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Abstract

In our previous paper we built a general equilibrium model of default and
punishment in which equilibrium always exists and endogenously determines as-
set promises, penalties, and sales constraints. In this paper we interpret the
endogenous sales constraints as equilibrium signals. By specializing the default
penalties and imposing an exclusivity constraint on asset sales, we obtain a per-
fectly competitive version of the Rothschild—Stiglitz model of insurance. In our
model their separating equilibrium always exists even when they say it doesn’t.
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1 Introduction

In our previous paper (Dubey, Geanakoplos, Shubik, 2001) we built a model that
explicitly allows for default, but is broad enough to incorporate conventional general
equilibrium theory as a special case. We call the model GE(R, A, Q) because each
asset j is defined by its promise R;, the penalty A; for default on the promise, and
the quantity restriction ; attendant on those who sell it.

In the model, a seller h of go? units of asset j has the option of delivering any
D;-L < @?Rj, and incurring a penalty )\? [@?Rj - Dﬁ+ on the shortfall. As a result of
the option, different sellers may pay off differently on the same asset. We maintain
the hypothesis of perfect competition by supposing that buyers do not trade with
individual sellers, but with the market. The buyers of asset j receive a pro rata share
of all its different sellers’ deliveries, just as an investor does today in the securitized
mortgage market. Thus from the buyer’s perspective, asset j is a share in a pool of
deliveries. Each unit purchased of the asset delivers
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The buyer of asset j does not know the identity of its sellers, nor the quantities of
their sales. But he does know that none of them could have sold more than the limit
Qj-

The pooling leads to adverse selection, since a buyer must worry that sellers with
a proclivity for default (on account of low default penalties or low endowments) will
tend to sell more of the asset, worsening the anticipated rate of delivery ¢;. Moral
hazard enters the picture because a seller can choose to default, and because an agent
who sells more promises will be less able to fully deliver on any one of them.

Signalling, by publicly committing oneself to a small quantity of sales, therefore
has an important role to play, because it assures the buyer of a more reliable de-
livery. Two assets 7 and j with identical promises R; = R; and penalties \; = A;,
may sell for different prices m; > m; if Q; < ;. Conforming mortgages, which are
presently limited to $275,000, sell for a higher price (per dollar promised) than jumbo
mortgages, which are not so constrained in size.

Without any default, there is no option, and our model reduces to the standard
general equilibrium model with incomplete markets (GEI). Pooling different deliveries
is what distinguishes our model from GEI, and enables it to include phenomena like
adverse selection and moral hazard that are missing from GEI.

Pooling, however, does not compromise the existence of equilibrium. We showed
in our previous paper that for any exogenously fixed set A of tradeable assets,

b;

A= {(Rj,)\j,@j) : (Rj,)\j,Qj) is tradeable},

equilibrium E(A) always exists. The levels of trade, the rates of default, and the
prices of all assets in A emerge endogenously as part of the equilibrium E(A). In



contrast to standard general equilibrium models, in which prices are the only equi-
librating variables, here prices and anticipated delivery rates are needed to clear
markets.

A key feature of our equilibrium is a condition on expected deliveries of untraded
assets that is similar to the trembling hand refinements used in game theory. Notice
that 0; is not defined when total sales ), gp? = 0. The condition says that ¢;
should be derived as the limit of delivery rates §;(¢) taken over a sequence of small
perturbations € — 0, at which there is positive trade of asset j.

Equilibrium also gives rise to the subset A* = A*(E(A)) C A of actively traded
assets:

A" ={(Rj,\;,Q;) € A: (Rj,\},Q;) is positvely traded in E(A)}.

Using the refinement, we argued in our previous paper that equilibrium endogenously
determines the traded assets; with default, A* tends to be much smaller than A.

This is in sharp contrast to GEI, which is a special case of our model, with
A =@ = . In GEI, for generic utilities and endowments, the span of the actively
traded promises A* equals the span of the available promises A. Thus effectively
A* = A, and GEI is unable to explain the endogeneity of traded assets.'

In this paper our focus is on the endogeneity of the quantity signals ;. To this
end, we fix the penalties \; = X and promises R; = R and see which sales restrictions
Q; emerge in A*. If the quantity constraints (); on asset sales are not binding in
equilibrium, then there is in effect no signalling. Otherwise the ); become signals
which play a crucial role in the equilibrium. The phenomenon of signalling can thus
be treated in perfect competition, moreover without jeopardizing the existence of
equilibrium.

By suitable choices of default penalties we subsume insurance contracts in our
framework. Take _
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Agents are forgiven completely in some states (perhaps when their endowments are
zero) and compelled to repay otherwise. This enables us to capture insurance in
terms of trading assets in our model. Consider an asset which promises one dollar in
every state, but whose expected delivery rate is 6 < 1 on account of default. An agent
h, who buys and sells one unit of this asset, will fully deliver in his good states (since
M = 0o for s € ") and fully default in his bad states (since A» =0 for s ¢ §*). On
net, h then obtains ¢ in his bad states by giving up 1 — ¢ in his good states, which is
tantamount to taking out insurance. In particular, the models of Akerlof (1972) and
Rothschild and Stiglitz (1976) can be embedded as special cases in our model.
Rothschild and Stiglitz seem to have had in mind oligopolistic insurance compa-
nies, designing contracts for a continuum of private agents. These companies inter-
mediated trade between the agents, setting prices to attract customers, and standing

! Only when transactions costs for assets are introduced into the GEI model can A* substantively
differ from A. See for example the work of Allen—Gale (1988) and Pesendorfer (1995).



ready to insure all who accepted their offers. They were assumed to have risk-neutral
preferences and to maximize expected profits.

We have recast this story in a perfectly competitive setting, retaining only the
continuum of agents. We do not have insurance companies — we have markets. Di-
verse groups of agents trade promises through these massive, anonymous markets.
Since the assets bought are pools of promises, and those sold permit idiosyncratic
deliveries and default, the net effect is that agents insure each other through the mar-
kets. FEvery agent is a price taker. Yet the model is subtle enough to unambiguously
determine which insurance contracts will emerge in A*. In our model, the market
forces of perfect competition take over the role of designing contracts. Furthermore
we derive the conclusion that insurance policies yield zero expected profit, solely from
the distribution of accident risk in the economy, without postulating any risk-neutral
agents.

Most remarkable is that our existence theorem for equilibrium with default also
guarantees the existence of insurance equilibrium, in spite of the adverse selection.
Rothschild and Stiglitz showed that there were robust economies in which their equi-
librium does not exist. By replacing a hybrid competitive/oligopolistic model with
a simpler perfectly competitive model, we are able to retain the subtlety of the
separating equilibrium, and at the same time to restore the universal existence of
equilibrium.

In Section 2 we recall our basic model of default and we discuss the equilibrium
refinement. Section 3 restates two existence theorems proved in our previous paper.
In Section 4 we show how to reinterpret the variables in the model so as to include
insurance as a special case. In Section 5 we illustrate the emergence of adverse
selection in our model, in contrast to GEI. When there is only one available asset
(with no limitation on its sale), agents of different types will sell it. Unreliable agents,
for whom it is less costly to default, will sell disproportionately large quantities,
adversely affecting delivery rates on the pool.

In Section 6 we consider signalling in the context of insurance, i.e., we allow for
many assets with identical promises and penalties, but different sales limits. We
further specialize the model, confining ourselves to infinite/zero penalties and to
two types of agents (reliable and unreliable), to bring it into the Rothschild—Stiglitz
framework. Like them, we presume that asset sales are exclusive, that is that each
agent can sell at most one asset (i.e., obtain at most one insurance contract). As
shown by Theorem 2 in Section 3, this exclusivity constraint does not endanger the
existence of equilibrium. We show that their “separating” contracts always form
a GE(R,\, Q) equilibrium, even when they say there is no equilibrium. Moreover,
our equilibrium refinement is stringent enough to guarantee that this is the unique
equilibrium.

The crucial difference between the Rothschild—Stiglitz definition of equilibrium
and ours can be understood in terms of the assumption each makes about the relia-
bility of untraded contracts j € A\A*. We argue in Section 2 and Section 6 that our
assumption is natural when there are many buyers and sellers in perfect competition,
and corresponds to cautious expectations (determined by the “trembling hand” re-



finement to equilibrium that we give). By contrast, the expectations attributed to
agents by Rothschild and Stiglitz are not compatible (to our way of thinking) with
perfect competition.

In our sequel paper (Dubey—Geanakoplos, 2001) we explore what happens in
the more realistic setting where agents can sell more than one asset, albeit under
restrictions. When the assets are ranked by seniority, we find that a new kind of
primary—secondary insurance equilibrium emerges, which appears to conform better
with real practice. Both the reliable and unreliable agents take out the same primary
insurance policy, at intermediate rates; in addition, the unreliable take out more
secondary insurance at an unfavorable rate.

2 Default in Equilibrium: The GE(R, A\, Q) Model

2.1 The Economy

As in the canonical model of general equilibrium with incomplete markets (GEI), we
consider a two-period economy, where agents know the present but face an uncertain
future. In period 0 (the present) there is just one state of nature (called state 0), in
which H agents trade in L commodities and J assets. Then chance moves and selects
one of S states which occur in period 1 (the future). Commodity trades take place
again, and assets pay off. The difference from GEI is that in our GE(R, A, Q) model,
assets pay off in accordance with what agents opt to deliver. Our notation can be
formalized as follows:

¢e L =/{1,..,L} = set of commodities

s€ S ={1,...,5} = set of states in period 1

S* ={0} U S = set of all states

he H={1,..,H} = set of agents

el € Ri*XL = initial endowment of agent h

jeJ=A{1,..,J} = set of assets

R; € RiXL = promises per unit of asset j of each commodity ¢ € L in each state

ses

ul Ri* *L _, R = utility function of agent h

/\i}j € R, =R, U{oo} = real default penalty on agent h for asset j in state s

Q? € R, = bound on sale of asset j by agent h

We assume that no agent has the null endowment, and that all named commodities
are present in the aggregate, i.e.,

ey = (€1, i) # 0

for all h € H and s € 5%, and

h
€Sg:Zesg>0
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for all s¢ € S* x L. Also each u” is continuous, concave and strictly increasing in

each of its S* x L variables. Having assumed strict monotonicity and concavity, there

is no further loss of generality in assuming that u"(z) — oo whenever ||z||s — 00.2
We can visualize the state space as a simple tree:

S

S

Figure 1

Agents h have heterogeneous, state-dependent endowments e € RZ and disutil-
ities of default /\i}j.

Adverse selection enters the picture because agents have different endowments
out of which to keep their promises, and also different disutilities of default.

Promises must be of a limited kind j € J fixed a priori. A promise j € J specifies
bundles of goods (or services) to be delivered in each state:

} — state 1 goods
Promise R; — } — state 2 goods

} — state S goods.

Agents h make promises by selling various quantities gp? of each asset j. An
agent’s ability to keep a promise depends on how many promises he sells, both of
the same kind j, and of other kinds j' # j. Moral hazard enters the picture, since
a buyer of an asset (i.e., lender) does not know which other promises the seller (i.e.,
borrower) has made, and because borrowers have the option to default.

Each kind of asset prescribes a limit on its sale, go? < Q? Limits on sales of
promises are necessary to any realistic model of credit.* If Q% = 0, then agent h is
essentially forbidden from selling asset j. If the limits Q;L are very large, they may
be entirely irrelevant. But if they are small, then they may be used as a signal that
the sellers are not making many promises, and hence that the promises are reliable.

Let O={z ¢ ]Ri*L lzlleo < 2[]30, €|} Let £ be the set of affine functions L : ]R_‘?_*L — R
such that L(z) > u"(z) for all z € O. Define 4"(z) = infrer L(x). Then equilibrium with «” and
h coincide, and @" has the desired properties.

3Evidence abounds that finite bounds are always imposed in the extension of credit. Even the
best “name” among borrowers has a limited credit line.
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An economy is defined as a vector

E = ((uh,eh)hem (ij((Agj)SES’Q?)hGH)je) ’

Note again that an asset consists of promises, penalties for default, and limits on
sales.

2.2 Equilibrium

To define a GE(R, A\, Q) equilibrium, first consider the “macrovariables” p, m, K that
each agent takes as fixed. Here p € RS *L is the vector of commodity prices; 7 € RJ
is the vector of asset prices; and K is an S x J matrix with entries K,; between O
and 1, representing the fraction expected to be delivered of payments promised by
asset j in state s.

2.2.1 Household Budget and Payoff
The budget set B"(p,n, K) of agent h is given by:

B"p,m,K) = {(az 0,0,D) € RS *E x R] x R x RI*S¥L

Pbo - ( 0_60)+7T (Q_SO)S(L SOJSQ‘}; fOI’jEJ, andv VSES,

Ds - (375 - 6?) + Zps : Dsj < Zestjps : st
jed jed

Here x € ]Ri*XL is the final consumption of commodities, 6 € ]RJJr (respectively,
¢ € R]) gives the purchases (respectively, sales) of the J assets, and D,; € RE is the
vector of goods delivered by agent h on asset j in state s.

The budget set allows agent h to deliver whatever he pleases. On the other
hand, the agent expects to receive a fraction Kj; of the promises made to him on
asset j in state s. The first constraint says that agent A cannot spend more on
purchases of commodities zy and assets 6 than the revenue he receives from the sale
of commodities eg and assets ¢. Moreover he can never sell more than Q;L of any
asset j. The second constraint applies separately in each state s € S. It says that
agent h cannot spend more on the purchase of commodities x5 and asset deliveries
> ; Dsj In state s than the revenue he gets in state s from commodity sales el and
asset receipts Zj 0;KsjpsRsj.

The only reason that agents deliver anything on their promises is that they feel a
disutility )\gj from defaulting. The payoff of (x, 6, p, D) given prices p, to agent h is

w(x,0,¢,D,p) =u" Z Z SOJPS' Sﬂ_pS'DSJ]+

-V
jeJ se8 s



(Here vs € RY\{0} represents a fixed basket of goods, using which default can be
measured in real terms.) Note that [¢;ps- Ry, —ps- D]t = max{0, ©;ps Rsj—ps-Dsj}
is exactly the money value of the default of /& on his promise to deliver on asset j in
state s.

Notice that the budget set is convex, and the payoff function w" is concave, in
the household choice variables (z, 0, ¢, D). Had we expressed these choices with other
(apparently natural) variables, such as (5};]- = delivery per unit promised, the budget
set would no longer be convex, nor would w” be concave.

It is worth noting a scaling property of the budget set (which is immediate from
its definition and the fact that e? # 0 and ps, > 0 for all s € S*): (z,0,p,D) €
B'(p,m,K) and 0 < a < 1 = (ax,af,ap,aD) € B"(p', 7', K') for all (p/, 7', K')
sufficiently close to (p, 7, K). This property will often be useful to us.*

h

2.2.2 Market Clearing

We are now in a position to define a GE(R,\, Q) equilibrium. It is a list
(p,m, K, (x", 6" o", D")pepr) such that (1) to (4) below hold.

(1) For h € H, (2,6, ¢", D") € argmaxw”(x,0,¢, D, p) over B"(p, 7, K)
(2) Chen(@ — ) =0
(3) Yhem(@" —¢") =0

W {ZhEHps‘D?j/Zhers ‘Rujoj, i Yper s Bujpy >0
s8] —

arbitrary, if D hen s RSJ'SO;'L =0

Condition (1) says that all agents optimize; (2) and (3) require commodity and
asset markets to clear. Condition (4), together with the definition of the budget set,
says that each potential lender (i.e., buyer) of an asset is correct in his expectation
about the fraction of promises that do in fact get delivered. Moreover, his expectation
K f] = Kj; of the rate of delivery does not depend on anything he does himself; in

particular, it does not depend on the amount 9? he loans (i.e., purchases) of the asset.
Every lender gets the same rate of delivery.

Since heterogeneous borrowers may be selling the same asset, the realized rate of
delivery K,; is an average of the rates of delivery of each of the borrowers, weighted
by the quantity of their sales. It might well happen that those borrowers with the
highest rates of default are selling most of the asset, and this is the adverse selection
and moral hazard that rational lenders must forecast.

We believe that our definition of GE(R, A, Q)) equilibrium embodies the spirit of
perfect, anonymous competition, and represents a significant fraction of the mass
asset markets of a modern enterprise economy.

In the next sections we investigate the properties of equilibrium.

YAn alternative scaling property, also satisfied by the budget set, is obtained if we replace
(az,ab, ap,aD) with (az, ad, ¢, D). Our entire analysis remains intact with this version of scaling.



2.3 An Equilibrium Refinement

When assets are traded, expected deliveries Kg; must be equal to actual deliveries.
Expectations cannot therefore be unduly pessimistic. But for assets that are not
traded, our model so far makes no assumption about expectations of delivery (see
(4))-

We believe that unreasonable pessimism prevents many real world markets from
opening, and provides an important role for government intervention. But it is inter-
esting to study equilibrium in which expectations are always reasonably optimistic.
It is of central importance for us to understand which markets are open and which
are not, and we do not want our answer to depend on the agents’ whimsical pes-
simism. Without further conditions there are always trivial equilibria in which all
m; = 0 and K,; = 0. Since 7; = 0, nobody wants to sell, and since K;; = 0, nobody
wants to buy. To avoid this we add a condition (5) to the definition of equilibrium.
This requires that if a small change in the macro parameters (p, 7) could induce some
agents to start selling some of an asset j, where none was being sold before, then
buyers should expect at least the rate of delivery they would get had the world indeed
been so perturbed. (If there are many ways of perturbing (p,7) to induce sales, then
we allow the buyers to focus their attention on one of these perturbations.) If prices
7; are so low that no small perturbation will induce any agents to sell asset j, then
buyers are required to expect full delivery, Ky; = 1. One can (but need not) interpret
these expectations as if the government guaranteed delivery on the first infinitesimal
promises. In our previous paper, we showed that condition (5) can always be realized
by adding an extra agent to the economy who sells € of every promise and always
fully delivers on his promises, and then letting ¢ — 0.

Let || |loo denote the supremum norm, and let E = (p, 7, K, (2", 6", 0", D")nerr)
be a candidate equilibrium which satisfies conditions (1) to (4). For s € S, let
J)={j€J Y pheups- stgp? = 0}. Thus J(s) is the set of assets in state s for
which K; is not determined by market activity in E. We are ready to state

(5) For any ¢ > 0, there exists E(c) = (p(e), n(e), K(¢), (z"(e), 0"(), ¢"(e),
D"(&))hem) such that

1) (z"(e),0"(e), " (e), D"(¢)) € argmaxw’(x,0,p, D,p(e)) over
B"(p(e),m(e), K(€))
(ii) [[E - E(e)llw <¢

h;zm(g) -Dl(e)/ h%;]ps(e) - Ryjiph(e) if h%;]ps(e) - Rgjpl(e) > 0
(i) Kyji(e) > 1 if hgqu(E) “Ryjli(e) =0

for all s € S and j € J(s).

Conditions (i), (ii), and (iii) say that if asset j is untraded and K, ; < 1, then there
must be arbitrarily small perturbations of the macro variables which induce agents
to sell j, and to deliver (in aggregate) at a rate at most K,; (that is, to default at
rate at least 1 — K;). If K; = 1, the refinement is automatically satisfied.



Our condition (5) will enable us to ascertain when an asset, though priced, is not
traded in equilibrium.

Consider the following heuristic example, illustrated in Figure 2 below. Suppose
an equilibrium in an economy with assets j = 1,...,J is given. A new asset J + 1,
promising 1 in every state, is added to the economy. Suppose at prices 7,1 < 10,
no agent would sell it, while at prices 10 < 7;1 < 20 only unreliable agents (with
low default penalties )\Z 741) would sell it, and at prices m;4; > 20 reliable and
unreliable agents would sell it. Without the equilibrium refinement, we could always
include the new asset in the old equilibrium by assigning it a price 7541 = 0 with no
trade, and with K;5,1 = 0 Vs € S. But our equilibrium refinement requires that if
w1 < 10, then Kgy41 = 1 for all s € S, since no perturbation would induce sales.
The equilibrium refinement thus rules out equilibria with 77,1 < 10 unless demand is
zero even with expectations of full delivery. For concreteness, let us suppose demand
is zero unless expected delivery per dollar invested is at least 0.034, after which
demand becomes positive. Clearly there is no equilibrium with 0 < 7741 < 10, since
expected delivery per dollar invested § >, Kyj1/m 741 = (1)(1/m41) > (1)(1/10) =
0.100 > 0.034.

If there is any equilibrium in this example in which asset J + 1 is not traded,
then there must be such an equilibrium at which 77,1 = 10. Since there are no sales,
when 7711 = 10, the refinement allows for K ;41 < 1, provided that there would
be sales at w1 = 10 + € and that the delivery rate on those sales is approximately
K41, or lower. By hypothesis, at w511 = 10 + ¢, only unreliable agents would be
selling. Suppose unreliable agents always deliver 1/3 of what they promise. Then we
might have Ksy41 = 1/3 Vs € S. At these low levels of delivery, and at a price of
10, there would indeed be no buyers (as well as no sellers), since expected delivery
per dollar invested in (1/3)(1/10) = 0.033 < 0.034. Since the K 41 are obtained
from the perturbation, we would regard the expectations as reasonable and call this
a genuine equilibrium.

™ Unreliable agents

J+1
Reliable agents

25
0 /fr7TT Aggregate supply
104

i

1

1

1

Supply

Figure 2

The Rothschild and Stiglitz logic would say that one must take into account the
delivery rates of the reliable agents. Suppose, for concreteness, that they deliver

!

K, ;.1 =9/10 no matter how much they promise. Further, suppose that if the price



were raised to mj41 = 25, reliable agents would want to sell in such large quantities
that, leaving aside the question of market clearing, the fraction of deliveries out of all
desired sales on asset J + 1 would be K ; ; = 6/7. (If at price m;,1 = 25, reliable
agents sell 110 units to every 9 units unreliable agents sell, then K; ; = 6/7 =
(110/119)(9/10) + (9/119)(1/3).)

If buyers took 6/7 as the rate of delivery, then at the price my;1 = 25 they
would be willing to buy, even though they had refused to buy at 7 ;11 = 10, because
their returns per dollar invested would be better, 6/7-1/25 > (0.34)(1/10) > 1/3 -
1/10. If this were the case, then according to the logic of Rothschild-Stiglitz (1972),
equilibrium would not exist at 7,1 = 10, since buyers would have an incentive to
raise the price to 7w ;11 = 25.

Our definition of equilibrium allows for 7y = 10, and Ksy41 = 1/3, and we
believe it does so for good reasons. First, we suppose that buyers are aware of the
composition of sales at the market prices, and perhaps of the composition of sales at
prices a penny off from market prices. But agents lack the knowledge or computing
power to infer what the composition would be at prices far from market prices.Second,
we have in mind a competitive world with many small buyers. If a single buyer raised
his offering price to 25, fully 15 points above the market price, he would be deluged
with sellers. The people with the most to gain from selling to him would be those
who already were willing to sell at 10, namely the unreliable agents. Why should
he assume he would be equally likely to encounter each unit sold? We feel justified
in assigning him the cautious expectations of K;;11 = 1/3 no matter what price he
offered, given that the market price is 7741 = 10.

In our model, agents do not unilaterally set prices; they are price takers and the
market sets the price. We regard an asset or contract as setting out the obligations
of the seller, including the penalties if he fails to deliver, and the quantity limitations
on his other sales. The price of the contract is set by competition between sellers and
buyers, that is, by the market. Agents need only think about one prevailing price
for each contract. In our view, competitive equilibrium should be defined by a single
price at which both supply and demand are equal (possibly both zero, as long as
expectations at that price are set at rational levels).

In the Rothschild—Stiglitz view, the price is one of the terms of the contract. In
this view, there is no such thing as a single contract; there are as many contracts as
there are prices. Notice also that the Rothschild—Stiglitz view must regard market
clearing as one of rationing. At most prices, the contract will not be traded, because
either supply or demand is zero, and the other side of the market is rationed. This
point of view has been admirably expressed by Gale.

The ability to unilaterally set prices, and to compute what demand would be
at these different prices, are features of oligopolistic models. We rigorously main-
tain the hypothesis of perfect competition, which rules out both these features. Our
equilibrium refinement nevertheless has bite, by ruling out many no-trade equilib-
ria, even in our perfectly competitive framework. Consider the situation where the
unreliable and reliable supply curves are reversed, so that at my;; = 10 it is the
reliable agents who begin to sell. Then according to our definition of equilibrium,

10



in order for myy1 = 10 to be an equilibrium, it must be that no demand would be
forthcoming even with K,j11 set at the reliable rates of delivery (Ksj+1 = 9/10).
But (9/10)(1/10) = 0.090 > 0.034, so in this version of the example, there could
be no equilibrium in which asset J + 1 remains untraded. (Our existence theorem,
stated in the next section then assures us that there must be some equilibrium in
which asset J 4 1 is traded.)

2.4 A Continuum of Traders

We have mentioned several times that our model is meant to embody the ideal of
perfect competition, in which each agent is so small that by himself he cannot influ-
ence anyone else. We can make such an interpretation of our model more concrete
by replacing each agent h by a continuum of identical agents parameterized by ¢
lying in the interval (h — 1, h]: each agent t € (h — 1, h] has identical characteristics:
(et,ut,)\t,Qt) = (€h7uh7/\h7Qh).

For any (p,m,K) € Ri;XL x R x [0,1]9%/ we can define B(p, 7, K) exactly
as before, replacing h by ¢ throughout. Also GE(R, A, Q) can be defined as before,
replacing Y, by [ ; dp, where 1 = Lebesgue measure, “vh € H” by “almost all
t € 1,” and the notion of convergence of x, 8, ¢, D (which are now integrable functions
on I) in condition (5) by almost everywhere pointwise convergence.’

The GE(R, A\, Q) of the finite agent economy, whose existence we shall prove in
Theorem 1, corresponds to a GE(R, A, Q) of the continuum model with the added
feature that (zf, 0%, ot, D*) = (2,6, o, D) whenever ¢ and ' are both in (h—1, k],
i.e., all agents of the same type behave symmetrically. We shall call such equilibria
type-symmetric when viewed in the continuum setting.

But we shall shortly consider a variant of our model in which the convexity of
budget sets fails to hold. Here the continuum model is necessary for establishing exis-
tence of GE(R, A, Q). Even if the economy is finite-type, its equilibria need no longer
be type-symmetric, and the consideration of a continuum becomes unavoidable. See
Theorem 2.

3 The Orderly Function of Markets with Default

In our previous paper we established that default is completely consistent with the or-
derly function of markets. To that end we proved that under fairly general conditions,
equilibrium always exists in our model.

Theorem 1 For any \ € @fs‘] and Q € R, a GE(R, )\, Q) equilibrium satisfying

(1)—~(5) ewists.

The universal existence of equilibrium is somewhat surprising because of the his-
torical tendency to associate default with disequilibrium (or more accurately, to make

®Without too much more trouble we could have allowed for an infinity of types. We have made
the finite-type assumption only for ease of exposition.
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full delivery part of the definition of equilibrium), as we have already remarked. Fur-
thermore, endogeneity of the asset payoff structure is known to complicate the exis-
tence of equilibrium with incomplete markets. But we showed that no new existence
problems arise from the endogeneity of the asset payoffs due to default.

So far our budget set is convex. But the simple quantity constraints we have
already introduced do not allow us to formalize a wide enough variety of signals.
They cannot handle cases when the sales constraints interact across assets j. In
particular, they cannot handle exclusivity, under which an agent is prohibited from
selling more than one asset. To take such constraints into account, we need to consider
nonconvex budget sets B"(p, m, K) C B"(p, 7, K).

We then require that the correspondences B", h € H, satisfy:

(0*) (eh,0,0,0) € Eh(p’ﬂ"K) C Bh(pvﬂ-aK)
(1*) B" is upper semi-continuous

(2*) B" has the scaling property: (z,6,¢,D) € B'(p,m,K) and 0 < a < 1 =
(ax, ), ap,aD) € B"(p, #, K) for (p, #, K) sufficiently close to (p, 7, K)

The following theorem is a corollary of Theorem 7 in our previous paper.

Theorem 2 Define equilibrium with budget sets B"(p,m, K) for t € (h —1,h] and
h € H, satisfying (0*), (1*), (2*) above. Suppose the quantity constraints Q? are all
finite. Then, in the finite-type continuum model, equilibrium ezists (though it may
not be type symmetric).

The universal existence of equilibrium with default is also surprising because the
pioneering papers placing adverse selection in a model of competition, by Akerlof
(1972) on the market for lemons, and Rothschild and Stiglitz (1976) on insurance
markets, purportedly showed that adverse selection is quite commonly inconsistent
with equilibrium.

Insurance contracts promise payments conditional on the state of nature, and
so can be viewed as assets such as we describe in this paper. In particular, the
Rothschild—Stiglitz model can be expressed as a special case of our general equilib-
rium model, as we show in Sections 4 and 5. The reason Rothschild and Stiglitz found
robust regions with no equilibrium is that they defined equilibrium expectations dif-
ferently, as we have explained. If buyers had the perfectly competitive expectations
that we invoke, namely that each thinks he cannot improve his selection of sellers
by unilaterally offering a higher price, then the Rothschild—Stiglitz model would al-
ways have an equilibrium, as we show in Section 5, even using their “exclusivity”
hypothesis.
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4 Default and Insurance

4.1 The Insurance Problem

As in Rothschild—Stiglitz, we consider a continuum of two types of agents: “reliable”
(R) and “unreliable” (U). Each agent knows his own type, but not that of the others.
Each agent has wealth (for simplicity, 1 dollar) in his “good” (no-accident) state, but
nothing in his “bad” (accident) state for which he seeks insurance. Accidents occur
independently across agents. The unreliable agents are more accident-prone than the
reliable. Thus if prob’(G) denotes the probability of a good state for type ¢, we have
prob(G) > prob? (@).

The utility for x units of money is u(x), invariant of the state as well as agent-
type. As is standard, we assume that u is strictly concave, monotonic and v’ () — oo
as x — 0. The consumption of (z¢,zp) across the two states yields expected utility

prob’(G)u(zq) + prob’(B)u(zp)

to type t = R,U. For ease of presentation we take prob’(G) to be rational, and we
further suppose that there is an equal population of each type.

To enable exact computation, we will focus on the numerical case ©v = log,
prob” (G) = 1/3, prob®(G) = 2/3; but our analysis holds verbatim for the general
scenario.

4.2 A Microeconomic Representation of Insurance

We recast the Rothschild—Stiglitz story into our framework, building a microfounda-
tion for the insurance problem in the process. The key step is to represent probability
distributions of accidents by states of the world which make explicit who has an ac-
cident there. This makes it clear that “identical” insurance policies for two agents
of the same type do not pay off identically, since the agents will have accidents in
different states, even if their probabilities are the same.

Within our framework of finite states and agents, we cannot maintain both the
hypotheses that accidents occur independently, and that the same proportion of each
type has an accident in every state. We drop the independence hypothesis, which
actually plays no role in the theory anyway.

Since probabilities are rational, let prob™(B) = r/n and let prob? (B) = u/n. To
convert the insurance problem into our framework, take #S = n, and suppose there
are (1) subtypes of reliable agents, each with population measure (}')o, where o is a
positive scalar. Similarly, suppose there are (') subtypes of unreliable agents, each
with population measure (7)o

Each subtype 7 is identified with the set S; C S of its bad states (r in number if
reliable, v in number if unreliable). All agents ¢ of subtype 7 have endowments equal
to 1is s € S\S;, and equal to 0 if s € S;.

The reader can verify that each agent has the right probability of accident (r/n if
reliable, u/n if unreliable), and that in every state the appropriate fraction of reliable
and unreliable agents have accidents.
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Turning to our numerical example, prob®(B) = 1/3 and prob” (B) = 2/3. Hence
#S = 3. There are (‘Z’) = 3 reliable subtypes, each of measure (;)0’ =30 =1 (we set
o=1/3), and (g) = 3 unreliable subtypes, each of measure (?)(f =1.

So let there be H = 6 agents, S = 3 states of nature, and one good L =1 in each
state. Suppose agents have no utility for consumption at ¢ = 0, and that they have
the same utility at t =1

3
u(xy, g, x3) = Z log(xs).
s=1

The endowments of the agents are

0 1 1
el = 1 ];e2=(10|;e=(1];
1 1 0
1 0 0
et = 0 |;:e=[1];€e=1]0
0 0 1

Notice that the probability of accident for each of the first three “reliable” agents
is 1/3, and the probability of accident for each of the last three “unreliable” agents
is 2/3. Moreover, in every state precisely 1/3 of the reliable type, and 2/3 of the
unreliable type, have an accident.

The Arrow-Debreu equilibrium for this economy is p = (1,1,1), and 2" =
(2/3,2/3,2/3) for h € {1,2,3}, and 2" = (1/3,1/3,1/3) for h € {4,5,6}. This
allocation is not achievable via insurance when agent types cannot be observed.

4.3 Insurance with Markets as Intermediaries

Rothschild and Stiglitz introduced oligopolistic companies that provided insurance.
Here agents insure each other through the market. They buy pools of promises, and
sell promises which allow for idiosyncratic delivery and default.

We take the promises of all assets to be the same:

1
Ri=Ry=1|1 for all j € J.

We take default penalties to be

Ao foo if el =1
SIT10 ifel=0

Notice that the penalty is infinite when agents have the resources to pay, and 0
otherwise. They do not depend on the name of the defaulter, but they do depend
on his circumstances. The information required to impose them is identical to the
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sort of information an insurance company must obtain to verify that an accident
has occurred. Indeed we use these penalties precisely in order to render insurance a
special case of default.

By combining a long position with a short position on which there may be default,
loan (asset) markets may be interpreted as insurance markets. Suppose some asset j
has anticipated delivery rates K,; = K for all states s. Consider an agent h who buys
and sells one unit of asset j, delivering fully in states s with e? = 1 and defaulting
completely in states swith e = 0. On net he obtains an “insurance policy” that
pays him $K in every “bad” state s with e = 0, and takes $(1 — K) in every “good”
state with e = 1.

5 Insurance and Adverse Selection without Signalling

Suppose we have a single asset promise Ry = (1,1,1), with Q} = co Vh € H. With
only one commodity in each state in period 1, there is no further trade in period 1,
and w.l.o.g. we can take ps; = 1 for all s. Given the default penalties, all agents
will fully deliver in their good states, and fully default in their bad states. We can
think of this model as one big insurance contract, with adverse selection. The sellers
h € {1,2,3} default 1/3 of the time, while the sellers h € {4,5,6} default 2/3 of the
time. A buyer must anticipate that he may get more sellers of the bad type than of
the good type.

In the unique equilibrium derived below, the unreliable agents h € {4,5,6} sell
and buy twice as much of the asset as the reliable agents h € {1,2,3}. Hence
Ko = 2/3 x1/3+1/3 x2/3 = 4/9, Vs € S. Furthermore, 0 = b = 3/5
for h € {1,2,3} and 0f = ¢} = & for h € {4,5,6}, and z! = (4/15,2/3,2/3),
¥? = (2/3,4/15,2/3), 23 = (2/3,2/3,4/15), and 2* = (1/3,8/15,8/15), 2° =
(8/15,1/3,8/15), 2% = (8/15,8/15,1/3). Compared to the Arrow-Debreu equilib-
rium, reliable agents are doing much worse since their insurance rates are debased
by the unreliable agents. The unreliable agents are much better off than in the
Arrow—Debreu equilibrium because they benefit from being pooled with the reliable
agents.

The reader can verify that the equilibrium is correct by calculating that the
marginal utilities to reliable and unreliable agents of buying and selling a unit of the
asset is 3.

By selling and buying one unit of the single asset (with fixed delivery rates Ky =
K), every agent gets K in his bad state, and gives up 1 — K in his good state. Since
the agents perceive K as fixed, this implicitly defines a price ¢ = (1 — K)/K of
consumption in the bad state in terms of the good state. All agents are effectively
maximizing prob(G) log z¢+(1—prob(G)) log x5 subject to the constraint xg+qrp <
1. With these Cobb-Douglas utilities, agents will always choose xg = prob(G), as
illustrated in Figure 3. This demonstrates that reliable agents A trade half as much as
unreliable agents A, and hence that K = 4/9, and hence that 1/¢g = 4/5, and hence
that o = 1/3 x 1/q = 4/15, %% = 2/3 x 1/q = 8/15, and so on. In this analysis the
price 7 of the asset played no role, since all agents are buying and selling the same
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asset. In the next version, with multiple traded assets, the prices 7; are important.

Bad state
2

1le R
l/g=4/5
2/3

12

1/3

450
1/3 2/3 1 Good state

Figure 3. Pooling equilibrium with one asset

Every agent begins with an endowment of 1 in his “good” state(s) and 0 in his
bad state(s). The top budget line represents the actuarially fair odds for the reliable
agents, for whom the good state is twice as likely as the bad state. At those fair
odds (in the Arrow—Debreu equilibrium) they completely insure by moving to the
45° line and consuming 2/3 in every state. Similarly the unreliable agents have a
fair odds budget set that reflects the fact that for them the good state is only half as
likely as the bad state. In the Arrow—Debreu equilibrium they completely insure by
consuming 1/3 in every state.

When the odds are 4:5 of good to bad, the unreliable agents take advantage of
the actuarially favorable odds to overinsure, while the reliable agents underinsure
because for them the odds are unfair. The odds of 4:5 are closer to 1:2 than to 2:1,
reflecting the fact that the unreliable agents take out twice as much insurance. Note
finally that the assumption of Cobb—Douglas utilities fixes the same consumption for
each agent in his good state, no matter what the budget line.

6 Signalling with Exclusivity Constraints:
Separating Insurance

6.1 Signalling Economy with Exclusivity Constraints

Rothschild and Stiglitz (1976) made the important observation that adverse selection
in insurance markets might lead to the same kind of inefficient signalling that Spence
had earlier postulated would arise in labor markets. In labor markets, Spence (1973)
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argued that agents with high ability would purchase expensive and unproductive ed-
ucation simply to signal that they were indeed of high ability. In insurance markets,
Rothschild and Stiglitz argued, agents would commit themselves exclusively to con-
tracts with low insurance in order to signal that they were reliable. Rothschild and
Stiglitz went on to suggest that with signalling there might not be any equilibrium in
insurance markets. In their scenario, firms were oligopolistic and could offer insurance
contracts at prices visibly different from the market prices prevailing in equilibrium,
which had the effect of luring customers away. But in our scenario there is perfect
competition: firms do not set the price, the market sets the price. In contrast to
Rothschild—Stiglitz, we find that equilibrium always exists in our scenario. But the
important point, that signalling can be inefficient, remains intact.

Rothschild and Stiglitz proposed a severe signalling budget set in which agents
can sell some contracts which commit them not to sell any other contracts. We can
capture this idea by adding to our example additional assets j = 1, ..., J which make
the same promises as before, R; = (1,1, 1), and with the quantity constraints Qg? =
Qj, with Q; < Qj+1, for j =1,...,J — 1. By taking the grid size = max;ec j{(Q;+1 —
Q;)} to be small, and @y and 1/Q; to be large, we can approximate a continuous
choice of quantities.

Exclusivity gives the budget sets

B(p,m,K) ={(x,0,9,D) € B"(p,m, K) : ¢; >0 implies ¢; = 0 for i # j}.
The asset sales ¢ must now lie in the set
C’z{(peRi:gongjVjGJ, g0j>0:g0i=0Vi7éj}.

The set C' is star shaped, with each tentacle representing the quantities sellable in a
different asset. Clearly B", though nonconvex, satisfies the requirements of Theorem
2.

By symmetry we can suppose K,; = K; for all s € S. So from the point of view
of a buyer, all assets are perfect substitutes. Hence if two assets ¢ and j are traded,
their prices must satisfy m;/K; = 7;/K;. Since we can always scale the vector of
asset prices arbitrarily, we may assume 7; = K; for all actively traded assets. If an
asset is not actively traded, then we must have 7; > K;. Conversely, if there is at
least one actively traded asset, then all agents would be happy not to buy any other
asset j with 7; > K.

6.2 Price—Quantity Lines

Suppose now that some asset j sells for ;. An agent who contemplates selling one
unit of asset j would receive 7;. He could use this money to buy 7;/7; units of active
asset i, getting deliveries (m;/7;) K; = 7; in every state. The agent has to deliver 1 in
all his good states, and nothing otherwise. Thus on net he receives 7; in his bad state
and gives up 1 —m; in his good state. Implicitly that defines a price ¢; = (1—m;)/7;,
indicating how much consumption must be given up in the good state to get one
unit of consumption in the bad state. If a quantity ¢; is sold of the asset, then the
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agent gives up ¢; — ¢;m; in his good state, and gets ¢;m; in his bad state. Thus his
consumption must lie at the intersection of the price line and quantity line described

in Figure 4 below.

Bad state

Xg A
1.7 .  quantity line
) " I-m mj price line ?jd

X = final consumption

——— > Good state
P 1 X6

Figure 4. Final consumption from selling ezclusively ¢; units at price 7;

Each agent is a price taker and a quantity chooser. If the asset has quantity
constraint ();, then a seller can choose any ¢; < @), giving him the opportunities
indicated by the bold interval in Figure 5.

i . .
1__7 - brice | Quantity line
rice line

Consumption
opportunities

v

Figure 5

It is important to note that if an agent’s indifference curve through X does not
intersect the interval of consumption opportunities at any other point, then he will

choose ¢p; = @Q; if he sells asset j.
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6.3 Impossibility of Pooling Equilibrium with Exclusivity Constraints

Suppose we are at an equilibrium in which every agent is selling a positive amount of
the same asset j*, with quantity constraint ;<. Let final consumption be denoted
X®and XY, on indifference curves I and IV, respectively. No matter what its price
7+, we know that the unreliable will sell at least as much as the reliable: gog-]* > gpﬁ.
Hence K <1/2=1/2-1/34+1/2-2/3. We shall show that if the grid is fine enough,
then we cannot — for all j # j* — find prices m; at which no agent wants to buy
or sell asset j, contradicting that we have an equilibrium in which only asset j* is
traded.

Note that for any quantity limit 0 < Q; < gofi, the @; quantity line intersects
It at yf(j) before it intersects IV. (See Figure 6.) Clearly y*(j) lies above the 7«
price line (otherwise R would have chosen ¢;. < gojR*).

Assume that there is a j such that yZ(j) < 1. Then the points y'(j) and (1,0)
define a price line 7; indicated by the dotted line.

Assume, furthermore, that 7; < 2/3.

XB/

Tix < 1/2-price line

Figure 6

If m; < 7;, all agents strictly prefer not to sell asset j. By the refinement,
K; = 1. But then m; < 7; < 2/3 <1 = Kj, and all agents will rush to buy asset j,
contradicting that it is not traded.

On the other hand, if m; > 7;, reliable agents can achieve strictly higher utility
selling asset j, contradicting that they chose not to sell it.

Finally, if m; = 7;, then at any perturbation, only the reliable agents could
conceivably be induced to sell it. By the refinement K; > 2/3. All agents will rush
to buy it, since K;/m; = K;/7; > (2/3)/7; > 1, a contradiction.

We must now justify our two assumptions. They follow trivially from a small grid
size, for then taking j with @); just barely less than gpﬁ, we get that yf(j) is very
near X, hence yf(j) < 1 and 7; is near 7;» < 1/2 < 2/3. We must rule out the
possibility that ¢ — 0 as the grid size goes to zero.
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We argue that @ﬁ > » > 0, where { is given in Figure 7, independent of the grid
size. Since in equilibrium all assets must have K; > 1/3, we may suppose mg > 1/3.
At worst, the reliable agent must achieve the utility he could get from selling asset
0 at price 1/3. Since v/ (0) = oo, this would indeed give him more utility than his
endowment (1,0). Hence he would never agree to sell less than @ > 0 of any asset
priced at m; = K; = 1/2. A fortiori, for any price 1/3 < 7; < 1/2, he would insist
on an even higher minimum sale of asset j.

XG A

1/3-price line

——®»
p 1 Xg
Figure 7

Our equilibrium refinement thus captures the same spirit as the Rothschild—
Stiglitz definition of no entry equilibrium in eliminating the pooling equilibrium.

6.4 Existence of Separating Equilibrium

The only equilibrium Rothschild and Stiglitz found is the “separating” equilibrium in
which each type of agent sells a different asset. Rothschild and Stiglitz observed that
in such an equilibrium the unreliable types should feel unconstrained by the quantity
restriction while the reliable types should feel quantity constrained. Moreover, the
unreliable types should be indifferent to either of the two contracts, while the reli-
able types should strictly prefer their quantity constrained contract. Indeed, once we
impose the Rothschild-Stiglitz exclusivity restriction, we get this sort of equilibrium,
though not quite exactly because our menu of quantity constraints is finite. The dif-
ference is that our separating equilibrium always exists, whereas Rothschild—Stiglitz
found robust regions of nonexistence.

We claim that with the exclusivity condition ((p? > 0 for at most one contract j),
there is essentially a unique equilibrium in terms of consumption. We first describe
its qualitative features before computing it for our numerical example. See Figure 8.
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® > X
1 G
Figure 8

Let the unreliable agents trade (i.e., buy and sell) one unit of asset 0, with 79 =
Ko = 1/3, to obtain their optimal consumption Z¥ on the 1/3-price line. Let Z be the
intersection of the U-indifference curve through ZY with the 2/3-price line. Assume
that there exists an asset j(R) such that Z lies on the Qj(ry-quantity line. Then let
the reliable agents trade wﬁR) = Qj(r) units of asset j(R), with 7; gy = Kj;r) = 2/3,
to obtain the consumption Z% = Z.

To check that we have a genuine equilibrium, we must price all the untraded
assets in a manner that satisfies our equilibrium refinement.

If1 < Qja set T = Kj = 1/3

If Qj(r) < Qj <1, then the Q;-quantity line intersects the U-curve (through ZY)
at ZU, before it intersects the R-curve (through Z%). Set m; = K; in accordance
with the dotted line in Figure 9, which connects (1,0) to ZV.

If Q; < Qj(r), then the @Q;-quantity line intersects the R-curve at Z® before the
U-curve. If Zg < 1, set m; = K; in accordance with the other dotted line in Figure
9, which connects (1,0) to ZE,

If Q; < Qj(r) and Zg >1,set m; = K; =1.

XB A
2/3-price line
u 0=1 QiR
Q Q
q
Z
1/3-price line
Z ~
N ZR
AN
» > X
1 G
Figure 9
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For every j ¢ {0,j(R)} we show that no agent can strictly improve by trading j.

When 1 < Q; (and so 7; = 1/3), the unreliable agents are indifferent to trading
(1 unit of) j and (1 unit of) asset 0, while the reliable types are strictly worse off
trading j.

When Q;(p) < Q; < 1, the unreliable agents are indifferent to trading (Q; units
of) 7 and (1 unit of) asset 0, while reliable types are strictly worse off trading j.

When Q; < Qj(g) and 7; < 1, the reliable agents are indifferent to trading (Q;
units of) j and (Q;(g)y units of) asset j(R), while the unreliable agents are strictly
worse off trading j.

Finally, when Q; < Q) and m; = 1, no agent can do better switching from j*
to j. (See Figure 10.)

XB A

2/3-price line

1-price line

1/3-price line

Figure 10

The 1-price line is the vertical line above (1,0). Since the R-indifference curve is
strictly downward sloping, we have Zg > 1 if and only if the @Q; quantity line in-
tersects the 1-price line on or below the R-indiffrence curve. Thus the consumption
opportunities (from (1,0) to this intersection point) cannot make the reliable agent
better off than his equilibrium consumption Z#. The unreliable agents are strictly
better off at ZY.

In every case j ¢ {0,7(R)}, with 7; < 1, either the reliable types or the unreliable
types (but never both) are indifferent to switching from their equilibrium trade to j.
In each of these cases, m; = Kj is at least as high as the delivery rates of the only
type willing to switch there.

We check now that these prices satisfy our equilibrium refinement. Given any
e > 0, choose the macro variables (p(e),n(e), K(¢)) in E(e) to be identical to the
macrovariables (p,m, K) for E. For assets j with m; = 1, we have K(¢) = K; = 1 and
so the refinement condition is automatically satisfied. For each asset j with 7; < 1,
let a small measure (less than €) of the relevant type switch to trading asset j. They
are still optimizing, and all markets continue to clear. Moreover, K;(e) = K; is no
less than the realized delivery rate on j in E(e). Since boosting of delivery rates
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is permitted in E(e) for assets that are untraded in E, we have constructed a valid

perturbation.
We now turn to the general situation in which there is no asset j such that the

(0; quantity line contains Z. (See Figure 11.)

XB 4
\ ¢8:l
‘. 2/3-price line
\///
U . o
Missing quantity limit
Qk+1 ’/Q
L ,/, k
/
ZU ,l,
1/3-price line 4
wANZ,”
4
, Y
l, N X
1 G
Figure 11

Let Qr41, Qr be consecutive quantities in the grid which “trap” the missing

quantity in between. Denote
W = intersection of the U-indifference curve (through ZY) with the Q| 1-quantity

line
Y = intersection of the 2/3-price line with the Qg-quantity line.

Case 1 (Figure 12) The reliable type (weakly) prefer Y to W.
Then define Z® =Y and j(R) = k, and proceed exactly as before to price the

untraded assets and to construct the perturbation.

XB /
\ wgzl
‘. 2/3-price line
\ /
U
R Q
k+1 A
! Q= Qi(R)
zU
1/3-price line
w z
y=2zR
» > X
1 G
Figure 12
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6.5 Nearly Separating Equilibrium
Case 2 (Figure 13) The reliable prefer W to Y.

XB A
2/3-price line
p ¢8=1
u -
R Qk+1=Qj(R)
. Qi
Z
1/3-price line Z
N
W = ZR \\ Y
» > X
1 G
Figure 13

In this case we do not get a pure separating equilibrium, but an equilibrium with a
slight degree of “mixing.” Let all the reliable agents trade Qx41 = Qj(g) units of
asset k +1 = j(R) and consume W = Z%. Set Tjry = Kj(r), in accordance with
the dotted line joining (1,0) to W in Figure 13. The new feature of this equilibrium
is that some unreliable agents also trade the asset j(R). In fact, just enough of
them trade j(R) so that the delivery rate falls from 2/3 to Kj(gy. The rest of the U
population acts as before, trading ¢y = 1 units of asset 0.

Notice that the pricing of untraded assets and the perturbation work exactly as
before. Also notice that the degree of mixing goes to zero with the grid size (since
then W — Z and 7* — 2/3).

Notice also that the slight mixing has absolutely nothing to do with the population
proportion of reliable and unreliable types, and so nothing to do with the nonexistence
in Rothschild-Stiglitz. Had we taken all possible @}, we would always obtain the
separating equilibrium.

6.6 The Numerical Example

In our numerical example, let us add assets j =1, ...,100 to asset 0, with Q; = j/30
(and so, with grid size 1/30). The reader can check that this puts us in Case 1 with
J(R) =9. See Figure 14.
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Figure 14

It is worth pointing out that we were able to exploit the special structure of the
insurance economy (like the single crossing property) to construct the equilibrium,
and to verify it to be so. In general, constructing equilibrium can be quite difficult,
but there is no question of its existence. Theorem 2 assures us that equilibrium exists
even without special structure, for example, even if reliable agents have utlity v # u
so that v and w indifference curves cross more than once.

Rothschild and Stiglitz correctly noted that the separating equilibrium allocation
and price system is well-defined and feasible independent of the proportion of reliable
agents. By contrast, observe that the pooling equilibrium improves in utility terms
as the proportion of reliable agents converges to 1, eventually Pareto dominating the
separating equilibrium. Rothschild and Stiglitz went on to claim that if nearly all
the agents are reliable, then the separating equilibrium could not be an equilibrium,
because some contract such as asset 30 with its more generous constraint QJsg = 1
would break the equilibrium. Their paper is not precise about how expectations are
formed when assets are not traded, but the idea is that if it was expected that the
sellers of asset 30 were in the same proportion as the population as a whole, then
in a population consisting almost entirely of reliable agents, the corresponding Ksg
would be nearly 2/3 and the price it would fetch would be 739 = 2/3. This price (and
its generous quantity constraint) definitely would lure away sellers of both types and,
so Rothschild and Stiglitz argue, justify the expectations K3o = 2/3, and thus upset
the separating “equilibrium.”

However, such an expectation is hasty, since agents do not all have the same
incentive to switch to the new contract. We have set the price in equilibrium of asset
30 at w390 = 1/3. At this price the unreliable agents are just indifferent to switching
from asset 0 into asset 30, whereas the reliable agents are not close to wanting to sell
asset 30. Even if some agent offered to buy asset 30 at a price of 1/2, only unreliable
agents would rush to sell it. Not until the price reaches .53 would the reliable agents
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become interested in selling asset 30. Thus we feel justified in setting the expectations
of delivery for asset 30 at K39 = 1/3, and the price at 739 = 1/3. If an agent did for
some remarkable reason offer to pay 2/3 for asset 30, he would be deluged with offers
from sellers, so many in fact that he could never accommodate them all. A natural
reaction would be to lower his buying price until the number of sellers fell. But as we
just saw, to reduce demand sufficiently he would end up selling only to the unreliable
types, as we have presumed.

We are in agreement with the concern of Rothschild and Stiglitz about the sepa-
rating equilibrium when there is a high proportion of reliable agents. But the problem
is not the nonexistence of equilibrium. (We constructed an equilibrium in our exam-
ple, and in general, Theorem 2 guarantees that equilibrium exists.) The problem is
its inefficiency.
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