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Abstract

We extend the standard model of general equilibrium with incomplete mar-
kets to allow for default and punishment. The equilibrating variables include
expected delivery rates, along with the usual prices of assets and commodi-
ties. By reinterpreting the variables, our model encompasses a broad range of
moral hazard, adverse selection, and signalling phenomena (including the Akerlof
lemons model and Rothschild—Stiglitz insurance model) in a general equilibrium
framework.

We impose a condition on the expected delivery rates for untraded assets
that is similar to the trembling hand refinements used in game theory. Despite
earlier claims about the nonexistence of equilibrium with adverse selection, we
show that equilibrium always exists, even with exclusivity constraints on asset
sales, and transactions-liquidity costs or information-evaluation costs for asset
trade.

We show that more lenient punishment which encourages default may be
Pareto improving because it allows for better risk spreading.

We also show that default opens the door to a theory of endogenous assets.
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1 Introduction

There is a substantial amount of default in the American economy. At first glance
this would seem to be a sign of disequilibrium, and to call for economic models
that radically depart from the orthodox paradigm of general equilibrium and market
clearing.

Indeed, general equilibrium theory has for the most part not made room for
default. In the Arrow—Debreu model of general equilibrium with complete contingent
markets (GE), and likewise in the general equilibrium model with incomplete markets
(GEI), agents keep all their promises by assumption. More specifically, in the GE
model, agents never promise to deliver more goods than they personally own. In
the GEI model, the definition of equilibrium (that has been developed in a rapidly
growing literature) allows agents to promise more of some goods than they themselves
have, provided they are sure to get the difference elsewhere. Agents there too must
honor their commitments, though no longer exclusively out of their own endowments.
Fach agent can keep his promises because other agents keep their promises to him.

We build a model that explicitly allows for default, but is broad enough to incor-
porate conventional general equilibrium theory as a special case. We call the model
GE(R, ), Q) because each asset j is defined by its promise R;, the penalty rate \;
which determines the punishment for default on the promise, and the quantity re-
striction ); attendant on those who sell it.

Fixing exogenously the set A of tradeable assets,

A= {(Rj7 )‘jan) : (Rj7/\j7Qj) is tradeable},

we solve for equilibrium E(.A). The equilibrating variables include anticipated deliv-
ery rates on assets, along with the usual prices of assets and commodities.

One of the central features of our model is that assets are thought of as pools.
Different sellers of the same asset will typically default in different events, and in
different proportions. The buyers of the asset receive a pro rata share of all the
different sellers’ deliveries, just as an investor does today in the securitized mortgage
market, or in the securitized credit card market. Just as buyers of commodities are
assumed in perfect competition to regard prices as fixed, so we assume that buyers
of assets regard default rates as fixed. Our general equilibrium model thus stands
in contrast to models in which a single lender and a single borrower negotiate with
each other. We have avoided a finite-player, game-theoretic treatment of default
because, for the massive anonymous financial markets on which we focus attention,
perfect competition is a better approximation to reality, and much more analytically
tractable.

We have also avoided a (perfectly competitive but) partial equilibrium treatment
of our subject because we wanted to evaluate the system-wide consequences of default.
In a world in which promises can exceed physical endowments, each default can begin
a chain reaction. A creditor in one market where payment does not occur is deprived
of the means of delivery in another market where he is the debtor, thereby causing a
further default in some other market, etc. The indirect effects of default might be as



important as the direct effects, but they are missed in partial equilibrium models. We
emphasize that these chain reactions occur exclusively in economies with intermediate
levels of financial development, such as the system now in place in the United States.
Once the asset markets become complete, the system of interlocking debts will be
broken, as in the GE model, and no chain reactions will occur.

Another central feature of our model is that the subset A* = A*(E(A)) C A of
actively traded assets

A" ={(R;,\;,Q;) € A: (R;,\;,Q;) is positively traded in E(A)}

also emerges in equilibrium. The promises, penalties, and sales limitations corre-
sponding to actively traded assets can thus themselves be regarded as endogenous.

A crucial role in the endogenous determination of asset trade is played by the
expectations agents have over the deliveries of assets that are not positively traded.
(In game theoretic terms, this is analogous to beliefs off the equilibrium path.) We
fix these expectations for non-traded assets at reasonable levels by a straightforward
equilibrium refinement. The idea is to introduce an external e-agent who sells e
units of each asset and fully delivers, and to take the limit as ¢ — 0. This rules out
irrational pessimism on expected deliveries from untraded assets. The simplicity of
the refinement is due to our hypothesis of perfect competition consistently applied.!

In Sections 2—4 we describe the model and explain who bears the loss from de-
fault and how the penalties are administered. We explain that endogenous default
necessarily involves adverse selection and moral hazard. Indeed we note that the
standard adverse selection and signalling models of Akerlof (1972), Spence (1973),
and Rothschild and Stiglitz (1976) are special cases of our model. Section 4 describes
and justifies our equilibrium refinement.

Our first goal is to show that if agents have the mental powers to anticipate
future rates of default (contingent on future events), just as they are presumed by
conventional equilibrium theory to have the mental powers to anticipate future prices
(contingent on future events), then default is consistent with the orderly function of
markets. In Section 5 we prove the existence of equilibrium with default under exactly
the same conditions necessary to prove the existence of equilibrium in the GEI model
(where default is ruled out by assumption.) More precisely, we show that our refined
equilibrium E(A) exists for every collection A of assets (R, A, Q) for which @ < oo,
or for which () = co but the promises R are all paid in the same numeraire.

This general existence of equilibrium is somewhat surprising, because default
seems linked to disequilibrium, and because we know from the GEI literature that
the existence of equilibrium can be compromised when the asset span is endogenous,
and because Akerlof and Rothschild and Stiglitz all suggested that equilibrium might
not exist. Our general existence proof is also surprising in that it seems to counter the
suspicion that asymmetric information creates an obstacle to competitive equilibrium.
(See for example, Helpmann and Laffont, 1975). The key to existence is that the
asymmetry is one-sided. Each seller has the option to deliver whatever he wants,

!To the best of our knowledge, this appears to be the first analogue of the “trembling hand”
refinement of game theory in perfectly competitive equilibrium.



while all buyers get the same payoff (per unit purchased). Were the asymmetry
two-sided, then indeed equilibrium would be more problematic.?

In Section 6 we describe how chain reactions could occur in the model. We also
make the obvious but important point that in a very primitive financial world with one
or no assets, there cannot be chain reactions of default. Furthermore, at the opposite
extreme, in an Arrow—Debreu world, there will also be no chain reactions because no
agent need ever promise to deliver more than he himself has on hand. One agent’s
default will therefore not compromise any other debtor’s ability to repay. Chain
reactions are thus characteristic of financial economies with intermediate levels of
development. They can be shortened by netting promises. Netting, however, creates
a nonconvexity in the budget set. But with a continuum of households, we show that
equilibrium still exists.

The consequences of default are potentially ruinous, yet many economic systems
permit them, at least to a certain extent. (To be sure, some societies are more
tolerant of default than others.) Since the imposition of default penalties causes a
deadweight loss of utility which could be avoided altogether, either by abolishing
the penalties or else by making them so harsh that nobody dares incur them, a
rationale for intermediate levels of default penalties is called for. From a historical or
legal perspective, many explanations suggest themselves: protection of creditors and
debtors, punishment commensurate with the crime, etc.

In Section 7 we give a purely economic explanation for intermediate default penal-
ties by showing that when markets are incomplete, intermediate levels of penalties
that encourage a limited amount of default can raise the level of overall economic
efficiency, making both creditors and debtors better off, even when the whole chain
of indirect effects is accounted for. Sometimes this range of appropriate intermediate
levels of default penalties consists of no more than a single point, as in the example
presented in Section 7. In such cases we speak of the optimal default penalty. In
the Arrow—Debreu world where all contingencies can be foreseen and written into
the contract, the first welfare theorem demonstrates that contracts should be strictly
enforced, so the optimal default penalty is infinitely harsh. But if some contingencies
cannot be written into the contract, as will be the case when markets are incomplete,
then it may be advisable not to punish severely those who default, even when the

?Consider an outdoor market at which different farmers can put apples up for sale in the same bin.
Each farmer may know how many of his own apples are rotten, but suppose all the apples are mixed
together in the bin. If buyers canot pick out their favorite apples, but must order by the number
of randomly chosen apples, then a single price can clear the market for these (non-homogeneous)
apples. But if buyers have asymmetric capacities for detecting rotten apples, and if the buyers were
allowed to examine the fruit and to choose their apples, then a homogeneous price per apple might
not be enough to clear the apple market.

There is also no problem in clearing the (heterogeneous) apple market with one price if, in addition,
buyers can pay with real or counterfeit coins, provided that all sellers get the same distribution of
coins. What is crucial is that each market can be separated into two sides o and 3 such that every
trader on the a-side receives the same relative bundle of 8-goods, though each SB-trader may deliver a
different bundle to the market, and similarly each S-trader receives the same proportions of a-goods,
though each a-trader may deliver a distinct a-bundle to the market.

We elaborate this general situation in other work.



penalties cannot be varied with the reason for defaults.

We are careful to explain the two reasons why lenient default penalties are ad-
vantageous when markets are incomplete. First, default allows agents to tailor-make
promises into deliveries that suit them best. In effect they can replace the given
assets by more appropriate assets. Second, the span of the asset deliveries can be
made much larger than the span of the asset promises, since a single given asset can
be made into as many different assets as there are sellers, if different sellers default
differently on the same promises.

In Section 8 we postulate transactions costs (that might decrease with increased
liquidity), and we postulate that contingent securities cannot be traded until after
a fixed “evaluation” cost is paid. This creates a discontinuity in payoffs. We prove
nevertheless that, with a continuum of agents, existence of equilibrium with default
remains intact.

Both of these market impediments decrease the social efficiency of trading in many
asset markets and increase the social benefit of packaging heterogeneous promises
into a single security. Thus we should expect to see only a few actively traded assets
in A*, none of which are as delicately state-contingent as Arrow securities. Under
these circumstances it is clear that even if it were possible to write any conceivable
contingent promise, and to set any degree of harshness for the default penalties, active
equilibrium trade will involve fewer promises. From Section 7 we deduce that these
promises should be accompanied by lenient penalties.

Our final goal is to show that even in a world without trading costs, assets are
endogenous. Whereas in GEI the selection of assets is usually regarded as outside the
model, here we can resolve the asset selection problem by focusing on the endogenous
determination of positively traded assets A*. Typically in GEI, every (nonredundant)
asset is actively traded, so A = A*. However, in equilibrium with default, there will
typically be many assets in A\ A* which are priced by the market, but neither bought
nor sold.> The reason is that with default, the sale of an asset is not the negative
of its purchase. The buyer receives only what is delivered, but the seller gives up
in addition penalties for what is not delivered. The marginal utility of buying may
thus be strictly less than the marginal disutility of selling, leaving room for a price
in between at which no agent will want to buy or sell.

Recall that each asset (R;, A\;,Q;) is characterized by three dimensions. If the set
A of available assets is comprehensive (i.e., all conceivable levels and combinations
of the three asset dimensions are present in A), then we prove in Section 9 that A4*
will in effect select the Arrowian levels: completely spanning promises, with infinite
penalties, and nonbinding quantity constraints. On the other hand, if two of the
dimensions in A are exogenously restricted away from their Arrowian levels, then
the forces of supply and demand will endogenously select the levels in the remaining
dimensions in A* to be far from Arrowian, as we show in Sections 10 and 11.

For example, suppose promises and quantity constraints are fixed exogenously as
in Section 7, where we showed that optimal penalties should be intermediate. We

3In some applications we might choose to limit A exogenously; the point is that even if A is
inclusive, A" will still be limited.



can ask how harsh the penalties will be that endogenously emerge in A*. We find
that the forces of supply and demand select the optimal penalties.

Suppose quantity constraints are fixed exogenously at infinity, and default penal-
ties are fixed exogenously to be lenient. We show in Section 9 that there is an equi-
librium in which Arrow promises, though available, are not traded, and equilibrium
instead selects the non-contingent promise.

In our sequel paper (Dubey—Geanakoplos, 2001a), we show that if promises and
penalties are fixed exogenously in a particular way, our model includes the insurance
contracts of Akerlof (1972) and Rothschild-Stiglitz (1976). In that case .A* endoge-
nously selects quantity limits @);. This enables us to show how the phenomenon of
signalling can be treated in perfect competition, moreover without jeopardizing the
existence of equilibrium.

In our final Section 12 we show that equilibrium still exists with non-convex
budget sets and payoff functions that need not be concave or continuous. This enables
us to include confiscation and trigger penalties into our model of default.

2 Pooling: Adverse Selection and Moral Hazard
in Perfect Competition

In keeping with the spirit of perfect competition, which is the hallmark of general
equilibrium, we suppose that all trades are mediated by the market at market-given
prices. This situation arises in practice when agents trade small quantities with
each of many partners via a market. It differs from the standard framework of
adverse selection and moral hazard found in so-called “principal-agent” models and
“matching” models in which a single buyer confronts a single seller to negotiate a
large transaction (see, e.g., Gale, 1992). But it still leaves plenty of room for adverse
selection and moral hazard.

In the GEI model agents sell prespecified assets, i.e., promises to deliver com-
modities and money in the future, contingent on observable states of nature. We
extend that model by giving the seller of an asset the option of delivering what he
promised or of defaulting and incurring a penalty. As a result of the option, different
agents may pay off differently on the same asset, so that the revenue from purchasing
an asset depends not only on the asset’s promises, but also on the identities of the
sellers.

Adverse selection enters the picture because different sellers may have different
proclivities to keep promises, either because they have different disutilities for the
penalties incurred by defaulting, or because they have different endowments out of
which to pay their debts. Since there is potentially a (negative) correlation between
an agent’s proclivity to repay and the quantity of promises he is likely to try and sell,
buyers must be aware that the default rates they face will be different from those
they would get from the median seller. Moral hazard enters the picture twice, first
because agents have a choice not to repay, and second because an agent who sells
many assets will be less able to fully deliver on any one of them than he would if he
had refrained from overextending himself. The degree of adverse selection and moral



hazard depends on market prices.

In finite player, game theoretic analyses of the strategic role of asymmetric in-
formation, moral hazard and adverse selection play additional roles, that we do not
allow here, stemming from the supposition that each agent has a large impact on
traders he deals with. For example, those models posit that anyone who lends an-
other agent more money must take into account the moral hazard that the borrower
might as a result pursue a larger and riskier project, and hence the probability of
repayment might be affected. Similarly, anyone who unilaterally offers a higher price
for the same promise (equivalently, a lower interest rate for the same loan) must take
into account the adverse (or favorable) selection effect on the kind of people who
want that loan. We ignore these complexities and retain the hypothesis of perfect
competition.

In our model, agents do not unilaterally set price; the market sets the price. No
agent has the power, or perhaps the visibility, to set a price different from the market
price.* Equivalently, we might say that a buyer of an asset can set any price he wants,
but in doing so he makes the cautious assumption that the selection of sellers he will
find is no different from what is elicited by the market price, or (in the event of no
trade) by a perturbation of the market. Cautious expectations are defendable on
their own merits, but it is probably worth pointing out that in markets with a large
number of traders, a buyer who credibly and visibly offers a price above the market
price will be deluged with more sellers than he can accommodate. From which seller
is he likely to buy? The sellers with the greatest incentive to get to him first are the
ones who would have already been willing to sell at the low market price and now
find an opportunity to make a surplus, not the sellers who just barely prefer to sell
at the new high price. With cautious expectations, there is no reason for a buyer
to offer more than the market price, since he expects to face the same selection of
sellers as at the market price, at which he can already purchase whatever quantity
he desires.

In our model, lenders provide money to a pool of heterogeneous borrowers. No
lender can observe the personal characteristics of any particular borrower, but he can
formulate a judgment about the (state-contingent) rate of repayment for the pool as
a whole. Ultimately he will receive a prorata share of the deliveries from the whole
pool of borrowers. Furthermore, he supposes that he is so negligible compared to
the size of the pool he lends to that nothing he does can affect the general terms
of trade. Therefore he should figure that no matter how much money he lends, the
rate of repayment in any state of nature will be unaffected. Adverse selection and
moral hazard are nevertheless incorporated into a framework of perfect competition
by enlarging the traditional set of equilibrating price variables to include rates of
repayment.

The large markets on Wall Street conform to our spirit of perfect competition and
anonymous trade. For example, in the mortgage backed securities (MBS) market,
investors buy shares of a pool of home mortgages. The homeowners have the option
to default on their mortgage payments. The investing agent, however, is not matched

"We think of each buyer as a point in a continuum of buyers.



with a particular homeowner. On the contrary, he gets a share of the payments of
all the homeowners in the pool, so that his risk is diversified. He collects potentially
different amounts from different homeowners selling the same asset. MBS payments
also differ depending on the identity of the homeowners because the homeowners
are given a second option, to prepay the mortgage. In the MBS market there are
widely disseminated predictions of the future average rate of default and prepayment,
conditional on the realized state of the world (typically specified by interest rates and
perhaps one or two other parameters). Similarly we suppose in our model that the
state contingent rates of repayment are known as part of the definition of equilibrium.

In the mortgage market, banks act as intermediaries, approving each mortgage
after checking the homeowner’s credentials, and then selling the mortgage to a Wall
Street firm, or first to GNMA or FNMA, which in turn sell them to Wall Street. Many
of the finite game theoretic models of default emphasize the bilateral negotiation
between the bank and the homeowner. We take the opposite view in this paper,
that the bank plays a mostly mechanical role not requiring any judgment about
the quality of homeowners beyond checking customer assertions of objective facts
that must be passed on to the mortgage market. We therefore concentrate on the
decisions made by the homeowner—borrowers who sell the assets and the investor—
lenders who purchase the assets, leaving the banks entirely out of the picture. Indeed
we find in recent practice that banks are compensated in their mortgage efforts not
for their judgment in choosing reliable homeowners, but primarily from servicing fees
for collecting payments and other administration.

Mutual funds are another prominent example of securities that aggregate the
payments from many parties. For that matter, virtually all companies whose stocks
are traded over the New York Stock Exchange can be regarded as conglomerations
of different businesses whose profits are summed and distributed to the shareholders.
In practice, the purchase of a single asset often brings revenues from many different
sources, which can be conveniently approximated by the limiting case of an infinite
pool of sources.

In this paper we do not allow for options beyond default, but they could be
handled in the same manner. One should note that in many options markets there
is a central clearing house. Agents trade the options against the clearing house,
not against each other in bilateral negotiations. Often the clearing house guarantees
payment (here the option is held by the buyer of the asset instead of by the seller).
This guarantee tends to make the payments independent of the identity of the sellers,
but if the guarantee should fail then the system would revert to one akin to our model.

3 Default Penalties

Once we allow for default it is evident that society has much to gain from punishing
those agents who fail to keep their promises. In a multiperiod world, market forces
themselves might provide some incentive to keep promises, since agents who acquired
a bad reputation for previous defaults might find it more difficult to obtain new
loans. Collateral is also a very important device for guaranteeing at least partial



payment (see Geanakoplos, 1997); but here we ignore it. For reasons of simplicity and
tractability, we confine attention to a two period model with exogenously specified
default penalties which are increasing in the size of the default. These penalties
might be interpreted as the sum of third party punishment such as prison terms,
pangs of conscience, (unmodeled) reputation losses, and (unmodeled) garnishing of
future income. Later, in Section 12, we extend the model to include confiscation of
current goods.

Default in our model can either be strategic or due to ill fortune. Penalties are
imposed on agents who fail to deliver, whatever the cause. Debtors choose whether
to repay or to bear the penalty for defaulting; creditors cannot observe why default
occurs. Agents who have no resources to repay will be punished as severely as they
would if they had the resources but chose not to repay.” The consequences of default
penalties are therefore two-fold: they tend to induce agents to keep promises when
they are able, and they tend to discourage agents from making promises that they
know in advance they will not always be able to keep.

Let di}j be the nominal market value of default by agent h in state s on asset j.
Although in practice the severity of the penalty (e.g., a felony vs. a misdemeanor)
depends on the nominal amount, and that is only adjusted slowly in the face of
inflation, we suppose the adjustment is instantaneous, so that the penalties depend
on the “real” default. Accordingly, we divide di‘j by the market price in state s of a
fixed basket of goods v;.

We introduce the parameters )\};j to represent the utility penalty on agent h for
each real dollar of default in state s on asset j. The payoff to agent h in state s can
thus be written

e Agjlda"
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where x5 denotes consumption and pg the prices in state s, and [y]T denotes the
maximum of y and 0. The formula implies that the agent is punished for defaulting
but not rewarded for overpaying his promises.

This simple parameterization of extra-economic default penalties was first intro-
duced by Shubik and Wilson (1977). It is meant to capture the idea that as the
default gets gradually higher, the penalty gets gradually higher, so utility is contin-
uous and monotonically decreasing in the level of default. Furthermore, by raising
the default penalty parameters )\?j, we can increase the marginal disutility of default.
All other properties implied by our special formulation of the default penalties are
irrelevant.

In our formulation, the default penalties do not affect the marginal rate of substi-
tution between goods. If we had wished to allow for the possibility that time in jail
affects the relative utility for different kinds of goods, we could have easily dropped
the separable form of the utilities we have assumed and inserted both )\i}j and d};j

In our model default penalties do not distinguish fraud from ill fortune. In reality they are hard
to separate, but ever since Las siete Partitas of Don Alfonso X “the wise,” bankruptcy law has sought
to distinguish them.



into the utility function u?

5. Our main results would remain intact. Similarly, the
function w? is concave in the level of default, which is convenient in deriving contin-
uous demand functions. However, since we will be assuming a continuum of agents
anyway, there is no difficulty in proving the existence of equilibrium with nonconcave
utilities.

In this paper we are especially concerned with penalties, /\i}j = A for all A, s,
and j. This is done for simple analytical convenience to reflect the idea that policy
makers cannot fine tune the default parameters between people, states, or assets.
Since we can always rescale the utilities of different agents differently, this case does
not require interpersonal utility comparisons, that is it does not imply that a day in
jail is regarded with the same dread by every agent. (It does however suggest that
the same agent regards a day in jail with the same horror no matter which state it
occurs in.) The extreme version of this case occurs when every )\};j is set to infinity,
which reduces our model to the standard GEI model.

In our sequel paper we set
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Agents are forgiven completely in some states (perhaps when their endowments are
zero) and compelled to repay otherwise. This case will allow us to make insurance
a special case of our model. We replace a single insurance contract, that says agent
h will receive money if an accident occurs, with two contracts: one which delivers x
dollars to agent h in every state, and the other in which agent h promises to deliver
x dollars in every state. Since agent h will deliver everything he promised in states
with /\Zj infinite, and default completely without penalty when )\Qj is 0, on net agent
h will receive the same money as he would if he bought insurance paying x dollars in
those states S\ S where his )\Qj is 0.
Finally, an interesting interpretation can be given to the condition

Al > AL

namely, that asset j' is junior debt compared to asset j for agent h in state s. The
rational agent h will pay off his j debt entirely in state s before redeeming a single
dollar of j” debt. This distinction between junior and senior debt will not concern us
until we reconsider the Modigliani—Miller principle, which we do in our sequel paper.

4 Default in Equilibrium: The GE(R, A\, Q) Model

4.1 The Economy

As in the canonical model of general equilibrium with incomplete markets (GEI), we
consider a two-period economy, where agents know the present but face an uncertain
future. In period 0 (the present) there is just one state of nature (called state 0), in
which H agents trade in L commodities and J assets. Then chance moves and selects
one of S states which occur in period 1 (the future). Commodity trades take place



again, and assets pay off. The difference from GEI is that in our GE(R, A, Q) model,
assets pay off in accordance with what agents opt to deliver. Our notation can be
formalized as follows:

¢ e L=/{1,..,L} = set of commodities

s €S =/{1,..., 5} = set of states in period 1

S* = {0} US = set of all states

he H=/{1,..,H} = set of agents

el € RE*XL = initial endowment of agent h

jeJ=A{1,..,J} = set of assets

R; € ]RiXL = promises per unit of asset j of each commodity ¢ € L in each state

seSs

ul ]Ri* *L _, R = utility function of agent h

)\Zj € R, =R, U{co} = real default penalty on agent h for asset j in state s

Q;L € Ry = bound on sale of asset j by agent h

We assume that no agent has the null endowment, and that all named commodities
are present in the aggregate, i.e.,

6? = (6217 --'762LL) 7é 0

for all h € H and s € S*, and

Cgp = e?ﬁ >0
heH

for all s¢ € S* x L. Also each u” is continuous, concave and strictly increasing in

each of its S* x L variables. Having assumed strict monotonicity and concavity, there

is no further loss of generality in assuming that u”(z) — oo whenever ||z||s — 00.°
We can visualize the state space as a simple tree:

Figure 1

Let O={z € RSL : [|z||c < 2|3, €"[|oc}. Let £ be the set of affine functions L : RS L — R
such that L(z) > u"(x) for all x € O. Define @"(x) = infrer L(x). Then equilibrium with »" and
@" coincide, and 4" has the desired properties.
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Agents h have heterogeneous, state-dependent endowments el € ]Rﬁ and disutil-
ities of default )\gj.

Adverse selection enters the picture because agents have different endowments
out of which to keep their promises, and also different disutilities of default.

Promises must be of a limited kind j € J fixed a priori. A promise j € J specifies
bundles of goods (or services) to be delivered in each state:

} — state 1 goods
Promise R; — } — state 2 goods

} — state S goods.

Agents h make promises by selling various quantities gp? of each asset j. An
agent’s ability to keep a promise depends on how many promises he sells, both of
the same kind j, and of other kinds j' # j. Moral hazard enters the picture, since
a buyer of an asset (i.e., lender) does not know which other promises the seller (i.e.,
borrower) has made, and because borrowers have the option to default.

Each kind of asset prescribes a limit on its sale, gp? < Q;L Limits on sales of
promises are necessary to any realistic model of credit.” If Q;L = 0, then agent h is
essentially forbidden from selling asset j. If the limits Q? are very large, they may
be entirely irrelevant, as they mostly are in the examples of Sections 7 and 8.8 But
if they are small, then they may be used as a signal that the sellers are not making
many promises, and hence that the promises are reliable. We explore signalling in
our sequel paper.

An economy is defined as a vector

E= ((uh,eh)hem (Rj (()‘}slj)ses’Q?)hEH)jeJ)

Note again that an asset consists of promises, penalties for default, and limits on
sales.

4.2 Equilibrium

In conventional general equilibrium theory, market prices convey all relevant infor-
mation (trade is anonymous). Furthermore, each agent is very small and unable to
affect the prices. In the next section we make this interpretation more tangible by
replacing each household h by a continuum of identical households ¢ € (h — 1, A].
The possibility of default forces us to extend the definition of perfect competition.
We continue to suppose that agents trade through anonymous markets, that is, they
are not able to observe the identity of the agents taking the other side of the trade.
In accordance with this anonymity, we suppose that each buyer of asset j ends up

"Evidence abounds that finite bounds are always imposed in the extension of credit. Even the
best “name” among borrowers has a limited credit line.

®In Section 5 we are able to prove the existence of equilibrium even when Q;’ = 00, provided
A > 0 and the R; all deliver in the same good.
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with sales from every seller in proportion to how much they sell. Thus if households
of type h =1 and h = 2 are the only sellers of asset j, and households of type 2 sell
twice as many units as households of type 1, then each buyer of asset j receives 2/3 of
his purchases from households of type 2 and 1/3 from households of type 1. Similarly,
when a borrower (i.e., a seller of an asset promise) defaults on some asset delivery,
the loss is spread out proportionally to all owners of that asset. This is captured in
our model by the hypothesis that all buyers of asset j face the same delivery rates.
Like prices, buyers regard delivery rates as unaffected by their own actions.

Lenders will naturally try to forecast what fraction of their investments actually
deliver. They recognize that their own loans are spread among many borrowers, so
that the rates of default will not be affected by how much they loan. Their forecasts
of default will of course be conditional forecasts, depending on the state of nature
that prevails in the future. In exactly this way the great Wall Street investment banks
make forecasts of homeowner prepayment and default rates, conditional on the future
level of interest rates and other parts of the “state of nature.” In our model we will
make the heroic (though standard) “rational expectations” assumption that these
conditional forecasts are all correct: the realized rate of default (or delivery) in each
state on an asset is exactly the rate anticipated in that state.

If we wish to allow for the possibility that some of the characteristics of the sellers
are observed, this is easily accommodated in our model by setting some of the sales
limits Q;L = (. For example, in the extreme case that the type of the sellers of asset j
is perfectly observable, we can think of H different copies of asset j, namely j1, ..., jg
such that Q;L}'L = 01if h # K. In that case a buyer of asset j, knows that he must
be buying from households of type h. Even in this case a buyer makes his purchases
from a continuum of sellers, albeit of the same type, so that the buyer never has to
worry about the strategic effect of his own loan on an individual seller’s actions.

One might suppose that it is a simple matter to describe a GE(R, A, Q) equilib-
rium with default by respecifying the assets according to what is actually delivered as
opposed to what is promised. But what is delivered is determined endogenously and
cannot be predicted without solving for the equilibrium. Moreover different agents
will make different deliveries on the same asset even though the lenders receive the
same aggregated payoffs. Thus our model cannot be fitted into the standard GEI
framework.

When an asset market is active, the informational requirements for the GE(R, A, Q)
equilibrium are roughly the same as in competitive equilibrium: agents must know
the promised delivery of each asset in each state, and the average fraction of delivery
of each asset in each state. No trader needs to bother about the identities of those
he is trading with.

To define a GE(R, A\, Q) equilibrium, first consider the “macrovariables” p, m, K
that each agent takes as fixed. Here p € RfﬁL is the vector of commodity prices;
mE ]RJ‘]r is the vector of asset prices; and K is an S x J matrix with entries K; between
0 and 1, representing the fraction expected to be delivered of payments promised by
asset j in state s.
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4.2.1 Household Budget and Payoff
The budget set B"(p,n, K) of agent h is given by:

Bh(p,ﬂ,K) = {(x,é),%D) eRi*xL XRJ‘JF xRi XRiXSXL:

po- (w0 —ef) +m-(B—¢) < 0; p; < Ql for j € J; and, Vs € S,

Ds - (375 - 6?) + Zps : Dsj < Zestjps : st
jed jed

Here x € ]Ri*XL is the final consumption of commodities, 6 € ]RJJr (respectively,
p e RJJF) gives the purchases (respectively, sales) of the J assets, and Ds; € ]Rf; is the
vector of goods delivered by agent h on asset j in state s.

The budget set allows agent h to deliver whatever he pleases. On the other
hand, the agent expects to receive a fraction Kj; of the promises made to him on
asset j in state s. The first constraint says that agent A cannot spend more on
purchases of commodities xg and assets # than the revenue he receives from the sale
of commodities eg and assets ¢. Moreover he can never sell more than Q;L of any
asset j. The second constraint applies separately in each state s € S. It says that
agent h cannot spend more on the purchase of commodities s and asset deliveries
> ; Dsj In state s than the revenue he gets in state s from commodity sales el and
asset receipts Zj 0;KsjpsRsj.

The only reason that agents deliver anything on their promises is that they feel a
disutility )\gj from defaulting. The payoff of (x, 6, p, D) given prices p, to agent h is

w(z,0,¢,D,p) = u" Z Z SOJPS' si —Ps - Dsj]"

v
jeJ se8 s

where v, € RY with v, # 0. Note that [@,ps - Rsj — ps - Dg;]t = max{0, ¢;ps - Rsj —
ps - Dsj} is exactly the money value of the default of h on his promise to deliver on
asset j in state s.

Notice that the budget set is convex, and the payoff function w” is concave, in
the household choice variables (z,0, ¢, D). Had we expressed these choices with other
(apparently natural) variables, such as (5};] = delivery per unit promised, the budget
set would no longer be convex, nor would w” be concave.

It is worth noting a scaling property of the budget set (which is immediate from
its definition and the fact that e # 0 and ps > 0 for all s € S*): (z,0,p,D) €
B'(p,m,K) and 0 < a < 1 = (ax,af,ap,aD) € B"(p', 7', K') for all (p/, 7', K')
sufficiently close to (p, 7, K). This property will often be useful to us.”

For simplicity (and for the facility of doing comparative statics) we have taken
the default penalty to be linear and separable in the amount of default. But as we

9An alternative scaling property, also satisfied by the budget set, is obtained if we replace
(az,ab, ap,aD) with (az, ad, ¢, aD). Our entire analysis remains intact with this version of scaling.
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noted in Section 3, we can easily accommodate more general payoffs w” which allow
for the marginal rate of substitution between goods to depend on the level of default.
All that is needed for Theorem 1 is the continuity and concavity of w”. For Theorem
2 we need to assume, in addition, that given any z, w”(x,0, ¢, D,p) < u”(e?) if the
default in any state, on any asset, is sufficiently large.

We shall also analyze default with netting, transactions costs, and confiscation,
which make for nonconvex budget sets, or nonconcave payoffs. Then it becomes nec-
essary to introduce a continuum of households. We defer this discussion to Sections
6, 8, and 12.

4.2.2 Market Clearing

We are now in a position to define a GE(R, \, Q) equilibrium. It is a list (p, 7, K, (2", 6",

©", DM)pepr) such that (1) to (4) below hold.
(1) For h € H, (2,6, ¢o", D") € argmaxw”(x,0,¢, D, p) over B"(p, 7, K)
(2) Xhen@" —€") =0
(3) ZheH(eh -¢") =0

{Zhers D/ Yopenps R, i Ypep s Rsjee) >0
(4) Ksj = . . h
arbitrary, if > hemps Rsjp; =0

Condition (1) says that all agents optimize; (2) and (3) require commodity and
asset markets to clear. Condition (4), together with the definition of the budget set,
says that each potential lender (i.e., buyer) of an asset is correct in his expectation
about the fraction of promises that do in fact get delivered. Moreover, his expectation
K ;Lj = Kj; of the rate of delivery does not depend on anything he does himself; in

particular, it does not depend on the amount 6;7” he loans (i.e., purchases) of the asset.
Every lender gets the same rate of delivery.

Since heterogeneous borrowers may be selling the same asset, the realized rate of
delivery K,; is an average of the rates of delivery of each of the borrowers, weighted
by the quantity of their sales. It might well happen that those borrowers with the
highest rates of default are selling most of the asset, and this is the adverse selection
and moral hazard that rational lenders must forecast.

We believe that our definition of GE(R, \, Q) equilibrium embodies the spirit of
perfect, anonymous competition, and represents a significant fraction of the mass
asset markets of a modern enterprise economy.

In the next sections we investigate the properties of equilibrium.

4.3 TUntraded Assets

It is a curious fact that many of the large asset markets that our model seeks to
describe have been initiated not by entrepreneurs but by government intervention.
The government, for example, began the GNMA mortgage program by guaranteeing

14



delivery on the promises of all borrowers eligible for the program (but not the tim-
ing!” of delivery). It is likely, however, that these mortgage markets would function
smoothly even without government guarantees. Private companies indeed do sell
insurance on non-GNMA mortgages. A reasonable question to ask is why the pass
through mortgage market did not begin on its own?

One possible explanation is provided by our model. When assets are traded, ex-
pected deliveries K; must be equal to actual deliveries. Expectations cannot there-
fore be unduly pessimistic. But for assets that are not traded, our model makes no
assumption about expectations of delivery (see (4)). In the real world, investors with
no experience in observing default rates might tend to overestimate their probability.
This can create serious problems, in practice as in our model. In the model, so far,
there is nothing to stop the expectations from being absurdly pessimistic, which in
turn will support trivial equilibria with no trade in the asset. The point is easily
seen by a simple example. Consider an equilibrium of an economy in which certain
assets are missing. Introduce these new assets j but choose their prices 7; close to
zero. Then no agent will be willing to sell them, for he gets very little in exchange,
but undertakes a relatively large obligation either to deliver commodities or to pay
default penalties. Also choose the Kj; to be positive but even smaller. Then in spite
of their low price, no agent will be willing to buy the assets since he expects them to
deliver virtually nothing. Thus we have obtained trivial equilibria in which there is
no trade of the new assets on account of arbitrarily pessimistic expectations regarding
their deliveries.

We believe that unreasonable pessimism prevents many real world markets from
opening, and provides an important role for government intervention. But it is inter-
esting to study equilibrium in which expectations are always reasonably optimistic.
It is of central importance for us to understand which markets are open and which are
not, and we do not want our answer to depend on the agents’ whimsical pessimism.

4.4 Trembling Hand Equilibrium

Expectations for deliveries by assets that are not traded are analogous to beliefs in
game theory “off the equilibrium path.” Selten (1975) dealt with the game theory
problem by forcing every agent to tremble and play all his strategies with probability
at least ¢ > 0, and then letting ¢ — 0. We shall do roughly the same thing, intro-
ducing an external e-agent who sells and buys € = (g;)je7 > 0 of every asset, and
fully delivers on his promises. (One might interpret this agent as a government which
guarantees delivery on the first infinitesimal promises.)

An equilibrium E(e) obtained with the e-agent is called an e-trembling hand
equilibrium. Thus any such E(e) = (p(e), 7(¢), K (¢), (z"(¢),0" (), ©"(€), D"(€))hem)
must satisfy:

(1%) (a"(2), 0 (), ¢(c), D"(2)) € arg maxwh(z, 0, , D, p(c)) over Bt(p(e), 7(c), K (<))

'0A default induces the government to prepay the loan immediately, even if the lender would prefer
the scheduled payments.
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0 ifs=0
(2) Y (ahe) —el) =4 S ej(1 - Ky(e))Ry ifseS

heH jeJ
(3) D (0"(e) —¢"(e) =0
heH

ps(e) - Rsjej + ZPS(f:) 'D?j(g)

heH i .
* (&) = if denominator > 0 (Rs; # 0)
(4*) Ks](g) =\ ps(e) - Ryjej + Zps(g) . Rsy’@?(ff)
heH
1 otherwise (R,; = 0)

Since the e-agent buys and sells €; units of each asset j, asset market clearing (3*)
is as before. But since he delivers fully €;R,; on his promises, and gets delivered only
€jKj(¢)Rsj, on net he injects the vector of commodities ) ;. ; £;(1—Ks;(e)) Rs; into
the economy in each state s € S. This explains (2*). Finally, condition (4*) says that
delivery rates must recognize the external agent. (The condition when denominator
= 0 is now reduced to the trivial case when promises ps(e) - Rs; = 0, hence when
Kj(e) is irrelevant.)

An E = (p, 7, K, (2,0, ¢, D)pep) is called a trembling hand equilibrium if there
exists a sequence of e-trembling hand equilibria E(e) with e — 0 and E(e) — E.

Notice that the external agent boosts the delivery rate Kyj(e) above the level
achieved by the real agents h € H in the e-economy (unless they too are fully deliv-
ering, or not selling). As ¢ — 0, this boost disappears for assets that are positively
traded in the limit. But if €/ ), 4 gp?(s) does not go to zero and ), 5 gp?(s) >0
for all e, the limiting rates Kj; will be boosted (unless there is no default by the real
agents).

We could refine equilibrium still further by restricting attention to e-trembling
hand equilibria in which the ¢ = (¢;);cs go to zero in a particular way. We shall
have no need for such ultra-refinements in this paper, but we introduce them in
Dubey—Geanakoplos (2001b) in connection with seniority of assets.

4.5 Refined Equilibrium

In Section 5 we prove the existence of trembling hand equilibrium. But trembling
hand equilibria are not so handy to work with. Hence we introduce a slightly weaker
but simpler notion of refined equilibrium, which captures the essential features of
trembling hand equilibrium. Furthermore, we gain in generality, because any property
of all refined equilibria (such as uniqueness) must automatically hold for the subset
of trembling hand equilibria.

To this end we add a condition (5) to conditions (1)—(4) from the definition
of equilibrium in Section 4.2. This requires that if a small change in the macro
parameters (p, ) could induce some agents to start selling some of an asset j, where
none was being sold before, then buyers should expect at least the rate of delivery
they would get had the world indeed been so perturbed. (If there are many ways of
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perturbing (p,7) to induce sales, then we allow the buyers to focus their attention
on one of these perturbations.) If prices m; are so low that no small perturbation
will induce any agents to sell asset j, then buyers are required to expect full delivery,
Ky =1

Let || ||oo denote the supremum norm, and let E = (p, 7, K, (", 0", ", D")pep),
i.e., E is the candidate equilibrium which satisfies conditions (1) to (4). For s € S,
let J(s) ={j€J:> hepyps- stgpé? = 0}. Thus J(s) is the set of assets in state s
for which Kj; is not determined by market activity in . We are ready to state

(5) For any 6 > 0, there exists E(8) = (p(6), n(6), K(6), (z"(8), 68"(6), ¢"(6),
D"(6))nen) such that

(1) (z"(8),0m(8),"(8), D"(§)) € argmaxw”(x, 8, o, D,p(8)) over
BM(p(6),m(6), K(8))
(i) [|1E = E@)lle <e

h;}ps@) ' D?j(5)/h§qps(5) - Ryl (6) if hg{ps(‘s) - Ryl (6)
(i) K5(0) > 1 if h;{ps((s) Ryl (6)

for all s € S and j € J(s).

Conditions (i), (ii), and (iii) together imply that if asset j is untraded and Ky; < 1,
then there must be arbitrarily small perturbations of the macro variables which induce
some agents to sell j, and to deliver (in aggregate) at a rate no more than K; (that
is, to default at rate at least (1 — K;)).

Any E = (p, 7, K, (2",0", 0", D")cy) satisfying (1)—(5) is called a refined equi-
librium.

It is evident that every trembling hand equilibrium is a refined equilibrium. The
boost allowed for in the definition of refined equilibrium is made concrete by the
e-external agent.

We could have imagined an external agent who delivers only 70% of his promises,
instead of 100%. The corresponding refined equilibrium would require K;(6) to be
between .70 and real agent delivery rates with the §-perturbed macro variables, and to
be exactly .70 if there was no real trade. It is clear that any “100% refined equilibrium
allocation” is a “70% refined equilibrium allocation,” thus explaining why our choice
of 100% deliveries gives the sharpest refinement. The converse is certainly not true,
as we show by example in Dubey—Geanakoplos (2001b).

In our definition of equilibrium, there is one price for each asset, including those
assets that are not traded. There is therefore no possibility for price taking agents
to offer different prices with the hope of luring a better selection of sellers.!! We
can interpret this situation in several ways. Suppose that buyers are aware of the

Putting the matter still differently, we regard an asset or contract as setting out the obligations of
the seller, including the penalties if he fails to deliver, and the quantity limitations on his other sales.
The price of the contract is set by competition between sellers and buyers, that is, by the market.
Agents need only think about one prevailing price for each contract. In the Rothschild—Stiglitz view,
the price is one of the terms of the contract. In this view, there is no such thing as a single contract;
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composition of sales at the market prices, and perhaps of the composition of sales at
prices a penny off from market prices. But they lack the knowledge or computing
power to infer what the composition would be at prices far from market. They might
therefore presume they will get the same selection of sellers no matter what price
they quote, giving them no incentive to deviate from market prices. Alternatively, a
buyer might understand full well the composition of sales, but he should make the
cautious assumption that he alone cannot serve all the potential sellers, and that he
is likely to be reached first by the sellers who are most anxious to sell, that is by
the sellers who have the lowest reservation price for the asset. Thus again the buyer
expects the same selection of sellers as elicited by the market price, and is left with
no incentive to deviate from the market price.

In Sections 10 and 11, on the endogeneity of the asset structure, and in our sequel
paper, we show that the equilibrium refinement plays a crucial role in determining
whether an asset j is positively traded (j € A*) or not (j € A\A*).

4.6 A Continuum of Traders

We have mentioned several times that our model is meant to embody the ideal of
perfect competition, in which each agent is so small that by himself he cannot influ-
ence anyone else. We can make such an interpretation of our model more concrete
by replacing each agent h by a continuum of identical agents parameterized by ¢
lying in the interval (h — 1, h]: each agent t € (h — 1, h] has identical characteristics
(el ul A QP).

For any (p,m, K) € RilXL x R x [0,1]5*/ we can define B'(p, T, K) exactly as
before, replacing h by ¢ throughout. Also GE(R, A, Q) can be defined as before, where
1 is Lebesgue measure, replacing Y, oy by |, ;dp, “Vh € H” by “almost all t € 1,7
and the notion of convergence of x, 0, ¢, D (which are now integrable functions on
I) in condition (5) by almost everywhere pointwise convergence.

The GE(R, \, Q) of the finite agent economy, whose existence we shall prove in
Theorems 1 and 2, corresponds to a GE(R, A, Q) of the continuum model with the
added feature that (zf,6%, ot DY) = (2 ,0" ! D') whenever t and ¢’ are both in
(h — 1, ], i.e., all agents of the same type behave symmetrically. We shall call such
equilibria type-symmetric when viewed in the continuum setting.

But we shall shortly consider a variant of our model in which the convexity of
budget sets fails to hold. Here the continuum model is necessary for establishing exis-
tence of GE(R, A\, Q). Even if the economy is finite-type, its equilibria need no longer
be type-symmetric, and the consideration of a continuum becomes unavoidable.?

there are as many contracts as there are prices. Notice also that the Rothschild-Stiglitz view must
regard market clearing as one of rationing. At most prices, the contract will not be traded, because
either supply or demand is zero, and the other side of the market is rationed. This point of view
has been admirably expressed by Gale. In our view competitive equilibrium should be defined by a
single price at which both supply and demand are equal (possibly both zero), as long as expectations
at that price are set at rational levels.

'2Without too much more trouble we could have allowed for an infinity of types. We have made
the finite-type assumption only for ease of exposition.

18



5 The Orderly Function of Markets with Default

Our first goal in this paper is to establish that default is completely consistent with
the orderly function of markets. To that end we prove that under fairly general
conditions, equilibrium always exists in our model.

The universal existence of equilibrium is somewhat surprising because of the his-
torical tendency to associate default with disequilibrium (or more accurately, to make
full delivery part of the definition of equilibrium), as we have already remarked. Fur-
thermore, endogeneity of the asset payoff structure is known to complicate the exis-
tence of equilibrium with incomplete markets. But we show that no new existence
problems arise from the endogeneity of the asset payoffs due to default.

The universal existence of equilibrium with default is also surprising because the
pioneering papers placing adverse selection in a model of competition, by Akerlof
(1972) on the market for lemons, and Rothschild and Stiglitz (1976) on insurance
markets, purportedly showed that adverse selection is quite commonly inconsistent
with equilibrium. Since the Akerlof and Rothschild-Stiglitz models are special cases
of our model, a word about them might be illuminating. We discuss Rothschild—-
Stiglitz in more detail in our sequel papers.

In Akerlof’s lemons paper, each seller knows the value of his car, but the buyer
only knows the average quality of the cars for sale. This is analogous to our model
in which each seller knows his disutility of defaulting (and indeed his intentions to
default) but the buyer knows only the overall average default rate. Akerlof’s formal
analysis consists of a special example with the property that at any price for used
automobiles, the sellers will supply automobiles whose average quality is not worth
the price. More precisely, suppose that the quality of cars is uniformly distributed
between 0 and 1, and that if v is the quality of some car, then the owner (i.e., the
potential seller) knows v and values it at v, whereas any potential buyer would value
it at 1.1v once he got it, but unfortunately does not know what v is. Suppose that
there is a large pool of potential buyers with the same preferences. At any price p,
the cars with v less than p will be put up for sale, and the average quality to the
buyer will be (0.5)(1.1)p = .55p < p. As the price falls, so does the average quality
of the automobiles put up for sale. Under this extreme hypotheses, there cannot be
any trade of automobiles at any price; even though at each price there are cars for
sale that are worth more to the buyers than the price, a buyer must count on getting
an average quality car, which is worth less than the price.

Needless to say, one could easily imagine less severe conditions under which there
would still be some trade for automobiles, though to be sure the quantity would be
less than would obtain under complete information about the quality of every car. For
example, if the minimum quality level were m > 0 instead of 0, then there would be
an equilibrium with p = (11/9)m. All the cars with m < v < p would be sold, some
buyers would be disappointed, others would be pleasantly surprised, but on average
the buyers would get value (1/2)(m + (11/9)m)(1.1) = (11/9)m = p equal to what
they paid for. Indeed it is accurate to describe the extreme situation in the Akerlof
model as one in which there is an equilibrium, with price set at 0. If the equilibrium
with no trade seems bad, it is just that: bad in the welfare sense. But it still is an
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equilibrium. Interpreted properly, Akerlof’s paper shows that adverse selection may
in extreme situations result in an equilibrium with no trade; it does not provide any
reason to suppose that equilibrium and adverse selection are incompatible.

Insurance contracts promise payments conditional on the state of nature, and so
can be viewed as assets such as we describe in this paper, as we mentioned earlier.
In particular, the Rothschild—Stiglitz model can be expressed as a special case of our
general equilibrium model, as we show in our sequel paper. The reason Rothschild
and Stiglitz found robust regions with no equilibrium is that they defined equilibrium
expectations differently, as we have explained. If buyers had the perfectly competitive
expectations that we invoke, namely that each thinks he cannot improve his selection
of sellers by unilaterally offering a higher price, then the Rothschild—Stiglitz model
would always have an equilibrium, as we show in our sequel paper, even using their
“exclusivity” hypothesis.

We are now ready to state our main theorem, which is that GE(R, \, Q) equi-
librium always exists, even if we insist on the equilibrium refinement discussed in
Section 4.3.

Theorem 1 For any A € @fs‘] and Q € RY/ a trembling hand GE(R, )\, Q)
equilibrium exists, where Ry = R U oo.

Proof Suppose first that penalties are finite, A\ € RES”’ . Fix a tremble ¢ =
(¢j)jeq > 0. For any small lower bound b > 0, define

L

5 - {(pﬂr) R XRL:Y =1 € S
=1

bgpSgVSEES*xL,andOSwjg%VjEJ}.

Choose M large enough to ensure that: [|7|s > M = ul(z) > w23, ") for
all h € H. (By assumption, u”(z) — oo as ||z|| — oo, so such an M exists.) Now
define, for each h € H, 0" = {(2,0,¢,D) € RY"F x R x RL x R§LY ¢ ||z|| <
M, 85 <23 ey Q) ¢} < QF, and [|Dllso < ||Qlloo]|Rlloc}. Let O =Xpen D",
Denote n = (p, 7, K, (2", 6", o™, DM)pen) € Ay x [0,1]5%7 x OF = Q.
Consider the map Kp : Q — [0,1]°%7 defined by

ps - Rsjej + Y ps - Dl
) heH 1
Kbsj(ﬁ) = § min PDs - stéj + Z Ps - st(P?7
heH
1 , if st =0

, if Rg; #0

for each s € S, j € J. Clearly [_(bsj is a continuous function.
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Next, consider the correspondence wg : Oy = Ay defined by

Yp(n) = argmax {Po > (ag—eg) -y (0" —¢")

(p,m)EA, heH heH

4 Z Z Ps - x — eh — Z(l — Kij(n))stgj

s€S heH jed

Clearly this map is non-empty and convex-valued, and USC.
Finally for each h € H, define the correspondence 9§ : Q, = 0" by

Vi (n) =arg max {w"(x,0,¢,D,p) : (z,0,¢,D) € B"(p,m, K) nO"}.
z,0,0,D

Notice that 9! is non-empty valued and convex-valued, thanks to the continuity and
concavity of w”, for all h € H. To check that B"(p,r, K) N 0" is LSC, let p”, 7",
K" % p, 7, K with p > 0. Let (z,0,p,D) € B"(p,7,K). Fix 0 < a < 1. Then
(az,ab,ap,aD) € BMpr, 7", K™)NO" for sufficiently large n by the scaling property
of the budget set, because ps - e? > 0 Vs € S*. Since a was arbitrary, this shows
that B"(p,m, K) NO" is LSC in (p, 7, K) whenever p > 0. Since B"(p, 7, K) N is
clearly USC, Lb;} is USC by the maximum principle.
Let vy, : Q4 = 3 be the correspondence defined by

wy(n) = v () x {Kp(n)}x X v (n).

By Kakutani’s theorem 1, has a fixed point n° = (p°, 7% K, (2"(b),6"(b),
" (b), D*(b))herr). To avoid notational clutter, we suppress the b.

Note that in state 0, po - (32, (a8 — b)) +m- (32, (0" — ")) = 0 (since, given the
monotonicity of each u”, this equality holds for each h individually in his budget-
set). It follows that the “price player” could not make the value of excess demand
(across commodities and assets) positive in period 0. Suppose for some j € J,
ZheH( goj) > 0. By taking 77; = 1/b and 7; = 0 for i # j, it follows that

30—+ > e Y (el —eb) <0,
h

leL heH

forall pePy={qg€R: : ¢ >bV0 e L, Yt g0 =1}. Hence

> (67 — ) < lleolloo-

h

Similarly, if >, cp(zh, — €l,) > 0 for some ¢, then by taking all 7#; = 0 and po; =
1— (L —1)band pox, = b for all k # ¢, we get

Z(woe —egy) < (i : ;;;b!ei’)‘go :

hcH



From the fact that K, fixed K, and from the fact that agents have optimized so
that p; - Di?j < ps- stgog?, whenever Ry; # 0 we get

bs - stej + Zps : Dh

heH
Ky = <1.
Ps - stgj + Z Ps - stSO?
heH

Hence

Y b D= Kyps- Ryel — (1= Kg)ps - Ryjej
heH heH

From optimization of monotonic utilities in the budget set, we get

DPs x —6 ZKSjpS sg J Zps

jeJ jeJ

Adding over agents h € H, and substituting the above expression for ), - ps - D?j
we get

ps~2(w}§—e};)=2(l—K Ds - sygj""z ZKSJPS' SJ‘9 _SDJ)

heH jeJ jeJ heH
<) (1= Kyj)ps - Rajej + T Rl|ooblleo] |oo-
jeJ

Suppose Y ey (#ly — ely) = 3 (1 = Kgj)Rogjej > 0 for some s € S. Since we
are at a fixed point, the price player cannot increase the value of excess demand in
state s by taking pgy = 1 — (L — 1)b, and pgx = b for all k # ¢. Hence

Z(x?e —ely) - Z(l — Kj) Rseje;

heH jedJ

1

< - - _ )
< Tz § VP {lleolle 1Rl Y25 |+ TI1Blcbleol

jeJ

We now let b — 0. We argue that 7; must remain bounded as b — 0. If Q;L =0
Vh, then replace m; with 1. Otherwise, if 7; — oo, any agent h with Q? > 0 could
replace his entire action by selling A units of j, buying M (< A7;/L) units of each
period 0 good, and delivering fully. Since e? # 0 for all s, and commodity price ratios
are bounded in each state, agent h can do this without incurring any default. But
this gives him utility that exceeds u®(23,, ¢”'), which is more than he can possibly
be getting at the fixed point (with all excess demands close to zero for small b), a
contradiction. Thus all asset prices are bounded.

Since all choices and all macrovariables are uniformly bounded for small b, we
can pass to convergent subsequences, obtaining £ = (p, 7, K, (2", 0" oh, D") e H) as
a limit point. Taking the limit of all inequalities derived above, we conclude that
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aggregate excess demand for commodities and assets is less than or equal to zero in
E. It follows that the limit price ratios pss/psk are bounded in each state s € S*. If
ps¢/Psk became unbounded as b — 0, some agent with ei}e > 0 could have consumed
M units of commodity sk, obtaining more utility than w"(23",,c "), for all small
b; but since excess demand goes to zero with b, " < 2> wen el for small enough
b, contradicting that h has optimized. Thus the limiting p > 0, and all agents have
positive income in every state in £. Thus individuals are optimizing in E on their
untruncated budget sets. (This uses the concavity of w” and the fact that eventually
the constraints on x and 6 are not binding in his budget set.)

Note finally that if all commodity prices are positive, there cannot be excess
supply in any commodity in E, otherwise the price player would be making negative
profits. For the same reason there cannot be excess supply of any asset j in E, unless
7; = 0. But then no agent would sell j unless )\?szj =0 for all s € S. Without loss
of generality we may in this case take 9? = gp? =0 for all A.

Thus we have shown that E is an e-trembling hand equilibrium. Letting ¢ — 0
and taking limits we obtain a trembling hand equilibrium. This proves the theorem
for finite penalties A.

If some penalties are infinite, we take limits of equilibria with increasing penalties.
Since all actions must stay bounded along the sequence (because Q? < 00), any cluster
point of these equilibria will serve as the desired trembling hand equilibrium.. |

Our proof has used the fact that gp? < Q? by assumption. Later the Qg? will play
an important role as signals, but now the reader may wonder what would happen
if they were eliminated, or taken to be enormously large. Recall that there is a
pathology that occasionally occurs even when there is no default, for example in
the GEI model. Sometimes two assets j and j' that promise different commodities
nevertheless become nearly equivalent at some spot prices (ps)ses because they then
promise nearly the same money. At these prices the number of independent assets
suddenly drops, and demand blows up as agents try to go infinitely long in asset j’ and
infinitely short in asset j (or vice versa). This destroys the existence of equilibrium.
The bounds Qg‘ prevent this, as Radner (1972) long ago pointed out for the GEI
model.

In the GEI model without short sale constraints like the Q?, equilibrium can only
be guaranteed if all the assets promise payoffs exclusively in the same good (say L)
in each state s € S. (See Geanakoplos—Polemarchakis (1986).) The asset matrix R
then is effectively reduced to S x J dimensions.

Default provides another reason why two assets that make different promises
might, given certain macro variables (p,n, K), actually deliver the same money in
every state. One should therefore wonder if default introduces additional difficulties
in proving the existence of equilibrium. We have just seen that in the presence of the
bounds Q;L it does not. Now we shall show that default also does not complicate the

existence picture without the bounds Q;L
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Theorem 2 Let all promises R; be exclusively in good L for all s € S. Define
GE(R,\) = GE(R,\, Q) with Q? =o0, Vh € H, j € J. Then GE(R,\) exists for

any vector A € RESJ with A > 0.

Proof Theorem 2 specializes the conditions of Theorem 1. Hence we have a
GE(R,\, Q) equilibrium for all finite (). Consider a sequence of equilibria, n(Q) =
(p(Q),7(Q), K(Q), (#"(Q),0(Q),#"(Q), D"(Q))nen), where Q" = @ € N, for all
heH, jelJ.

If there is a single () with gO?(Q) <@, forall h € H, j € J, then by the concavity
of each w”, n(Q) is a GE(R, \).

Passing to a convergent subsequence if necessary, we may suppose that for all
he H and j € J, . .

Moreover, we might as well assume that for at least one j and some h and I/, 9? #0
and @ = 1.

For notational convenience, we shall write Rg; and D,;, instead of the more
accurate R,r; and D,y ;, and we shall suppose that real default in each state s € S
is measured in terms of the commodity bundle vy = 1;, which is one in the Lth
coordinate, and zero elsewhere. Since all assets are exclusively delivering in the Lth
good, no harm results from these simplifications. Finally, w.l.o.g. take p,; = 1 for
all s € S.

Observe that for any h € H, s € S, j € J, the level of default

d(Q) = [Rs; " (Q) — DE(Q)]T < ——[u"(e) — u(eM)],

55

for otherwise agent h would have done better not trading at all. (At any GE(R, \,Q),
ah <3, e =e.) Hence if @?(Q) — 00,

[Rsj} (@) — DG(@Q)] _ [Rejp} (@) — D@ d(Q)
Q) Q) Q)

It follows that K;(Q) — 1 for all s € S with R,; > 0, provided that ), 5 @?(Q) =

ZheH 9?(@) — O0.
Furthermore, since relative prices pg(Q)/psi(Q) stay bounded,

> Ky (Q)R07(Q) — Y DH(Q)

jed jed

— 0.

must stay bounded. Otherwise agent h would eventually be consuming a negative
quantity in state s, or a quantity exceeding the aggregate endowment e, contradicting
commodity market clearing.
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Putting these last statements together, we must have that

Y K(QRs64(Q) = > Dh(Q)
Jim 1< 5 1< = R,(0" — ") =0,

forallhe H, s € S.
Consider any h with @" # 0, and hence g" # 0. For any @ > 1,

' =0
"=¢"Q

At any large (), the agent could feasibly have chosen

>

hZO
g" > 0.

Ay

D! = Dy;(Q) — Ryj@" > 0 for all j € J.

With these choices he would pay exactly the same penalty as in the equilibrium n(Q).
He would receive exactly the same consumption at time 1 if K;(Q) = 1 for all j with

9? > 0, and strictly more consumption otherwise. In order for him not to prefer this
deviation, we must therefore have

m(Q)[0" — " <0 for all h € H.

But since 0" and @" are limits of GE(R, \, Q) equilibrium portfolios,
~h _
> 0= "
heH heH

hence we must have -
W(Q)[@h — " =0 for all h € H.

It now follows that household i would still prefer this deviation unless Vj € J, Vs € S,
[Ry; >0, and 8 > 0 for any h € H] = [K;(Q) = 1].

Note finally that if g‘p? > 0, there must be some agent ¢ with (Z);', > 0, hence K,;(Q) =1
for all s € S with Ry; > 0 and either 8 > 0 or @ > 0.
ReplaCing (p(Q)v W(Q)v K(Q)7 (mh(Q)v 0h(Q)7 Sph(Q)v Dh(Q))hEH) with

~ho S . A
(p(Q)a W(Q)a K(Q)7 (xh(Q)v 0 ) Soha Dh)hEH) we get another GE(R7 )‘7 Q) with @?(Q) <
Q for all h and j. (Notice that we are reducing sales and purchases only for assets

with K; = 1, which therefore leaves the K unchanged.) |
6 Chain Reactions, Netting, and Supernetting

6.1 Chain Reactions

In modern financial economies, agents often are long and short in many different
assets. They rely on revenues from their loans to keep their own promises. But these
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revenues are only as reliable as the loans other agents have made to yet different
parties, thus opening the possibility of a chain reaction of defaults. If « defaults
against 3, forcing (3 to default against ~y, forcing v to default against ¢, then in our
definition of equilibrium, «, 3, and v will pay default penalties, and the total utility
loss from defaults will be large. Curiously this phenomenon is at its most dangerous
when the financial system is at an intermediate level of development, with smoothly
functioning markets that permit agents to go short, but without some finely tuned
assets, forcing agents to hold complicated portfolios to achieve the risk spreading
they desire.

Consider a world with four agents and three possible future events, each consisting
of many different states of the world. Suppose 8 wants to consume in the first event,
v in the second event, and ¢ in the third event. Suppose agents (3, v, and ¢ have no
endowment in the future states. Suppose a wants to consume in the present, but has
a considerable endowment of goods in the future, except in one unlikely state w in
the third event.

If there were an advanced financial system of Arrow securities, agent o would in
effect sell directly to each of the other three agents. For example, with just three
Arrow securities, each one paying off exclusively in a different one of the three events,
agent a would sell the first security to 3, the second to 7, and the third to §. Agent
a by himself would default in state w, and he alone would pay a default penalty.

Suppose, however, that in a less advanced financial system there are again three
securities available. Rjo3 promises 1 dollar in every state, Ro3 promises 1 dollar in
(every state in) events 2 and 3, and R3 promises 1 dollar in (every state in) event 3.
Then in equilibrium we could expect « to sell Ris3, 8 to buy Riss and to sell Rag,
v to buy Ras and to sell R3, and ¢ to buy R3. In the bad state w in event three,
the chain of defaults indicated above will take place. The penalty that a pays for
starting the chain reaction may be very small compared to the total penalty incurred
by the rest of the defaulters.

A diagram may make the situation clearer.

SSptg(t:% Asset Promises
e Rz Rz Rg
1 1 0 0
2 1 1 0
3 1 1 1

Figure 2

Notice that the asset span is exactly the same as with the three Arrow securities.
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What makes the chain of defaults possible is the interlocking asset trade, with in-
vestors receiving and delivering in a long chain, in some state. With Arrow securities
this chain would never reach more than two links and one default.

One way around these chain reactions is to encourage market intermediation that
nets payouts.

6.2 Netting

Consider the variation of our GE(R, A, Q) model in which an agent’s purchases and
sales of any given asset j are netted, so that he is deemed to have purchased (6, —goj)+
and sold (p; — 6;)*. In this case, the budget-set and payoff function of an agent
t € (h — 1,h] of type h are modified as follows:

B'"(p,m K) = {(L&%D) tpo- (w0 —ef) +m-(0— ) <0; ; < QN for j € J;

D (25— e+ > pe Do; < Kyjps - Rej(8;—;)" forall s € S
JjeJ jedJ

L [ps - Rsj(p; — 0;)F —ps- D .]+
h —_ . h _ sj 'S SIANTY J s 8]
w (x797807D7p)_u (33‘) ZZ Ds - Vs
seS jed
Moreover, if (2, 0", o', Dt)te(o, ) are the equilibrium choices of the agents, then con-
dition (4) on GE(R, A\, Q) becomes:

H H
Ky = /0 pa - Ddu(t)) /0 Pa - Rug(h — 60 du(t)

whenever the denominator is positive.
Notice that the budget set is no longer convex, hence an equilibrium may not
exist in the finite agents model. However we have

Theorem 3 A GE(R,\, Q) exists in the finite-type continuum model with netting
(though it may not be type symmetric).

We defer the proof until the next section.

6.3 Supernetting

Here we go a step further and consider netting across different assets that an agent
has traded in.'® Now deliveries are no longer made separately on each asset, but there
is one combined payment in every state s € S. This extends the idea in Theorem
1 that agents may deliver differently on the same asset because of default or some
other option. Here they may even make different promises. Supernetting combines

D31nstitutionally this may be regarded as a clearinghouse.
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this extension with netting both sides of a trade. Thus the delivery choice of an agent
is a vector D € RYL, and the constraint in #’s budget set must be rewritten (where ¢
is of type h)

ps - (v =€) +ps Dy S Ka[Y ps - Raj(60; — )"
jeJ

His payoff is modified to

+ +

ul(@) = DX || D_ps - Rajle; = 03)] —ps- Dy

seS jeJ

Notice that the K,;, )\Qj are reduced in this setting to K, /\Z. Finally, the condition
on K is

H H -
K, = / Ps- Dtdu(t)// > ps - Rej(h —05)] dp(t)
0 0 »
jed
whenever the denominator is positive.
Along the same lines as Theorem 3, we have

Theorem 4 A GE(R,\, Q) exists in the finite-type continuum model with super-
netting (though it may not be type symmetric).

Remark (1) If the constraint @) is removed, then Theorems 3 and 4 still hold
provided asset payoffs are designated in a single commodity.

(2) These theorems also hold when the privilege of netting (supernetting) varies
with the type of a player. Indeed in this case GE(R, A, Q) will need to have non-
type-symmetric behavior only for those types which are allowed to net (supernet).

(3) For Theorems 3 and 4, we have taken default penalties to be separable and
linear for the sake of simplicity. But in fact both theorems hold provided only that
wh is continuous, w™(x, 0,0, D, p) < u(z), and w"(x,0, 9, D,p) = u(z) if h never
defaults.

Proofs of Theorems 3 and 4 We prove Theorem 3. The proof of Theorem 4 is
similar. We observe first that since [az]t = afz]", the budget sets are lower semi
continuous exactly as in the proof of Theorem 1: let (Z,0,®, D) € B*(p, 7, K), and let
(p(e),m(e), K(e)) = (p, 7, K), where p > 0. Take o < 1 and (z(¢), 0(¢), ¢(€), D(¢€)) =
(az,ab,p,aD). For € near 0, these points are clearly budget feasible, because of the
scaling property that holds when ps - e? > 0, Vs € S*. Since a was taken to be
arbitrary, the budget is LSC.

But now we can repeat the rest of the proof of Theorem 1, replacing 1/1? by
conv(¥"). By Kakutani’s theorem there is a fixed point (p(¢), 7(¢), K (¢), (z(¢), 6" (¢),
©"(e), D"(&))nen) of .. By Caratheodory’s theorem (x"(¢), 0% (¢), " (), D" (¢)) €
conv (¢ (p(e), m(e), K(¢))) is in the convex hull of at most n = S*L +J+J +SL+1
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points (z" (), 9" (e), " (e), DM ()2, in Y (p(e), 7 (e), K (€)). Passing to convergent
subsequences as € — 0 gives a *GE(R, A\, Q) equilibrium for the continuum economy,
in which each type h displays at most n different (but indifferent!) behaviors.

7 The Economic Advantages of Intermediate
Default Penalties with Incomplete Markets

There are four fundamental drawbacks to reducing the default penalties A so far that
some agents choose to default in at least some states in equilibrium: (1) creditors,
rationally anticipating (on account of direct and indirect reasons) that they might not
be repaid, are less likely to lend; (2) borrowers may not repay even in contingencies
that have been foreseen, and even though they are able; (3) imposing penalties is a
deadweight loss; (4) the default of unreliable agents imposes an externality on reliable
agents who, because they cannot distinguish themselves from the unreliable agents,
are forced to borrow on less favorable terms.

Akerlof regarded the fourth (externality) cost of default as so important that
for this reason alone he suggested it would always be worthwhile to reduce default
by imposing penalties on defaulters. By analogy one could ask manufacturers of
products to issue guarantees to replace any defective parts, and in addition to pay
for all damages caused by defective parts.

Our second goal in this paper is to show that despite myriad reasons why default
is socially costly, the benefits from permitting some default often outweigh all of these
costs. The benefits from allowing default are basically twofold, and both stem from
the fact that markets are incomplete to begin with. First, an agent who defaults
on a promise is in effect tailoring the given security and substituting a new security
that is closer to his own needs, at a cost of the default penalty. With incomplete
markets one set of assets may lead to a socially more desirable outcome than another
set. Second, since each agent may be tailoring the same given security to his special
needs, one asset is in effect replaced by as many assets as there are agents, and so
the dimension of the asset span is greatly enlarged. A larger asset span is likely to
improve social welfare (although this gain must be weighed against the deadweight
loss of the default penalties that are thereby incurred). In short, permitting default
allows for a plethora of additional assets that do not have to be specified in advance.
Each agent can tailor the simple standard contract to fit his idiosyncratic situation.

A third benefit from allowing default, which is closely related to the first two,
is that when there is no netting, agents can go long and short in the same security,
thereby doubling their asset span. We make use of this in the following example.
(The examples could be presented with netting, or supernetting, but then we would
need more assets and a more cumbersome analysis to make the same points.)

Let there be three agents and S = 3 states of nature, let there be one good in
each state, L = 1, and suppose agents have no utility for consumption at t = 0. Each
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agent has the same utility

3
u(xy, 2, x3) = Z log(xs).
s=1

The endowments of the agents are

0 1 1
el=(1];e=[0];e=1]1
1 1 0

We take the collection of asset promises to be

1 1 0 0
Ro=[1 ]|, Ri=|0]=15R=[1]=13R=|0 | =1%
1 0 0 1

We take default penalties to be one of three types:

Xyj =00, Vh,s,j; Ajj =X >0, Vh,s, j; or

\bo_ Joo if e =1
SIT10 ifel=0"
We take

QSL =00 Vh,j.

Notice that the first two penalties are completely anonymous, since they are the same
whatever the name of the defaulter, and whatever his circumstances. The last penalty
type is infinite when agents have the resources to pay, and 0 otherwise. They do not
depend on the name of the defaulter, but they do depend on his circumstances; they
require more information to carry out. The information required is identical to the
sort of information an insurance company must obtain to verify that an accident has
occurred. Indeed in our sequel paper we shall use these penalties precisely in order
to render insurance a special case of default.

Version A0: Arrow Assets: Pure Promises, Infinite Penalties, and Infinite
Quality Constraints

The Arrow—Debreu equilibrium in our example can easily be calculated as p =
(1,1,1) and 2 = (2/3,2/3,2/3), Vh € H. Tt can be implemented as a GE(R, \, Q)
if A consists of the three Arrow assets j = 1,2,3. Let R; = 17, where 17 is the jth
unit vector, be the pure promise for state j, and let the default penalties and sales
constraints be set at infinity, )\Qj = Q;L =o00,Vhe H,se€ S, j € J. The equilibrium
is given by (p, 7, K, (z",0", ", D")epr) where p = (1,1,1), 7 = (1,1,1), Ks; = 1,
Vsj, o = (2/3,2/3,2/3), 6" =2/3-1" oh =1/3-¢" and DI, = 1/3if h # 5 = j,
and 0 otherwise.

In the GE(R, A\, Q) equilibrium just described, the volume of trade is 2/3 in each of
the three asset markets. Notice that there is some trivial multiplicity in the equilibria,
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since agents could engage in wash sales and buy and sell the same asset. We could
instead have taken 6" = (2/3,2/3,2/3), ¢ = e*, which has volume of trade equal to
2 in each of three asset markets. However, even with the tiniest of transactions costs,
wash sales would be eliminated, and the volume of trade would fall to 2/3.

Version Al: The Optimal Default Penalty with Incomplete Markets
In Version A0 we found that setting )\Qj = oo gave a Pareto efficient outcome,

because it eliminated default. Setting /\?j = A < oo would have led to a Pareto
worse outcome. Nevertheless, we shall argue in this section that when markets are
incomplete, it is often better to set intermediate default penalties. In Version A0,
markets for risk sharing were effectively complete.

Consider the economy as in A0, but with only one asset Ry = (1,1,1). Sup-
pose that the reason for default cannot be observed, so )\};j = A, Vh, s, j. Agents
who promise delivery but do not have the good will default and suffer the penalty.
Anticipating this they will make fewer promises, and risk-sharing will be reduced.

We can calculate the equilibrium and agent utilities for any value of A € [0, c0].
When A = 0 buyers realize that sellers will not deliver anything, so demand will be
zero and equilibrium will involve no trade. When A — oo buyers will anticipate full
delivery, but sellers will realize that with probability 1/3 they will not be able to
avoid a crushing penalty, and so again equilibrium trade goes to 0. By setting an
intermediate level of default penalties we can make everybody better off. We graph
the situation schematically in welfare space:

W2 = U2 — ; (default)

Arrow-Debreu equilibrium

A=1%=6/5

A=0ori=0w

wl = ul — 1 (default)

Figure 3

It is worth noting that in our equilibrium different sellers default differently.
(Agent h defaults in state s = h). The buyers of the asset receive the average
deliveries of all the sellers, which works out to 2/3 in every state, when A = A* = 6/5.
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Thus our example illustrates the pooling aspect of assets, namely that investors buy
shares of a pool of individually sold promises.

A consequence of pooling is that the volume of trade is high. In equilibrium (when
A =6/5), each agent sells 1/2 unit of the asset, giving a total volume of trade equal to
3-1/2 = 3/2, much greater than the volume of trade per asset in the Arrow—Debreu
equilibrium.

We now proceed to compute equilibrium for all values of A.

Note first that since the only object traded in period 0 is the asset Ry, we can
always take its price mg = 1. Final consumption for agent h = 1 will be

0 Di, Kipl
xl = 1 — D%O -+ Kogl (9(1)
1 Dy, K30l

By symmetry we can guess Ky = K, and DZO =0, Dy = D, if h # s, and
oh = of = 0 = ¢. In any state, two agents will be delivering D, and since all three
will be promising ¢ = 6, we must have K = 2D/3¢. Hence
2
N
When 0 < A < 1, Ky = 0, Vs, and 0" = " = 0. For A > 1, let us guess that each
agent delivers precisely up to the point where the marginal utility of consumption
equals A, defaulting on the rest of his promises. Then x% = xé = 1/)\, and so
D =3 —3/\. Consumption for agent h = 1 (the other h are handled symmetrically)
is then
21 —-1/X)
zt = 1/A
1/A

The marginal utility to buying a unit more of the asset is then

1
M'U(buyer) =K m—f—)\—f—)\

and, since the agent is defaulting on the margin in all three states, the marginal
disutility to selling a unit is

M DU (selling) = 3.
These two must be equal in equilibrium, hence

3\ 6A —6

B: = .
A
m+)\+)\ 4N -3

Moreover
Cop (2—§)<ﬁ+>\+)\) 4
PT3K 3\ 3"

> =

32



Notice that ¢, D, and K are monotonically increasing in A. For 1 < \ < 6/5,
D < ¢, confirming that we have guessed a genuine equilibrium. Note that at A =1,
D = 0, and the only equilibrium involves no trade. Because marginal utility is infinite
at the no trade point, trade jumps immediately for A > 1 to ¢ =4/3 —1/A. As A
rises to A = 6/5, ¢ rises to 1/2 and D rises to 1/2, and K rises to 2/3.

At A =6/5, 2t = (1/3,5/6,5/6), 2* = (5/6,1/3,5/6) and 2* = (5/6,5/6,1/3).
By buying and selling 1/2 unit of the asset Ry, agent h gains 1/3 when s = h and loses
1/6 in the two states s # h. Agent h delivers fully when s # h because his marginal
utility of consumption after delivery is 1/(5/6) = 6/5 = A*. When s = h, agent
h defaults completely since his marginal utility of consumption 1/(1/3) = 3 > A*.
Since for any s € S we have 2 agents with h # s, Ky = 2/3. Thus the asset promise
Ry = (1,1, 1) actually delivers (2/3,2/3,2/3) per unit promise. Agent h = 1 delivers
1/2-(0,1,1), agent h = 2 delivers 1/2-(1,0, 1), and agent h = 3 delivers 1/2-(1,1,0).
The reason each agent buys and sells only 1/2 a unit of asset Ry instead of a full
unit to get to the Arrow—Debreu allocation is that the sale of ¢ units of the asset is
accompanied by the loss of ¢\ utiles for the inevitable default in state s = h. The
marginal utility from buying the asset is (2/3)(6/5) +(2/3)(6/5)+(2/3)-(2/3)-(3) =
18/5; the marginal disutility from selling is also (6/5) + (6/5) + (6/5) = 18/5. (It is
therefore more convenient to take mp = 18/5.)

For A > 6/5, the agents always deliver if they have the goods on hand. Thus
for A > 6/5 we can no longer maintain our guess that agents default until marginal
utility equals \. When A is increased beyond A\* = 6/5, marginal utility is less than
A in the good state, and Ky is maintained at 2/3, but asset trade again begins to
drop because the inevitable punishment makes selling less attractive. The formulas
are messy and we do not bother to present them here. An increase in the penalty
rate beyond A = 6/5 does not improve risk bearing (since ¢ begins to drop), and it
also increases the deadweight loss from punishing agents who cannot deliver anyway.
It thus strictly lowers welfare.

Furthermore, observe that as A rises from 1 to A = 6/5, the deadweight utility
loss from default

Ap +2X (¢ — D) :%l)\—l—l—go)\—i—Zl:?)—Z)\
actually falls, to 3/5. Since the allocation is improving, and the default penalty
is falling, we deduce that \* = 6/5 leads to the Pareto best outcome among all
economies with /\Zj =\

Example A1 illustrates that the optimal default penalty might be low enough to
encourage some real default, and the attendant deadweight loss, when markets are
incomplete. It also illustrates that the possibility of default makes the asset payoffs
endogenous, since we do not know before an equilibrium is calculated what the default
rates will turn out to be. If we change the utilities or endowments of the agents, or
the default penalties, the equilibrium will change, the default rates will change, and
the asset payoffs will be different.
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8 Trading Costs and Incomplete Markets

Even if assets and penalties could be chosen simultaneously, there is good reason to
suppose that not every Arrow security would be actively traded. In practice, that
would be much too costly. In the next two subsections we formalize two kinds of
costs.

Agents often differ more in their idiosyncratic selling than in their buying. All risk
averse agents, for example, prefer to buy riskless consumption over risky consump-
tion with the same expected payoff. By the same token, agents have idiosyncratic
endowments and income streams, so they each have different objects to sell.

If every agent tried to market a personalized asset, tailor made to his needs,
buyers would be confronted with a bewildering array of choices. The information
processing and evaluation costs would be prohibitive, forcing each buyer to consider
only a few of the assets. In addition, transactions costs would also limit the number
of assets that could be purchased. And these costs would be all the higher because
every market would be thinly traded, with only a few buyers and just one seller.

In the real world promises are standardized, enabling liquid markets, even though
deliveries are idiosyncratic. Thus two agents take out the same insurance policy,
under the same terms, even though it is perfectly understood that payments on each
will come in different states of the world. We present a concrete example to illustrate
ideal pooling, and to show how our model of default encompasses insurance. The
example shows that in some cases the Arrow—Debreu equilibrium can be achieved
with just one asset.

Version A2: The Advantages of Standardized Pooled Assets
Consider the economy described in Section 7 with H = {1, 2,3} and with just one
asset Rgp = (1,1,1). Suppose that the default penalties are

\eo_ oo if s#h (ie., if el =1)
S0 if s=h(ie., if e =0)

that is, default penalties are infinite when agents have the resources to pay, and 0
otherwise. We might interpret state s as the state in which a bad accident happens
to agent h = s.

Let mo = 3, p = (1,1,1). Agent h buys and sells 1 unit of the asset, delivering
fully when his endowment is 1, and defaulting completely when his endowment is
0. The upshot is that on net, agent h has effectively bought an insurance contract.
Indeed every agent has formally obtained the same insurance contract (by virtue of
making identical asset trades) but each has insured his own idiosyncratic risk.

Since in every state two agent types deliver and the other type defaults, Kyo = 2/3,
Vs € §. Consumption by h in the state s = h where he has no endowment is thus
K0 Ry = (2/3)(1)(1) = 2/3. Consumption in the other states where he delivers
is e + K00 Rso — Dby = 14+2/3-(1)(1) —1 = 2/3. We verify that this is a
GE(R, A, 00) equilibrium by noting that the marginal utility of owning an extra unit
of the asset is Zle(au/axs)KsoRso =3 (%) +3(3)+2 (), which is equal to the
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marginal disutility of selling the asset Z;q:l Rsp min [59—;1, )\7;0} = 3(1)+3(1) +0,
where 3/2 = [dlog(2/3)]/dx is the marginal utility of consumption in each state.

Version A2 seems at first glance like an artificial example,because the penalties
themselves are idiosyncratic. But, as we said earlier, they are no more idiosyncratic
than insurance contracts.

8.1 Transactions and Liquidity Costs

Trade in any market usually involves some sort of transactions cost. The “competitive
market” itself is an abstraction of a complicated set of interrelationships between
brokers, middlemen, buyers and sellers, and it should come as no surprise that final
buyers do not receive the full value of what sellers give up. As a first approximation,
we can represent this wedge by a simple utility loss to transacting, proportional to
the quantity of the transaction. We can, however, be a little bit more specific about
which asset markets are likely to have higher transactions costs.

When an asset is very finely defined, so as to pay off in exactly those states that
a particular small group of people is interested in, then it is not likely to be heavily
traded. A seller may have to wait a long time to find a suitable buyer and vice versa.
And when such a buyer is found, he will exercise some temporary monopsony power.
We say that the market lacks liquidity. As a first approximation we can incorporate
liquidity costs simply by assuming that more utility is lost in transactions in less
liquid markets.

With liquidity costs and other trading costs, we still need to consider non type-
symmetric equilibria, in which actions of two agents ¢ and t' of the same type h may
be different. Let

b -h -h h

h t h t h ! h ¢

%’ — / iL‘jdt, 9], — det7 ()Dj = / (pjdt, Dsj = / Dsjdt
Jh-1 Jh—1 Jh—1 Jh=1

forall h € H, j € T. Let & = (2%, 6", ¢!, D) be the actions of agent ¢ € (0, H]. For
each asset j € J, denote the total volume of purchases and sales by 0; = >, 5 6)? )
and ©; = 3 ey gp?. Then we can define the utility of agent t € (h — 1,h] at n =
(p, 7, K, (z", 0" " D" pew) by

J J
W) =w' (@', 60°, ¢, D' p) =) " 6hal(p)) =) " Libh(0))
=1 =1
where a and b are continuous, nonnegative, decreasing functions. When a and

b? are constant functions, we get a simple transactions costs economy. When they
are strictly decreasing in the quantity of trade on the other side of the market, they
indicate that part of the transactions costs are due to the difficulty of finding an
agent with whom to trade.

*GE(R, )\, Q) equilibrium is defined exactly the same way as GE(R, \, Q) equi-
librium, except that *W? replaces w' for each agent t. Each agent ¢ regards 6 and
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¢ as fixed when he ponders changing his 6" and ¢!. Under these circumstances,
equilibrium always exists.

Theorem 5.1 Under the conditions of Theorem 1, a *GE(R,\,Q) equilibrium
exists, which is type-symmetric.

Proof The theorem needs no additional proof, since under the hypothesis that each
agent regards himself as so small that he cannot affect either 6 or ¢, his payoff *W?
is still a concave function of his choice variables. |

The advantages of conducting trade through large, standardized, liquid markets
as opposed to many specialized markets becomes quite clear when we consider trans-
actions costs. It is possible to standardize contracts to some degree because idio-
syncratic default on the same standardized contract can sometimes offer almost the
same flexibility as completely separate contracts, as we saw in example Version A2.

If we introduced high liquidity costs into the example, efficiency gains of the
allocation with default described in Version A2 would be quite striking compared
to the complete markets allocation described in Version AQ. The same allocation is
achieved via one asset, instead of via three assets. And the liquidity of the single
asset is 3, instead of 2/3 for each of the three assets in Version A0.!* Evidently it
is socially preferable to have many agents sell the same promise to deliver a dollar
unconditionally, and then default in the idiosyncratic states where they cannot pay,
rather than to define a separate, idiosyncratic asset for each agent, which only he will
sell.

We turn now to an equally important source of trading costs.

8.2 Information and Evaluation Costs

When an agent considers buying a contingent asset he must think carefully about
its implications. This computation cost is usually highly nontrivial in practice, and
causes most people to shy away from most securities. As a first approximation we
can formalize this cost by subtracting a fixed entry cost for buying or selling an asset:

J
**Wt(n) = *Wt(f 77 ZC_L;L j7 KS])SES SOJ 01‘/ th j7 sg 86579 )X(SDE)

where x(z) = 1 if z > 0, and 0 otherwise, and a? and l_)? are continuous, nonnegative

functions which are decreasing in 6; and ¢, respectively.

We could formally modify our example to incorporate transaction costs aj "(0;) and bh(cpj) which
are very high for small volumes of trade, but decline (continuously) to near 0 as 0; and p; approach
3. Then the equilibrium described in Version A2 would indeed be very close to a genuine equilib-
rium with transactions costs (which we do not bother to compute). This equilibrium easily Pareto
dominates what could also be accomplished with Arrow securities. Observe that with wash sales,
the Arrow securities could be traded in large enough volume to nearly eliminate transactions costs.
But as long as the transactions cost is positive, no matter how small, no agent will engage in these
wash sales, rendering the Arrow securities prohibitively expensive.
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The “evaluation” costs for buyers a? and for sellers 5? of studying a security

may depend on the sources of its riskiness. For example, it may be harder to think
through contingent defaults than contingent promises. To allow for these possibilities
we made the cost of evaluation depend on the rates of payment, as well as on the
promises. Furthermore, a large volume of trade in a market may make it very easy to
learn about the security, whereas a small volume of trade means an esoteric security
for which it is hard to find an expert who can explain it. Thus we also allowed the
fixed cost to depend on the liquidity of the market.

Notice that the payoff function **W" is not continuous at 7 involving 0 trade in
some asset. However, it does have two properties:

(1) (€'(n),n(n)) — (&',n) = limsup *W"(¢'(n),n(n)) < *W"(E,n)

(2) Let n(n) = (p(n), 7(n), K(n), (z"(n),0"(n), @"(n), D"(n))new) converge to 1 =
(p,m, K, (x", 0" o D")hep). Let a,, increase monotonically to 1, and suppose
for some agent t, £f(n) = (2f(n),0'(n), o' (n), D(n)) = ay(a', 0", o', D) =
€. Then lim,_ o *WH(E(n),n(n)) = “*Wh(En) .

The first property says that the payoff can only jump up at the limit. (With in-
formation and evaluation costs, this happens when trade in some asset becomes 0.)
The second property says that when a household’s actions converge from below, its
payoffs are continuous.

We define **GE(R, )\, Q) exactly as GE(R, \, Q) was defined, except that **W?*
replaces w” for all h € (h — 1, H]. Again equilibrium must exist.

Theorem 5.2 Suppose that the payoffs *W? satisfy conditions (1) and (2) above.
In the finite-type, continuum model, **GE (R, \, Q) equilibrium always exists (though
it may not be type-symmetric).

Sketch of Proof The fixed cost of buying an asset destroys both the continuity of
“*W* and its concavity, so at first glance it seems to compromise our existence proof.
But in fact on closer inspection one sees that demand is still upper semi continuous,
because utility jumps up at zero demand, and zero demand is always feasible. To be
slightly more precise, let us abuse notation and use a transparent shorthand for the
budget set, demand, and the macro variables. Let 2™ be optimal in the budget sets
Bl(p™) = B"(p™), where t € (h — 1,h], and let p" approach p and 2™ approach z.
If x is not optimal in B"(p) for **W?* = **W" then there must be some y in B"(p)
with *W"(y) > **W"(x). But from the proof of lower semicontinuity of the budget
set in Theorems 1 and 4, we know that we can approximate y by points y"* = a,y,
in B"(p") with a,, T 1. The asset purchases and sales in y™ are less than or equal
respectively to the asset purchases and sales in y. Hence if y involves no purchases
or no sales of some asset, then so does y™, and the utilities **W"(y") must approach
“* T/ (y), using property (2). But for the same reason property (1) holds, and so the
utilities **W"(2™) approach a number at most equal to **W"(z). Hence we deduce
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that 2™ is not an optimal demand in B"(p") after all, a contradiction showing that
demand is USC.

Since the lack of continuity of **W" has no effect on the upper semi continuity
of demand, the problem is reduced to the lack of concavity of **W". But that is
exactly analogous to the lack of convexity of the budget set, and we dealt with that
in Theorems 3 and 4. |

We now have two reasons (transactions-liquidity costs and information-evaluation
costs) why equilibrium cannot support a full set of traded assets. Both reasons give
advantages to the standardized contract in Version A2 over the Arrow securities
described in A0O. In general if we begin with a comprehensive set A of asset promises,
default penalties, and quantity constraints, in equilibrium only a very few of them will
be actively traded on account of the trading costs. These will be the endogenously
determined assets A*. The assets in A* will be few in number and each one will be
far from any Arrow security.

9 Endogenous Asset Structures

In some contexts it has become customary to think of endogenizing the asset structure
by allowing atomic agents to invent new assets (often one at a time) to upset a
prevailing equilibrium. These asset-creating agents are hypothesized to be motivated
by payoffs that might depend on the perceived volume of trade which would take
place in their new asset if no other prices changed (or in the new trading equilibrium
after all prices equilibrated), or in some other way on their perceived profits from
introducing the new asset. When the status quo assets are chosen so that none of these
agents has an incentive to introduce a new asset, the asset structure is said to have
been endogenously determined. This approach to endogenizing the asset structure
almost inevitably involves a combination of comparative price taking behavior and
oligopolistic-Nash thinking on the part of the asset creating agents.

By contrast we follow a relentlessly competitive approach to the problem of en-
dogenous assets. Every agent is a price taker. An asset is endogenously missing in
our approach if it is not in A*, i.e., if there is a price at which no agent wants to sell
or buy it.

Recall that an asset is specified not just by its vector R; of promises across states,
but also by the associated default penalties )\?j, and quantity constraints Q;L If the
government could simultaneously and without limitations choose these parameters,
it would set them at the Arrowian levels: promises with full span, infinite penalties,
and nonbinding quantity constraints. Now we show the market would do the same.

Version A3: Arrow Securities Emerge When Default Penalties Are Infi-
nite

Consider our standard example with H = {1, 2, 3}, but with four assets R; = 17,
j =1,2,3, and Ry = (1,1,1). Let the penalties be )\i}j = o0 if j = 1,2,3, and
M= X* = 6/5 for all h and s. Despite the fact that the default penalty for asset
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0 has been chosen “optimally,” the unique equilibrium (ignoring redundant trades)
is the Arrow—Debreu equilibrium of Version AQ, so that asset 0 is not traded at all.
The forces of supply and demand determine that the Arrow securities are traded and
other assets are not.

We elevate this example to a theorem:

Theorem 6 Let £ = ((uh,eh)heH,(Rj,((/\gj)seg,Q?)jeJ)) be an economy which
includes all the Arrow securities: for each s € S, there is an asset i = i(s) such
that Rsr; = 1 and Rgy = 0 otherwise, with Q? = oo Vh and )\Zi = oo Vh and
Vs. Then for any GE(R,\, Q) equilibrium n = ((p,m, K), (", 0" o D" en), we
can find prices q € R(jis)L such that (q, (z")ner) is an Arrow-Debreu equilibrium.
Moreover, if X > 0, no agent defaults on any actively traded asset in n, even if
there are assets j € J with low )\};j. Finally, there is an equilibrium n', possibly n
itself,with the same ((p,m, K),(x")ner) such that the only actively traded assets in
1 are Arrow securities.

Proof Let 1 be given. Let go = po and let g5 = m(5)(ps/ps1), Vs € S. Let

_ 14+S)L
v"(q) = max{u(z) : q-x < q-e", x € Ri ) }.
Observe that K,; = 1 for each asset j with /\Zj = 00 Vh, s, if Ry # 0, since no agent
will default in the refinement. It follows that by never defaulting, each agent h could,
by selling and buying the Arrow securities, achieve at least v"(q), that is,

ul(xh) > uP(2") — default penalty > v"(q).

It follows that ¢-x" > q-e” Vh € H. Since 7 is an equilibrium Y ohen zh = Y ohen el
Hence q - 2" = q- e Vh € H, and (q, (z")neq) is an Arrow—Debreu equilibrium, and
the default penalty actually borne by each agent h € H is zero.

Clearly each agent is indifferent to achieving 2" via the actively traded assets in
7, or via Arrow securities. If every agent trades exclusively via Arrow securities, then
supply will equal demand, and 7/ is a genuine equilibrium. |

10 Endogenous Default Penalties When Promises
Are Incomplete

We have already seen that when all asset promises are available, the market should
and will exclusively trade promises with infinite penalties. Let us suppose that the
set A contains only a limited variety of promises, far short of a complete set of Arrow
promises. Given these limitations on promises, in Section 7 we were able to ask
how severe the default penalties should be to promote economic efficiency. Since our
model allows for the possibility that different punishment regimes coexist at the same
time, we can also ask how harsh the punishment scheme will be that endogenously
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emerges in equilibrium. For example, an agent could indicate his intention to perform
a service, he could orally commit to performing the service, he could put in writing
that he promised to perform a service, or he could draw up a contract with a lawyer
announcing his promise to perform a service. If all four of these promises are treated
equally by the courts, then there is no issue of selecting a punishment. But if the
punishment in case of default is different for these different manners of making the
same promise, then in effect the parties to the agreement are choosing the severity of
default penalties attached to the promise. We shall now show that in our example,
the forces of supply and demand select the optimal default penalties.

Version A4: Endogenous Default Penalties

Consider the model of version Al with only one asset promise Ry = (1,1,1) and
My =\ =6/5, Vh € H and Vs € S. Tt is natural to regard the penalty \* as
imposed by a beneficent and knowledgeable government. But we may also regard A*
as emerging from the equilibrium forces of supply and demand.

Now let there be a finite number of additional assets R;, all making the same
promises R; = (1,1,1), but with default penalties A; = A for all h € H, 5 € 5,
ranging at intervals of A*/100 from 0 to 100A*. We shall now show that despite
the myriad of available assets, in every (symmetric) equilibrium, all trade will be
conducted in the assets j for which )\Zj = A*. We begin by describing an equilibrium
of this type, and then we show it is essentially the only (symmetric) equilibrium.

The equilibrium will involve exactly the same prices, delivery rates, trades, and
consumption as described in example Al for the case A = A\* = 6/5. We must now
extend that equilibrium to define prices m; and delivery rates K,; for all the new
assets. Set m* = 18/5, and set m; = 6/5+6/5 4+ min{\;, 3} for \; > \* = 6/5, which
is the marginal disutility of selling asset j, when A; > A*. At these prices agents are
just indifferent between selling j and j*, so it is optimal to supply zero of j. Recall
in example A1, mo = 18/5 = the marginal utility of buying or selling asset Ry, hence
m; > mp. For \* < \; < 3, set K;; =2/3 for all s € S. The marginal utility of buying
such assets j is then 18/5, and this is never higher than the price 7;, hence optimal
demand 6% = 0. For \; > 3, we let K,; =1, Vs € S. Here m; = 12/5 + 3 = 27/5.
But the marginal utility of buying such an asset is also 6/5 4 6/5 4+ 3 = 27/5, again
optimal demand and supply are zero.

For A\; < A*, define 7; = 3)\; and K,; =0, Vs € S. Since utilities are concave, to
check that no agent would sell asset j, we only need to look at the marginal utilities at
the allocation achieved in example Al. Clearly on the margin, the disutility of selling
asset j is 3)\;, once again rendering sellers indifferent between j and j*. Notice that
every seller would in fact completely default, hence buyers are rational to anticipate
this, and to demand zero.

In every case we set the price equal to the marginal utility of the sellers, and the
K; equal to the rates of payments that would be made with infinitesimally higher ;.
Hence in every case buyer expectations are rational, i.e., they satisfy condition (5)
of equilibrium. We have thus displayed an equilibrium in which (almost) any default
penalty is available, yet only a single one (namely the Pareto efficient penalty) is used
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in equilibrium.

We now argue that there can be no other (symmetric) equilibrium. In any (sym-
metric) equilibrium we have consumption ! = (22,1 — 2,1 — ), and similarly
22 = (1 —-2,22,1 —2), and 23 = (1 — 2,1 — x,2x), with * < 1/3. If z = 1/6,
we must be in our original equilibrium. If x > 1/6, then agent 1 has delivered up to
a point in states 2 and 3 where his marginal utility of consumption 1/(1 —x) > 6/5.
He would not have done that unless he was selling an asset with default penalty
Aj > 1/(1 —x) > 6/5. If asset j delivers fully in every state, then it is irrelevant,
since by symmetry each agent is buying and selling an equal amount of it. But from
the argument in the proof of Theorem 2, if the asset did not deliver everywhere, then
any agent buying and selling it would default completely in at least one state. Since
by symmetry every agent buys and sells it, K; < 2/3, Vs € S. The marginal utility to

purchasing asset j is at most %(% + =+ 1T1:p) = %(131”;)1% ==+ m <
(if x > 1/6) of utility in period 1. The marginal disutility of selling asset j is at least
ﬁ + 1T1$ +t15 = ITSM a contradiction.

If # < 1/6, we shall show there can be no equilibrium price 7* for asset j = j*.
The marginal disutility of selling asset j* is = +2=+2, since 1/(1—2) < 6/5 = A*.
Hence, the marginal disutility of selling is less than 18/5. It also follows that every
agent would deliver in each of his two good states if he were selling asset j*. Hence
Ky > 2/3, Vs € S, by our equilibrium refinement. The marginal utility of buying
asset j* is then at least %ﬁ + %ﬁ + %% For x < 1/6, the marginal utility of
buying is always larger than 18/5, hence larger than the marginal utility of selling, a
contradiction.

11 Endogenous Promises when Default Penalties
Are Lenient

Consider a situation in which default penalties are not allowed to be too severe,
perhaps because politics do not permit harsh penalties that don’t “fit the crime.”
We shall show that then the “Arrow promises” will often not be actively traded, even
if they are available without transactions costs.

Version A5: Adverse Selection with Differential Penalties

Let us reconsider the example with #H = 3 and assets R; = (1,0,0), Ry =
(0,1,0) and R3 = (0,0,1) (either in place of asset Ry = (1,1,1), or in addition to
oo if el =1
0ifel =0
securities would be traded, since agents of type h = j would be tempted to sell
J € {1,2,3} like crazy, thereby reducing K; to zero, so that m; would be zero, so
that no agents besides those of type h = j would sell asset j even if 7; went up a
little.

When default penalties are not uniform, asset promises which pay off in very
specific states are not likely to be traded even if they can be written, because there is

Ry), where the penalties are )\};j = { . In equilibrium none of the Arrow
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bound to be some agent who can take advantage of the specificity of the conditions
to escape punishment. These agents will debase the value of the asset and prevent
others from selling it. In short, when there is a variety of penalties /\Zj, buyers must
beware of an adverse selection of sellers with )\Zj < Ou"/Ox.

Version A6: Span of Active Assets Shrinks as Default Penalties Fall

Consider the same three agents’ utilities and endowments as in examples AQ—
A4. Suppose now, however, that there are asset promises Ry = (1,1,1), Ry = 11,
Ry =12, Rs = 13. Fix all the penalties \}; = X\, forall h € H, s € 5, j =0,1,...,J,
as in Version Al. We wish to illustrate two points. First, we shall see that in
equilibrium not all available assets are traded, even though there are no transactions
costs. Second, we shall see that as the default penalties A decline, the span of actively
traded asset promises shrinks.

When 3/2 < A < oo, there is (essentially) a unique equilibrium reproducing the
Arrow—Debreu equilibrium of Version A0O. Each agent h consumes (2/3,2/3,2/3),
obtained by selling 1/3 units of assets j € {1,2,3} \ h, and buying 2/3 units of asset
h. (Thus agent 1 puts ¢} = i = 1/3 and 61 = 2/3.) All assets deliver completely,
Kgj=1Vse S, jeJ,and 1 =m =my = w3 = (1/3)mg. There is no trade in asset
0.

When 3/2 > XA > 6/5, default emerges, but traded asset promises are still
o [1/A if h#s
S 12(1—=1/N) ifth=s"
We can guess that each agent & sells ¢ units of each of the two “Arrow promises”
j # h, and buys 2¢p units of asset j = h. (The prices of all three assets is the same.)
The marginal utility of buying asset j = h is MUp = K1/[2(1 — 1/\)] and the mar-
ginal disutility of selling either “Arrow promise” j # h is MUg = A. Equating the
two marginal utilities gives K = 2(A —1). Final consumption, say for agent h = 1, is

“complete.” In the unique GEI(R, A\, 00) equilibrium, z

2(1—1/)) 0 0 2K
1/A 1 Ky 0

This gives 1/A = 1 — K¢. Replacing K with 2(\ — 1) gives ¢ = 1/2X\. We can

/20 i €{1,2,3)\h g _
0 ifje{0,n} 5=
{2 ii; i20,1,2,3}\h Ky =20—1)Vs €8, j€{1,2,3)}; Ky =2/3Vs €S;
A =m =7me =73 = (1/3)m. For example, if A = 4/3, then x! = (1/2,3/4,3/4);
b =0, ¢l =0, ok = 3/8, 0L = 3/8, 01 = 0, 0} = 3/4, 6 = 0, 6} = 0; Ky; = 2/3,
j =123 Vs eS; Koo =2/3, Vs € S; m =72 =m3 =4/3; mop = 4. Note
that agent 1 sells 3/8 units of asset 2, delivers 2/3 - (3.8) = 2/8, and thus consumes
rd =1-2/8 = 3/4. Notice that the marginal disutility of selling one unit of asset 0 is
to default in each state, which costs 3(4/3) utiles, or 4, which is equal to the price mg.
The marginal utility of buying one unit of asset 0 is 2/3-(4/3)+2/3-(4/3)+2/3-(2) =

now describe the rest of the equilibrium: @7 = {
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28/9 < 4, so no agent wants to buy asset 0. For 6/5 > A > 1, the same equilibrium
persists. But there is another.

When 6/5 > A > 1, there is an equilibrium in which asset trades shrink to one
dimension. We can guess from example Version A1l and from the above calculations
;@_ 1) ﬂ’: Db =0 =4/3—1/) @ =01 =0,Vj €{1,2,3},
Ko = (6A—6)/(4\—3),Vs € S, K5j =2(A—1),Vs € S, j€{1,2,3}; A=m; =
79 = m3 = 1/3 - my. To verify equilibrium condition (5) for the given K,;, for asset
j =1,2,3, note that each agent h could equally well have achieved exactly the same
consumption and default penalties by trading via the assets j € {1,2,3}, exactly
as described in the last paragraph. Had all three agents done so, delivery rates on
these assets really would have been K ; = 2(A —1). For example, if A\ = 8/7, then
xl = (1/4,7/8,7/8), ¢ = 0p = 11/24, Ky = 6/11; 71 = 71y = 73 = 8/7, mo = 24/7.
Observe that by buying 6§ = 11/24 units of asset 0, agent 1 consumes =K 10051 =
6/11-(11/24) = 1/4, as claimed. Note that agent 1 delivers D} = (0,9/24,9/24). Note
also that the marginal disutility of selling asset 0 is 24/7, while the marginal utility of
buying another unit of asset 01is 6/11-(4)+6/11-(8/7)+6/11-(8/7) = 264/77 = 24/7.
Similarly the marginal utility to agent 1 from buying or selling asset 1is 2/7-(4) = 8/7.
The marginal disutility to selling assets 2 or 3 is also 8/7, while the marginal utility
of buying them is 0.

When 1 > A > 0, the actively traded asset span shrinks to zero dimensions, since
there is no trade in equilibrium.

that f =

12 Confiscation and Trigger Penalties

In practice there may be a legal system that confiscates resources from defaulters.
The detailed rules of confiscation can take many forms; we shall describe the simplest.
The legal system may also impose penalties that are discontinuous in the size of the
default, for example trigger penalties that jump to a minimum level at the first
infinitesimal default. Our existence theorems have not explicitly allowed for these
possibilities. But in fact, with a continuum of households, existence of equilibrium
remains intact by Theorem 7 below.

Trigger penalties can be modeled by discontinuous payoffs W¥(£,7), such as we
saw in Section 8.2.

An extreme version of confiscation prohibits a household from consuming any
goods until he has redeemed all his debts. Formally, let

Ch(p,m,K) = {(m,@,gp,D) € B"(p,m,K): for any s € S,
if for some j € J, ps - Dsj < ¢;ps - Rsj, then z; = 0}.

Here an outside agency like the court enforces delivery when debtors have re-
sources to make good on their promises. This draconian confiscation may so hinder
asset sales as to completely eliminate default at equilibrium. In Section 7 we saw
that lenient penalties which encourage default can be welfare improving. Thus this
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extreme confiscation is not socially advisable. Bankruptcy law implicitly recognizes
this, putting limits on how much can be confiscated.

The correspondence C" describing extreme confiscation satisfies three properties
which would also hold for a variety of milder forms of confiscation:

(0%) (e",0,0) € C"(p,m, K) C B"(p, 7, K)
(1*) C™ is upper semi-continuous

(2*) C* has the scaling property: (x,6,0,D) € C"(p,n,K) and 0 < a < 1 =

(o, a, o, aD) € C"(p, #t, K) for (p, 7, K) sufficiently close to (p, , K)

Theorem 7 Define equilibrium with budget sets C*(p, 7, K) for t € (h—1,h], and
payoffs WH(E' n'). Suppose C" satisfies properties (0*), (1%), (2*) and W' satisfies
(1) and (2) of Section 8.2, and the quantity constraints Qg‘ are all finite. Then in the
finite-type continuum model, equilibrium exists (though it may not be type symmetric).

Proof Same as the proof of Theorem 5.2. |

Confiscation and discontinuous default penalties are thus subsumed by Theorem
7. Theorem 7 also paves the way for dealing with exclusivity restrictions on asset
sales. But we leave this for our sequel paper.
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