 5,10,20 and 40 pairs of players

MSDRA Estimator 50, 125, 200, 500 rds
Set 1 λ0 = 0.20

λ̂
Mean -0.3465 0.1085 0.1511 0.1487
Stdev 3.852 0.7154 0.2855 0.2284
Med 0.2014 0.2084 0.2021 0.2013
Set 2 λ0 = −0.20

λ̂
Mean -0.1624 -0.1577 -0.1831 -0.1702
Stdev 0.2497 0.2145 0.0952 0.1306
Med -0.1932 -0.2092 -0.2048 -0.2094
Set 3 λ0 = 0.20

λ̂
Mean 0.2619 0.2126 0.2081 0.2032
Stdev 0.1234 0.0281 0.0190 0.0103
Med 0.2529 0.2129 0.2048 0.2027
Set 4 λ0 = −0.20

λ̂
Mean -2.817 -0.2186 -0.2125 -0.2041
Stdev 14.00 0.0330 0.0281 0.0122
Med -0.2343 -0.2122 -0.2035 -0.2015

MSDRA Estimator 5, 10, 20, 40 pairs
Set 1 λ0 = 0.20

λ̂
Mean 0.1786 0.1929 0.2319 0.1562
Stdev 0.1937 0.1558 0.0628 0.0623
Med 0.2111 0.1995 0.2188 0.1600
Set 2 λ0 = −0.20

λ̂
Mean -0.1671 -0.1693 -0.1661 -0.1578
Stdev 0.1959 0.1044 0.1166 0.0781
Med -0.1923 -0.1578 -0.1894 -0.2037
Set 3 λ0 = 0.20

λ̂
Mean 0.2121 0.2135 0.1919 0.2024
Stdev 0.0209 0.0202 0.0223 0.0041
Med 0.2091 0.2106 0.1950 0.2005
Set 4 λ0 = −0.20

λ̂
Mean -0.2036 -0.1775 -0.2025 -0.2102
Stdev 0.03561 0.03461 0.01929 0.0060
Med -0.2103 -0.1788 -0.2025 -0.2105
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Table 9: Results of the Monte Carlo simulations for 4 sets of true values of 3 parameters of the reparameterized
reinforcement learning model; log score RA estimator; panel to the top: sample (a): 50, 125, 200 and 500 rounds
of play of 1 pair of players; panel to the bottom: sample (b): 40 rounds of play of 5,10,20 and 40 pairs of players

log scoreRA Estimators 50, 125, 200, 500 rounds
Set 1 ω0 = 0.00 φ0 = 0.20

ω̂ φ̂
Mean 0.0046 -0.0021 -0.0004 0.0001 0.2402 0.1285 0.1550 0.1974
Stdev 0.1472 0.1284 0.1067 0.0585 0.5722 0.4577 0.3937 0.2165
Med 0.0003 0.0005 0.0007 0.0009 0.2772 0.1887 0.1999 0.1914
Set 2 ω0 = 0.00 φ0 = 0.20

ω̂ φ̂
Mean 0.0053 0.0008 -0.0006 0.0024 0.2484 0.2329 0.2190 0.1946
Stdev 0.0844 0.0683 0.0446 0.0303 0.3766 0.2574 0.3327 0.2016
Med -0.0004 -0.0002 0.0006 0.0006 0.2057 0.1879 0.2124 0.1997
Set 3 ω0 = 0.00 φ0 = 0.80

ω̂ φ̂
Mean -0.0153 -0.0020 0.0004 -0.0004 0.7156 0.7904 0.8012 0.8010
Stdev 0.1175 0.0553 0.0303 0.0117 0.3639 0.0777 0.0511 0.0533
Med -0.0003 -0.0001 0.0001 0.0001 0.8258 0.7915 0.8014 0.8040
Set 4 ω0 = 0.00 φ0 = 0.80

ω̂ φ̂
Mean 0.0006 -0.0010 -0.0030 -0.0012 0.7561 0.7828 0.8084 0.7870
Stdev 0.0608 0.0365 0.0310 0.0153 0.2112 0.1196 0.0631 0.0991
Med 0.0001 0.0001 -0.0001 0.0001 0.8039 0.8121 0.8169 0.8033

log scoreRA Estimators 5, 10, 20 and 40 pairs
Set 1 ω0 = 0.00 φ0 = 0.20

ω̂ φ̂
Mean -0.0135 -0.0096 -0.0105 0.0070 0.0914 0.1569 0.1427 0.2888
Stdev 0.0674 0.0644 0.0442 0.0379 0.3735 0.2934 0.2074 0.1211
Med 0.0001 -0.0003 0.0002 -0.0003 0.2186 0.2028 0.1817 0.2633
Set 2 ω0 = 0.00 φ0 = 0.20

ω̂ φ̂
Mean -0.0124 0.0020 -0.0041 -0.0076 0.2315 0.1724 0.3012 0.2802
Stdev 0.0517 0.0243 0.0273 0.0373 0.3823 0.2842 0.2416 0.1498
Med -0.0009 —0.0001 -0.0001 -0.0007 0.2366 0.1904 0.2526 0.2791
Set 3 ω0 = 0.00 φ0 = 0.80

ω̂ φ̂
Mean 0.0003 0.0022 0.0006 0.0001 0.7702 0.7621 0.7524 0.8107
Stdev 0.0027 0.0239 0.0024 0.0002 0.0818 0.0708 0.0751 0.0286
Med 0.0001 0.0001 0.0003 0.0001 0.7651 0.7676 0.7618 0.8108
Set 4 ω0 = 0.00 φ0 = 0.80

ω̂ φ̂
Mean 0.0001 0.0004 0.0003 -0.0002 0.8114 0.8304 0.7919 0.8190
Stdev 0.0005 0.0006 0.0036 0.0002 0.0931 0.0845 0.0740 0.0138
Med 0.0000 0.0002 0.0001 -0.0001 0.8071 0.8365 0.8034 0.8227
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Table 10: Results of the Monte Carlo simulations for 4 sets of true values of the 3 parameters of the reparameterized
reinforcement learning model; log score RA estimator; panel to the top: sample (a): 50, 125, 200 and 500 rounds
of play of 1 pair of players; panel to the bottom: sample (b): 40 rounds of play of 5, 10, 20 and 40 pairs of players

log scoreRA Estimator 50, 125, 200, 500 rds
Set 1 λ0 = 0.20

λ̂
Mean 0.0141 0.1144 0.1496 0.1488
Stdev 0.8989 0.7158 0.2859 0.2290
Med 0.2027 0.2084 0.2013 0.2012
Set 2 λ0 = −0.20

λ̂
Mean -0.1663 -0.1576 -0.1958 -0.1691
Stdev 0.2410 0.2164 0.1095 0.1332
Med -0.2001 -0.2105 -0.2091 -0.2075
Set 3 λ0 = 0.20

λ̂
Mean 0.2494 0.2125 0.2077 0.2034
Stdev 0.1608 0.0284 0.0190 0.0103
Med 0.2528 0.2125 0.2048 0.2033
Set 4 λ0 = −0.20

λ̂
Mean -0.2014 -0.2107 -0.2023 -0.2053
Stdev 0.06341 0.02968 0.0247 0.0250
Med -0.2030 -0.2084 -0.2030 -0.2045

log scoreRA Estimator 5, 10, 20, 40 pairs
Set 1 λ0 = 0.20

λ̂
Mean 0.1792 0.1925 0.2320 0.1561
Stdev 0.1561 0.1992 0.1562 0.0629
Med 0.2093 0.1995 0.2188 0.1600
Set 2 λ0 = −0.20

λ̂
Mean -0.1673 -0.1697 -0.1664 -0.1577
Stdev 0.1956 0.1044 0.1164 0.0780
Med -0.1923 -0.1578 -0.1894 -0.2037
Set 3 λ0 = 0.20

λ̂
Mean 0.2121 0.2135 0.1920 0.2024
Stdev 0.0209 0.0202 0.0224 0.0041
Med 0.2091 0.2106 0.1950 0.2005
Set 4 λ0 = −0.20

λ̂
Mean -0.2036 -0.1775 -0.2025 -0.2102
Stdev 0.0356 0.0346 0.0193 0.0060
Med -0.2103 -0.1788 -0.2025 -0.2105
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Table 11: Results of the Monte Carlo simulations for 4 sets of true values of 3 parameters of the reparameterized
reinforcement learning model; MSD RA AVE estimator; panel to the top: sample (a): 50, 125, 200 and 500 rounds
of play of 1 pair of players; panel to the bottom: sample (b): 40 rounds of play of 5,10,20 and 40 pairs of players

MSDRA_ave Estimators 50, 125, 200, 500 rounds
Set 1 ω0 = 0.00 φ0 = 0.20

ω̂ φ̂
Mean 0.0338 0.0194 0.0030 0.0032 0.3613 0.0274 0.1216 0.2318
Stdev 0.1846 0.1298 0.0771 0.0564 0.9192 0.6745 0.5464 0.4887
Med -0.0002 0.0005 0.0007 0.0003 0.5188 0.1621 0.1907 0.2072
Set 2 ω0 = 0.00 φ0 = 0.20

ω̂ φ̂
Mean -0.0079 0.0017 0.0023 0.0008 0.1946 0.2751 0.1850 0.2363
Stdev 0.1245 0.0745 0.0517 0.0367 0.7637 0.7242 0.7104 0.6317
Med -0.0005 -0.0050 0.0010 -0.0001 0.2100 0.4112 0.2359 0.2527
Set 3 ω0 = 0.00 φ0 = 0.80

ω̂ φ̂
Mean -0.0328 -0.0099 0.0019 0.0009 0.8748 0.7627 0.8266 0.8035
Stdev 0.1499 0.0791 0.0457 0.0190 1.721 0.2900 0.0429 0.0648
Med -0.0004 0.0000 0.0001 0.0001 0.8402 0.8181 0.8248 0.8140
Set 4 ω0 = 0.00 φ0 = 0.80

ω̂ φ̂
Mean -0.0102 -0.0053 -0.0017 -0.0007 0.6256 0.744 0.7889 0.7901
Stdev 0.0589 0.0363 0.0219 0.0096 0.5552 0.3825 0.1505 0.1928
Med 0.0001 0.0000 0.0000 0.0001 0.81 0.8282 0.8108 0.8049

MSDRA_ave Estimators 5, 10, 20 and 40 pairs
Set 1 ω0 = 0.00 φ0 = 0.20

ω̂ φ̂
Mean -0.0084 -0.0064 -0.0767 0.0611 -0.0631 0.2289 0.01236 0.2352
Stdev 0.1204 0.1978 0.2668 0.4447 0.5635 0.4181 0.3883 0.1418
Med 0.0002 -0.0000 -0.0007 -0.0001 0.2103 0.2176 0.1567 0.2225
Set 2 ω0 = 0.00 φ0 = 0.20

ω̂ φ̂
Mean -0.0120 -0.0006 0.0045 -0.0023 0.4473 0.2088 0.1442 0.1820
Stdev 0.0823 0.0921 0.1210 0.0293 0.4841 0.3054 0.4810 0.2088
Med -0.0050 -0.0010 0.0002 0.0000 0.4725 0.2270 0.2260 0.2217
Set 3 ω0 = 0.00 φ0 = 0.80

ω̂ φ̂
Mean -0.0002 0.0002 0.0002 0.0001 0.7878 0.7656 0.7832 0.7979
Stdev 0.0034 0.0003 0.0004 0.0001 0.07799 0.0974 0.1043 0.0442
Med 0.0001 0.0001 0.0002 0.0000 0.8008 0.7895 0.7980 0.8055
Set 4 ω0 = 0.00 φ0 = 0.80

ω̂ φ̂
Mean 0.0000 -0.0021 0.0031 -0.0001 0.8240 0.7789 0.8012 0.8037
Stdev 0.0004 0.0263 0.0263 0.0008 0.0608 0.2827 0.0834 0.0526
Med 0.0000 0.0002 0.0000 0.0000 0.8061 0.8334 0.8095 0.8141
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Table 12: Results of the Monte Carlo simulations for 4 sets of true values of 3 parameters of the reinforcement
learning model; MSD RA AVE estimator; panel to the top: sample (a): 50, 125, 200 and 500 rounds of play of 1
pair of players; panel to the bottom: sample (b): 40 rounds of play of 5,10,20 and 40 pairs of players

MSDRA_ave Estimator 50, 125, 200, 500 rds
Set 1 λ0 = 0.20

λ̂
Mean -0.8325 -0.4192 -0.1698 0.1592
Stdev 4.096 2.475 2.270 0.6987
Med 0.1742 0.2006 0.2086 0.2029
Set 2 λ0 = −0.20

λ̂
Mean 0.2632 -0.1210 -0.1403 -0.1469
Stdev 3.201 1.277 0.7934 0.4896
Med -0.0239 -0.2076 -0.2025 -0.2118
Set 3 λ0 = 0.20

λ̂
Mean 0.0038 0.2096 0.1985 0.2000
Stdev 1.328 0.1445 0.0185 0.0185
Med 0.2102 0.2050 0.2013 0.2007
Set 4 λ0 = −0.20

λ̂
Mean -0.0947 -0.174 -0.199 -0.204
Stdev 0.361 0.1774 0.1321 0.0270
Med -0.1858 -0.195 -0.2007 -0.2016

MSDRA_ave Estimators 5, 10, 20, 40 pairs
Set 1 λ0 = 0.20

λ̂
Mean 0.1891 0.1706 0.2845 0.1737
Stdev 0.2122 0.4262 0.1267 0.0532
Med 0.1953 0.1813 0.2393 0.206
Set 2 λ0 = −0.20

λ̂
Mean -0.1557 -0.2051 -0.1899 -0.1853
Stdev 0.2231 0.1255 0.1341 0.0538
Med -0.1721 -0.1921 -0.1956 -0.2028
Set 3 λ0 = 0.20

λ̂
Mean 0.2093 0.2111 0.1952 0.2059
Stdev 0.0253 0.0158 0.0226 0.0081
Med 0.2072 0.2081 0.1993 0.2035
Set 4 λ0 = −0.20

λ̂
Mean -0.2055 -0.1801 -0.2080 -0.2065
Stdev 0.02083 0.05516 0.0231 0.0122
Med -0.2106 -0.1990 -0.2045 -0.2088
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Table 13: Results of the Monte Carlo study for 4 sets of true values of the 3 parameters of the reinforcement
learning model; Ratio of the standard deviation of the empirical distribution of the MSD estimator to the standard
deviation of the MLE; panel to the top: sample (a): 50, 125, 200, 500 rounds of play of 1 pair of players; panel
to the bottom: sample (b): 40 rounds of play of 5, 10, 20, 40 pairs of players

Ratio of standard deviations: MSD estimator to MLE 50, 125, 200, 500 rds
Set 1 ω0 = 0.0 φ0 = 0.20 λ0 = 0.20
MSD 2E+23 4E+09 5E+20 4E+09 0.98 1.04 1.00 1.015 0.99 1.03 1.01 1.008
Set 2 ω0 = 0.0 φ0 = 0.20 λ0 = −0.20
MSD 2E+24 3E+16 5E+16 0.723 0.95 0.95 0.97 1.006 1.02 0.99 1.01 1.012
Set 3 ω0 = 0.0 φ0 = 0.80 λ0 = 0.20
MSD 1.94 1.79 2.96 4.483 1.04 1.12 1.12 0.995 1.34 1.24 1.19 1.017
Set 4 ω0 = 0.0 φ0 = 0.80 λ0 = −0.20
MSD 24.4 0.81 1.22 1.345 0.97 0.98 1.04 0.985 1.06 1.03 1.03 1.057

Ratio of standard deviations: MSD estimator to MLE 5, 10, 20, 40 pairs
Set 1 ω0 = 0.0 φ0 = 0.20 λ0 = 0.20
MSD 0.98 1.00 0.85 1.003 56.1 56.8 55 0.993 262 225 206 1.007
Set 2 ω0 = 0.0 φ0 = 0.20 λ0 = −0.20
MSD 4.7 1.01 0.98 1.002 1.03 1.01 1.63 1.006 1.00 1.01 1.58 0.986
Set 3 ω0 = 0.0 φ0 = 0.80 λ0 = 0.20
MSD 1.01 1.11 0.91 1.136 0.99 1.03 1.65 1.042 1.17 1.04 1.57 1.083
Set 4 ω0 = 0.0 φ0 = 0.80 λ0 = −0.20
MSD 1.00 1.01 0.98 1.004 0.99 1.00 1.42 0.996 1.04 1.02 1.52 1.033
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Table 14: Results of the Monte Carlo study for 4 sets of true values of the 3 parameters of the reinforcement
learning model; Ratio of the standard deviation of the empirical distribution of the MSD RA, log score RA and
MSD RA ave estimator to the standard deviation of the MLE; panel to the top: sample (a): 50, 125, 200 and
500 rounds of play of 1 pair of players; panel to the bottom: sample (b): 40 rounds of play of 5, 10, 20 and 40
pairs of players

Ratio of standard deviations: Deviation estimators to MLE 50, 125, 200, 500 rds
Set 1 ω0 = 0.0 φ0 = 0.20 λ0 = 0.20
MSDRA 0.183 0.263 0.291 0.234 2.961 3.728 5.096 3.531 87.15 22.36 13.60 16.43
log scoreRA 0.204 0.293 0.329 0.282 2.965 3.856 5.263 3.626 20.34 22.37 13.61 16.47
MSDRA_ave 0.256 0.297 0.238 0.272 4.763 5.682 7.305 8.186 92.67 77.34 108.1 50.27

Set 2 ω0 = 0.0 φ0= 0.20 λ0 = −0.20
MSDRA 0.113 0.121 0.098 0.085 2.240 1.790 3.413 3.204 6.436 8.034 5.146 9.007
log scoreRA 0.118 0.152 0.135 0.146 2.238 1.879 3.751 3.262 6.211 8.105 5.919 9.186
MSDRA_ave 0.166 0.174 0.156 0.177 4.538 5.286 8.009 10.22 82.50 47.83 42.89 33.77

Set 3 ω0 = 0.0 φ0 = 0.80 λ0 = 0.20
MSDRA 0.206 0.172 0.100 0.095 10.42 3.523 2.780 4.504 4.897 1.319 1.159 1.073
log scoreRA 0.295 0.220 0.154 0.111 10.43 3.500 2.753 4.479 6.381 1.333 1.159 1.073
MSDRA_ave 0.376 0.314 0.233 0.180 49.32 13.06 2.306 5.445 52.70 6.784 1.128 1.917

Set 4 ω0 = 0.0 φ0 = 0.80 λ0 = −0.20
MSDRA 0.173 0.002 0.004 0.002 3.145 1.32 0.189 1.717 387.8 1.375 1.606 0.992
logscoreRA 0.128 0.117 0.138 0.117 2.779 2.35 1.800 3.740 1.756 1.238 1.411 2.033
MSDRA_ave 0.124 0.117 0.098 0.073 7.305 7.515 4.300 7.275 10 7.392 7.549 2.195

Ratio of standard deviations: Deviation estimators to MLE 5, 10, 20, 40 pairs
Set 1 ω0 = 0.0 φ0 = 0.20 λ0 = 0.20
MSDRA 0.094 0.146 0.134 0.183 1.946 2.488 2.775 2.015 4.382 4.869 2.990 4.489
log scoreRA 0.094 0.147 0.136 0.183 1.935 2.472 2.773 2.028 4.507 4.881 2.995 4.489
MSDRA_ave 0.256 0.297 0.238 0.272 4.763 5.682 7.305 8.186 92.67 77.34 108.1 50.27

Set 2 ω0 = 0.0 φ0 = 0.20 λ0 = −0.20
MSDRA 0.072 0.054 0.083 0.180 2.273 2.059 2.720 2.426 5.049 3.910 6.303 5.386
log scoreRA 0.072 0.054 0.083 0.180 2.272 2.074 2.724 2.424 5.041 3.910 6.292 5.379
MSDRA_ave 0.174 0.166 0.156 0.177 4.538 5.286 8.009 10.22 82.50 47.83 42.89 33.77

Set 3 ω0 = 0.0 φ0 = 0.80 λ0 = 0.20
MSDRA 0.007 0.097 0.012 0.002 2.344 3.189 4.048 2.412 0.829 0.948 1.360 0.427
log scoreRA 0.007 0.095 0.012 0.002 2.344 3.189 4.043 2.403 0.829 0.948 1.366 0.427
MSDRA_ave 0.376 0.314 0.233 0.180 49.32 13.06 2.306 5.445 52.7 6.784 1.128 1.917

Set 4 ω0 = 0.0 φ0 = 0.80 λ0 = −0.20
MSDRA 0.001 0.002 0.016 0.002 1.225 1.660 2.117 0.521 0.986 1.442 1.103 0.488
log scoreRA 0.001 0.002 0.016 0.002 1.225 1.660 2.117 0.521 0.986 1.442 1.103 0.488
MSDRA_ave 0.124 0.117 0.098 0.073 7.305 7.515 4.300 7.275 10.00 7.392 7.549 2.195
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Figure 1: Empirical distributions of the MLE of the 3 parameters of the model;
50, 125, 200 and 500 rounds; ω0 = 0.00,φ0 = 0.20,λ0 = 0.20
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Figure 2: Empirical distributions of the MLE of the 3 parameters of the model;
5, 10, 20 and 20 pairs; ω0 = 0.00,φ0 = 0.20,λ0 = 0.20

3



Figure 3: Empirical distributions of the MSD estimator of the 3 parameters of
the model; 50, 125, 200 and 500 rounds; ω0 = 0.00,φ0 = 0.20,λ0 = 0.20
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Figure 4: Empirical distributions of the MSD estimator of the 3 parameters of
the model; 5, 10, 20 and 40 pairs; ω0 = 0.00,φ0 = 0.20,λ0 = 0.20
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Figure 5: Empirical distributions of the MSDRA estimator of the 3 parameters
of the model; 50, 125, 200 and 500 rounds; ω0 = 0.00,φ0 = 0.20,λ0 = 0.20
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Figure 6: Empirical distributions of the MSDRA estimator of the 3 parameters
of the model; 5, 10, 20 and 40 pairs; ω0 = 0.00,φ0 = 0.20,λ0 = 0.20
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Figure 7: Empirical distributions of the log score of the 3 parameters of the
model; 50, 125, 200 and 500 rounds; ω0 = 0.00,φ0 = 0.20,λ0 = 0.20
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Figure 8: Empirical distributions of the log score of the 3 parameters of the
model; 5, 10, 20 and 40 pairs; ω0 = 0.00,φ0 = 0.20,λ0 = 0.20
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Figure 9: Empirical distributions of the MSDRA_ave of the 3 parameters of the
model; 50, 125, 200 and 500 rounds; ω0 = 0.00,φ0 = 0.20,λ0 = 0.20
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Figure 10: Empirical distributions of the MSDRA_ave of the 3 parameters of
the model; 5, 10, 20 and 40 pairs; ω0 = 0.00,φ0 = 0.20,λ0 = 0.20
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