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Abstract. We consider the problem of implementing a social choice correspon-
dence H in Nash equilibrium when the constitution of the society is given by an
effectivity function E. It is assumed that the effectivity function of H, EH , is a
sub-correspondence of E. We found necessary and efficient conditions for a game
form Γ to implement H (in Nash equilibria), and to satisfy, at the same time, that
EΓ , the effectivity function of Γ , is a sub-correspondence of EH (which guarantees
that Γ is compatible with E). We also find sufficient conditions for the coincidence
of the set of winning coalitions of EΓ and EH , and for EΓ = EH . All our results
are sharp as is shown by suitable examples.
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1 Introduction

Since Hurwicz (1972) and Maskin (1998) the literature on complete information
implementation mainly focused on sufficient and necessary conditions for imple-
mentation under different equilibrium concepts. It is fair to say that there has been
much less discussion concerning the reasonability and the attractiveness of differ-
ent mechanisms that implement the same social choice correspondence (SCC). The
fact that a certain game form implements an SCC under, say, Nash equilibrium does
not necessarily imply that this game form can serve as an acceptable mechanism for
implementation. Indeed, if all players tacitly coordinate on a certain Nash equilib-
rium of the game, then the planner can be sure to attain one of the socially desirable
outcomes, but if some players choose non-equilibrium strategies or if players fail
to coordinate on the same equilibrium the implemented outcome can turn out to be
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completely remote from any recommended outcome. As we know from the theory
of repeated games, off-equilibrium behavior is even more relevant when the mech-
anism is executed repeatedly, which is characteristic to many real life situations. It
is therefore important that the game form possesses desirable properties that come
in addition to the property of implementability and that do not rely on the fact that
players use equilibrium strategies.

In this paper we suggest one such property to which we refer as Constitutional
Implementation.

By a constitution we refer to the set of rules that specify the distribution of
power within the society. In the context of social choice we would like to think
of a coherent constitution as defining the opportunities of each group of agents to
force social outcomes on the rest of the society; or alternatively to block certain
outcomes from being selected. Thus the right of speech, for example, is an outcome,
which under liberal constitutions each individual in the society is effective for. That
is, each individual alone has a legal option by which he can exercise his right to
express opinion. In contrast, the nomination of a person to become the head of state
according to most liberal constitutions is only within the power of a majority of
the voters. Our condition of constitutional implementation roughly requires that
the implementing game form will induce the same distribution of power as that of
the implemented SCC, which we assume to be compatible with some pre-specified
constitution. Thus the mechanism that the planner uses to implement the desirable
outcome should not violate the constitution which we take to be more primitive
than the SCC itself.

For a given set of alternatives A and a given society N we will use the notion of
effectivity functions to represent constitutions. Specifically, an effectivity function
E maps subsets of agents to collections of subsets of alternatives. The claim that a
subset of alternatives, say B ⊂ A is in E(S) (i.e., is S is effective for B) for some
set of agents S should be understood as saying that the coherent constitution grants
the members of S (as a group) the ability to force the social outcome to be in B, or
alternatively to veto the outcomes in A \ B.

We will define three notions of constitutional implementation which are based
on the relation between the effectivity function derived from the implementing
game form and the one derived from the implemented SCC. The main objective
of this paper is to identify necessary and sufficient conditions on SCCs that admit
constitutional implementation.

Following notations and basic definitions in Sect. 2 we start in Sect. 3 with an
example of an SCC that violates constitutional implementation in a rather dramatic
sense. This SCC has the property that one player is a dummy player, i.e., the selected
set of outcomes does not depend on the preference that this player submits. Yet,
while this SCC is Nash implementable, there exist no implementing game form in
which this player is dummy. We will argue in the sequel that it is the notion of Nash
equilibrium implementation, which is responsible for this paradoxical phenomenon.
Indeed, implementation via Strong Equilibria or Coalition Proof Equilibria cannot
give rise to such a paradox (see Moulin and Peleg 1982, and Peleg 1984b)

In Sect. 4 we give formal definitions of the three notions of constitutional
implementation. We say that a game form is a weakly constitutional implementation
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of an SCC H if in addition to implementing H its effectivity function is a sub-
correspondence of the effectivity function induced by the SCC H , i.e., if the game
form never grants a coalition more power than it has in the SCC. It is a constitutional
implementation of H if it has exactly the same effectivity function that H does.
Finally, a third intermediate notion is the “Almost Constitutional Implementation”
which requires that the game form is weakly constitutional and in addition the
set of winning coalitions of the game form (i.e., those which can enforce every
outcome) coincides with the set of winning coalitions derived by the SCC. Our
notions of weakly and almost constitutional implementation are based on setting
limits to the power of coalitions. This may appear counter intuitive at the first
sight as rights are usually associated with alleviating limits and restrictions. Yet we
feel that any legislative action, almost per definition, involves setting restrictions.
A constitutional rule that grants individuals the right of speech or the right of
association boils down to imposing restrictions on the actions of any majority that
prevent the denial of these rights.

In Sect. 4 we identify necessary and sufficient conditions for almost constitu-
tional implementation. In addition to Danilov’s (1992) property of Strong Mono-
tonicity that guarantees that an SCC H is Nash implementable our condition im-
poses that according the effectivity function of H , for any player i and any alter-
native a in the range of H the coalition N \ {i} has to be effective for the lower
contour of a with respect to i’s preference relation. Indeed it is quite immediate
to show that this condition must be possessed by the effectivity function of any
game from that implements H . The interesting and elaborate part of our result is
that the analog condition imposed on the SCC is sufficient for almost constitutional
implementation. In Sect. 5 we use two examples to demonstrate the following facts:
first we show that the sufficient conditions for almost constitutional implementation
do not imply that all game forms are even weakly constitutional. Furthermore, we
show that while these conditions guarantee that the set of winning coalitions of the
SCC and the game form coincide under almost constitutional implementation the
effectivity function of the game form is not necessarily a simple game.

Section 6 is devoted to some results on constitutional implementation. Our
first result here shows that any 2-person SCC is constitutionally implementable.
We also show that under non-dictatorship and unanimity Maskin’s no veto power
condition becomes a necessary condition for constitutional implementation. We use
an example to demonstrate that the unanimity condition indeed plays an essential
role. This result also provides us with a corollary that solves completely the case of
3-person SCC. We show that under the conditions mentioned above constitutional
implementation implies that the effectivity function of the SCC is a simple majority
game.

We conclude the paper with a short discussion and some straightforward exten-
sions.

2 Definitions and notations

Let A be a set of alternatives. A may be finite or infinite. However, |A| ≥ 2
if A is finite. (If D is a finite set, then |D| is the number of members of D.)
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A (linear) preference ordering on A is a complete, transitive, and antisymmetric
binary relation. We denote by L = L(A) the set of all linear orders on A. If S is a
set, then LS = {f |f : S → L}.

Let D be a set. We denote by P (D) the set of all subsets of D, that is, P (D) =
{D′|D′ ⊂ D}. Also, 2D = P (D) \ {∅} is the set of all non-empty subsets of D.

Let A be a set of alternatives and let N = {1, . . . , n} be a finite set of players.
A social choice correspondence (SCC) is a function H : LN → 2A. Let H be
an SCC. H is surjective if for each x ∈ A there exists RN ∈ LN such that
H(RN ) = {x}. H satisfies unanimity if

[x ∈ A and xRiy for all y ∈ A and i ∈ N ] ⇒ H(RN ) = {x}.

If H is surjective, then a player d ∈ N is a dictator for H if

[x ∈ A, RN ∈ LN , and xRdy for all y ∈ A] ⇒ H(RN ) = {x}.

If there is no dictator for H , then H is called non-dictatorial. Let a ∈ A and R ∈ L.
We denote L(a, R) = {b ∈ A|aRb}. H is Maskin monotonic if

[a ∈ H(RN ), QN ∈ LN , and L(a, Ri) ⊂ L(a, Qi)
for all i ∈ N ] ⇒ a ∈ H(QN ).

Let i ∈ N and B ⊆ A. An alternative b ∈ B is essential for i in the set B with
respect to H if there exists RN ∈ LN such that b ∈ H(RN ) and L(b, Ri) ⊆ B.
The set of all alternatives which are essential for i in B with respect to H is denoted
by Essi(B, H). H satisfies strong monotonicity if

[a ∈ H(RN ), QN ∈ LN , and Essi(L(a, Ri), H) ⊆ L(a, Qi)
for all i ∈ N ] ⇒ a ∈ H(QN ).

Strong monotonicity was defined in Danilov (1992). We remark that strong mono-
tonicity implies Maskin monotonicity. Finally, we need the following definition
due to Maskin (see, e.g., Maskin 1985). H satisfies no veto power if

[i ∈ N, a ∈ A, RN ∈ LN , and aRjb for all j �= i and b ∈ A] ⇒ a ∈ H(RN ).

We now turn to define some basic properties of game forms. Let A be a set
of alternatives and let N = {1, . . . , n} be a set of players. A game form (GF) is
an (n + 2)-tuple Γ = (Σ1, . . . , Σn; π; A), where (i) Σi is the (non-empty) set of
strategies of player i ∈ N ; (ii) π : Σ1 × · · · × Σn → A is the outcome function.
Let Γ = (Σ1, . . . , Σn; π; A) a GF. For S ∈ 2N we denote ΣS = ×

i∈S
Σi. Also,

we denote ΣN = Σ. Now let RN ∈ LN . The pair (Γ, RN ) defines, in an obvious
way, a game in strategic form. σ ∈ Σ is a Nash equilibrium (NE) of (Γ, RN ) if

π(σ)Riπ(σN\{i}, τ i) for all i ∈ N and τ i ∈ Σi.

The set of all Nash equilibria of (Γ, RN ) is denoted by NE(Γ, RN ).
Now let, again, A be a set of alternatives and N = {1, . . . , n} be a set of players.

Furthermore, let H : LN → 2A be an SCC and Γ = (Σ1, . . . , Σn; π; A) be a GF.
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Γ implements H in NE’s if π(NE(Γ, RN )) = H(RN ) for all RN ∈ LN . Let,
again, H : LN → 2A be an SCC. H is implementable in NE’s if there exists a GF
Γ that implements it in NE’s.

Let A be a set of alternatives and let N = {1, . . . , n} be a set of players.
An effectivity function (EF) is a function E : P (N) → P (P (A)) that satisfies
the following conditions: (i) E(N) = 2A; (ii) E(∅) = ∅; (iii) A ∈ E(S) for all
S ∈ 2N ; and (iv) ∅ /∈ E(S) for all S ∈ 2N .

Let E be an EF. E is superadditive if it satisfies the following condition: If
Si ∈ 2N , Bi ∈ E(Si), i = 1, 2, and S1 ∩ S2 = ∅, then B1 ∩ B2 ∈ E(S1 ∪ S2) (in
particular, B1 ∩ B2 �= ∅). E is maximal if for all S ∈ 2N and B ∈ 2A

B /∈ E(S) ⇒ A \ B ∈ E(N \ S).

The core of E with respect RN ∈ LN is defined in the following way: Let B ∈
2A, S ∈ 2N , and x ∈ A \ B. B dominates x via S at RN if B ∈ E(S) and
bRix for all b ∈ B and i ∈ S. x ∈ A is dominated at RN if there exist B ∈ 2A

and S ∈ 2N such that B dominates x via S at RN . The core of E with respect
to RN , C(E, RN ), is the set of all undominated alternatives at RN . E is stable if
C(E, RN ) �= ∅ for all RN ∈ LN .

Let H : LN → 2A be a surjective SCC. With H we associate an EF EH in
the following way. Let S ∈ 2N and B ∈ 2A. S is effective for B if there exists
RS ∈ LS such that H(RS , QN\S) ⊆ B for all QN\S ∈ LN\S . EH is now defined
by EH(∅) = ∅, and

EH(S) = {B ∈ 2A|S is effective for B}, for S ∈ 2N .

Clearly, EH is superadditive. (Effectivity functions of SCC’s were defined in
Moulin and Peleg (1982). EH is called there the α-effectivity function of H .)

Let Γ = (Σ1, . . . , Σn; π; A) be a GF and assume that π is surjective. The EF
EΓ , which is associated with Γ , is defined in the following way. Let S ∈ 2N and
B ∈ 2A. S is effective for B if there exists σS ∈ ΣS such that π(σS , µN\S) ∈ B
for all µN\S ∈ ΣN\S . EΓ is given by EΓ (∅) = ∅, and

EΓ (S) = {B ∈ 2A|S is effective for B}, for S ∈ 2N .

(EΓ is called the α-effectivity function of Γ in Moulin and Peleg (1982).)
Finally, we recall some properties of simple games. A simple game is a pair

(N, W ), where N = {1, . . . , n} is a set of players, and W ⊂ 2N is a set of winning
coalitions. Let G = (N, W ) be a simple game.

G is monotonic if

[S ∈ W and S ⊆ T ⊆ N ] ⇒ T ∈ W.

G is proper if

S ∈ W ⇒ N \ S /∈ W for all S ∈ 2N .

(In the sequel we only deal with monotonic and proper games.) G is strong if

S /∈ W ⇒ N \ S ∈ W for all S ∈ 2N .
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G is symmetric if G is an (n, k) game, that is, there exists n
2 < k ≤ n such that

W = {S ⊆ N | |S| ≥ k}. G is weak if

V = ∩{S|S ∈ W} �= ∅
V is the set of vetoers of G. If G is not weak, then the Nakamura number of G, ν(G),
is given by

ν(G) = min{|U | |U ⊂ W and ∩ {S|S ∈ U} = ∅}
(see Nakamura 1979).

Let G = (N, W ) be a simple game, let A be a set of alternatives, let RN ∈ LN ,
and let x, y ∈ A, x �= y. x dominates y at RN if there exists S ∈ W such that xRiy
for all i ∈ S. The core of G with respect to RN , C(G, A, RN ) = C(RN ), is the
set of undominated alternatives at RN . If G is not weak, then C(G, A, RN ) �= ∅
for all RN ∈ LN iff ν(G) > |A| (see, again, Nakamura 1979). (Obviously, if G is
weak and A is finite, then C(G, A, RN ) �= ∅ for all RN ∈ LN .)

Let E : P (N) → P (P (A)) be an EF. The simple game (N, W (E)) which is
associated with E is given by

W (E) = {S ∈ 2N |E(S) = 2A}.

Let H : LN → 2A be an SCC. The simple game which is associated with H is
W (H) = W (EH). Similarly, if Γ = (Σ1, . . . , Σn; π; A) is a GF, then the simple
game which is associated with Γ is W (Γ ) = W (EΓ ). We close this section with
the following definition. Let G = (N, W ) be a simple game and let N ∈ W . The
EF E(G) which is associated with G is given by

E(G)(S) =






2A, S ∈ W ;
{A}, S ∈ 2N \ W ;
∅, S = ∅.

3 Examples

An equilibrium concept for games in strategic form is a function e that associates
with every GF Γ = (Σ1, . . . , Σn; π; A), and every RN ∈ LN , a subset e(Γ, RN )
of Σ. A GF Γ = (Σ1, . . . , Σn; π; A) implements an SCC H : LN → 2A in an
equilibrium concept e if π(e(Γ, RN )) = H(RN ) for all RN ∈ LN . A fundamental
question in implementation theory is the following: Let e be an equilibrium concept
and let H : LN → 2A be implementable in e (i.e., there exists a GF that implements
H in e). Is it possible to find a GF Γ such that (i)Γ implements H in e; and (ii)
EH = EΓ .

There are (at least) three reasons for considering the foregoing question.
(a) The set of voters in H, N , may be part of a larger society N∗. A constitution

for N∗ may be specified by an EF E∗ : P (N∗) → P (P (A∗)), where A∗ ⊃ A (see
Peleg 1998). We may usually assume that H specifies the goals of some planner.
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Hence H is compatible with the constitution E∗, that is, E(S) ⊂ E∗(S) for all
S ∈ 2N (very often E∗ = EH ). However, arbitrary GF’s that implement H in
e may not be compatible with E∗. The condition EH = EΓ guarantees that the
implementing GF Γ is constitutional (i.e., compatible with E∗).

(b) The requirement EH = EΓ may be part of the program of obtaining natural
implementations of H (see Saijo et al. 1999 where other properties are discussed).

(c) If e is strong equilibrium or coalition-proof Nash equilibrium, then there
is a positive answer for our question. Furthermore, if H : LN → 2A is an SCC
and Γ = (Σ1, . . . , Σn; π; A) is a GF that implements H in strong equilibrium
or coalition proof Nash equilibrium, then EH = EΓ and EH is maximal (see
Moulin and Peleg 1982 for strong implementation and Peleg (1984b) for coalition-
proof Nash implementation; see also Moulin (1983, p. 174) for a similar result
for implementation by backward induction). In this paper we investigate whether
we can obtain similar results for implementation in NE. Our findings will enable
us to compare NE with the foregoing concepts in terms of their constitutional
compatibility (see (a)).

This section is devoted to two examples which explain and motivate the general
results on constitutional implementation which will be presented in the following
three sections. We start with the following observation. Henceforth, all GF’s and
SCC’s are surjective and n ≥ 2.

Lemma 3.1. Let H : LN → 2A be an SCC and let the GF Γ =
(Σ1, . . . , Σn; π; A) implement H is NE. Then

[i ∈ N, RN ∈ LN , and a ∈ H(RN )] ⇒ L(a, Ri) ∈ EΓ (N \ {i}). (3.1)

Proof. Let σ ∈ Σ be an NE of (Γ, RN ) such that π(σ) = a. Then π(σN\{i}, τ i) ∈
L(a, Ri) for all τ i ∈ Σi. Q.E.D.

Lemma 3.1 enables us to consider the following example.

Example 3.2. The Dummy Paradox. Let A = {a, b, c} and let N = {1, 2, 3}.
For R ∈ L let t(R) be the top alternative of R, that is, t(R)Rx for all x ∈ A. Let
H : LN → 2A be defined by H(RN ) = {t(R2)}∪{t(R3)}. Then H is unanimous
and non-dictatorial. Clearly, 1 is a dummy with respect to H . This is reflected by
EH :

EH(S) =






2A, S ⊇ {2, 3}
{A}, S �= ∅, S �⊇ {2, 3}
∅, S = ∅

(3.2)

Also, H is Maskin monotonic and satisfies no veto power. Therefore, by Maskin
(1985), H is implementable in NE. Let Γ = (Σ1, Σ2, Σ3; π; A) implement H in
NE’s. By Lemma 3.1 and the superadditivity of EΓ we obtain:

EΓ (S) =






2A, |S| ≥ 2
{A}, |S| = 1
∅, S = ∅

(3.3)
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Thus, EΓ is symmetric. Furthermore, (3.3) implies that 1 is not a dummy with
respect to Γ . (Notice that Γ may not be symmetric.) We conclude that EΓ strictly
includes EH for every GF Γ that implements H is NE’s.

For the second example we need an additional lemma.

Lemma 3.3. Let E : P (N) → P (P (A)) be a stable EF. If n ≥ 3 then the core
C(E, RN ) is implementable in NE’s.

Proof. Let H(RN ) = C(E, RN ) for all RN ∈ LN . We shall prove that H is
strongly monotonic. Let i ∈ N and B ∈ 2A. Clearly,

Essi(B, H) =

{
∅, A \ B ∈ E({i})
B, A \ B /∈ E({i})

Now let RN , QN ∈ LN , a ∈ H(RN ), and

Essi(L(a, Ri), H) ⊂ L(a, Qi) for all i ∈ N.

As a ∈ H(RN ), A \ L(a, Ri) /∈ E({i}) for all i ∈ N . Hence

Essi(L(a, Ri), H) = L(a, Ri) for all i ∈ N.

Therefore, a ∈ H(QN ) by the Maskin monotonicity of H . We conclude that H is
strongly monotonic. By Theorem 2 in Yamato (1992) H is implementable in NE’s.
Q.E.D.

We may now proceed to the second example. We say that a simple game (N, W )
is non-dictatorial if {i} /∈ W for every i ∈ N . An EF E : P (N) → P (P (A)) is
non-dictatorial if (N, W (E)) is non-dictatorial.

Example 3.4. Let E : P (N) → P (P (A)) be a maximal, stable, and non-dictatorial
EF. We assume that |A| ≥ 3 and n ≥ 3. Further, let H(RN ) = C(E, RN ) for
RN ∈ LN . Clearly, EH = E. Also, H is Paretain (i.e., for every RN ∈ LN and
a ∈ H(RN ), a is Pareto optimal with respect to RN ), because E(N) = 2A. By
Lemma 3.3, H is implementable in NE’s. Let Γ be a GF that implements H in
NE’s. We claim that EΓ �= EH . Indeed, assume on the contrary, that EΓ = EH .
By Theorem 3.5 of Dutta (1984), EΓ = E(G) where G is a strong simple game.
However, E(G) is not stable, because |A| ≥ 3 and G is non-dictatorial. Thus, we
have reached the desired contradiction.

4 Almost constitutional implementability

We start with the main definition of our paper. It is motivated by the discussion at
the beginning of Sect. 3.

Definition 4.1. Let H : LN → 2A be a surjective SCC and let the GF Γ =
(Σ1, . . . , Σn; π; A) implement H in NE’s. Then



Constitutional implementation 195

(i) Γ is a constitutional implementation of H if EΓ = EH ;
(ii) Γ is a weak constitutional implementation of H if EΓ ⊆ EH (i.e., EΓ (S) ⊆

EH(S) for all S ∈ 2N );
(iii) Γ is almost a constitutional implementation of H if (1) EΓ ⊆ EH , and (2)

W (Γ ) = W (H).

Clearly, Γ is a constitutional implementation of H , if Γ and H are compatible
with the same constitutions. Γ is a weak constitutional implementation H if the
compatibility ofH with a certain constitution implies the compatibility ofΓ . Almost
constitutional implementability implies weak constitutional implementability and,
in addition, the coincidence of the sets of winning coalitions with respect to Γ and
H .

Remark 4.2. The SCC of Example 3.2 has no weak constitutional implementation.
Example 3.4 introduces a large set of “nice” SCC’s which do not possess consti-
tutional implementations. As we shall see many cores of effectivity functions have
almost constitutional implementations. Indeed, we shall now prove an existence
theorem for almost constitutional implementations. We start with the following
observation.

Lemma 4.3. Let H : LN → 2A be a surjective SCC. If H has a weak constitutional
implementation Γ = (Σ1, . . . , Σn; π; A), then H is strongly monotonic and

[i ∈ N, RN ∈ LN , and a ∈ H(RN )] ⇒ L(a, Ri) ∈ EH(N \ {i}). (4.1)

Furthermore, (4.1) is equivalent to

[i ∈ N, RN ∈ LN , and a ∈ H(RN )] ⇒ Essi(L(a, Ri), H) ∈ EH(N \ {i}).
(4.2)

Proof. H is strongly monotonic by Theorem 1 of Yamato (1992). (4.1) follows
form (3.1) and EΓ ⊆ EH . Clearly, (4.2) ⇒ (4.1). We now prove, (4.1) ⇒ (4.2).
Let i ∈ N, RN ∈ LN , and a ∈ H(RN ). Choose Ri

0 ∈ L such that

A \ L(a, Ri)Ri
0{L(a, Ri) \ Essi(L(a, Ri), H)}Ri

0Essi(L(a, Ri), H)

By (4.1) there exists R
N\{i}
0 ∈ LN\{i} such that H(RN\{i}

0 , Ri
0) ⊂ L(a, Ri).

Let b ∈ H(RN\{i}
0 , Ri

0). Then b ∈ Essi(L(a, Ri), H) by definition. By (4.1),
L(b, Ri

0) ∈ EH(N \ {i}). As L(b, Ri
0) ⊂ Essi(L(a, Ri), H), the proof is com-

plete. Q.E.D.
It is worth noting that condition (4.1) is satisfied by H if H satisfies the following

version of strategy-proofness for correspondences: for all RN ∈ LN , i ∈ N , and
Ri

∗ ∈ L, there exists no a ∈ H(RN ) and b ∈ H(Ri
∗, R

N\{i}), b �= a such
that bRia. By Lemma 4.3 (4.1) is a necessary condition for weak constitutional
implementability. Our next theorem, the main result of this paper, shows that (4.1)
is a sufficient condition for the existence of an almost constitutional implementation.

Theorem 4.4. Let H : LN → 2A be a surjective and strongly monotonic SCC.
Furthermore, let n ≥ 3. If H satisfies (4.1), then H has an almost constitutional
implementation.
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Proof. First we introduce some notations. We denote

gr(H) = {(RN , a)|RN ∈ LN and a ∈ H(RN )},

and Z+ = {0, 1, 2, . . . }. Further, for i ∈ N let W i = {S ∈ W (H)|i ∈ S}.
N ∈ W (H) because H is surjective. Hence, W i �= ∅ for all i ∈ N .

We now define a GF Γ = (Σ1, . . . , Σn; π; A) by the following rules.
(i) Σi = gr(H) × Z+ × W i for every i ∈ N . Thus, if σi ∈ Σi, then σi =
(RN

i , ai, ti, Si), where RN
i ∈ LN , ai ∈ H(RN

i ), ti ∈ Z+, and Si ∈ W i.
It remains to define the outcome function π. Let σ = (σ1, . . . , σn) ∈ Σ.

(ii) If σi = (RN , a, 0, N) for every i ∈ N , then π(σ) = a.
(iii) If σi = (RN , a, 0, N) for all i �= j, then π(σ) = aj if aj ∈
Essj(L(a, Rj), H), and π(σ) = a otherwise. (Here Rj is the j-th component
of RN .)
(iv) If there exists S ∈ W (H), S �= N such that σi = (RN , a, 0, S) for every
i ∈ S, then there is a unique player j /∈ S such that (tj , j) is the lexicographic
maximum of the pairs (tk, k), k /∈ S. We define π(σ) = aj if aj ∈ L(a, Rj), and
π(σ) = a otherwise. (Again, Rj is the j-th component of RN .)
(v) In all other cases let j be the unique player such that (tj , j) is the lexicographic
maximum of (tk, k), k ∈ N , and define π(σ) = aj .

We claim that Γ is an almost constitutional implementation of H . The proof
consists of the following steps.

Step 1. Let RN ∈ LN and a ∈ H(RN ). Define σ ∈ Σ by σi = (RN , a, 0, N) for
every i ∈ N . By (iii) (of the definition of Γ ) σ is an NE of (Γ, RN ), and π(σ) = a
(by (ii)).

Step 2. Let RN ∈ LN and let σ ∈ Σ be an NE of (Γ, RN ). We must show that
π(σ) ∈ H(RN ). Several cases are distinguished.
(2.1) σi = (R∼

N , a, 0, N) for every i ∈ N . By (iii) and our assumption that σ is an

NE
Essi(L(a, R∼

j), H) ⊆ L(a, Rj) for every j ∈ N.

As a ∈ H(R∼
N ) and H is strongly monotonic, we obtain that a ∈ H(RN ). Fur-

thermore, π(σ) = a by (ii).
(2.2) σi = (R∼

N , a, 0, N) for all i �= j. Let b = π(σ). Then b ∈ Essj(L(a, R∼
j), H)

by (iii). Also,
Essj(L(a, R∼

j), H) ⊆ L(b, Rj)

because σ is an NE. Now by n ≥ 3 and (v)

A = L(b, Ri) for all i �= j.

Hence, by the Lemma in Yamato (1992), b ∈ H(RN ).
(2.3) σi = (R∼

N , a, 0, S) for all i ∈ S, where S ∈ W (H) and S �= N . By (v) and

n ≥ 3, for all i ∈ S, A = L(b, Ri), where π(σ) = b. As S ∈ W (H) and H is
Maskin monotonic, b ∈ H(RN ).
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(2.4) In all remaining possibilities we obtain, by (v) and n ≥ 3, A = L(b, Ri) for
all i ∈ N , where b = π(σ). As H is surjective and Maskin monotonic, b ∈ H(RN ).

Step 3. W (Γ ) = W (H).
We first show that W (Γ ) ⊃ W (H). Clearly, N ∈ W (Γ )∩W (H). Thus, let S ∈

W (H), S �= N , and let a ∈ A. There exists RS ∈ LS such that H(RS , QN\S) =
{a} for all QN\S ∈ LN\S . Choose Q

∼
N\S ∈ LN\S such that bQ

∼
ia for all i ∈

N \ S and b ∈ A. Now define σi = ((RS , Q
∼

N\S), a, 0, S) for all i ∈ S. By (iv),

π(σS , µN\S) = a for all µN\S ∈ ΣN\S . Hence, {a} ∈ EΓ (S), and S ∈ W (Γ ).
Now letS ∈ W (Γ ). Assume, on the contrary, thatS /∈ W (H). Then |S| = n−1

must be true. (If |S| < n − 1 and S /∈ W (H), then EΓ (S) = {A} by (v)). Let
S = N \{i}. As EΓ (S) = 2A, for every B ∈ 2A there exist a ∈ B and RN ∈ LN

such that a ∈ H(RN ) and Essi(L(a, Ri), H) ⊂ B. Therefore, by (4.1) and
Lemma 4.3, EH(S) = 2A. As S /∈ W (H), the desired contradiction has been
obtained.

Step 4. EΓ ⊆ EH .
In view of the proof of Step 3 we only have to prove that EΓ (N \ {i}) ⊆

EH(N \{i}) for every i ∈ N . However, the foregoing inclusions follow from Step
3, (4.1), (iii), and Lemma 4.3. Q.E.D.

Corollary 4.5. Let H : LN → 2A be a surjective SCC and let n ≥ 3. If H
has a weak constitutional implementation, then H has an almost constitutional
implementation.

Corollary 4.5 is an immediate consequence of Lemma 4.3 and Theorem 4.4.

Corollary 4.6. Let H : LN → 2A be an SCC and let n ≥ 3. If H is Maskin
monotonic and

N \ {i} ∈ W (H) for every i ∈ N, (4.3)

then H has an almost constitutional implementation.

Proof. By (4.3), N ∈ W (H). Hence, H is surjective. Also, by Maskin monotonicity
and (4.3), H satisfies no veto power. Therefore, H is strongly monotonic. As (4.3)
implies (4.1), the proof follows from Theorem 4.4. Q.E.D.

Corollary 4.7. Let G = (N, W ) be a proper and monotonic simple game. If G
has no vetoers and 2 ≤ |A| < ν(G), then C(G, A, ·) has a constitutional imple-
mentation.

Proof. Let H(RN ) = C(G, A, RN ) for every RN ∈ LN . Then n ≥ 3, because G
has no vetoers. Also, by the same reason, (4.3) is satisfied. By Corollary 4.6 H has
an almost constitutional implementation Γ . Now W (H) = W and EH = E(G).
As EΓ ⊆ EH and W (Γ ) = W (H), it follows that EH = EΓ . Q.E.D.

Remark 4.8. Let G = (N, W ) be a non-dictatorial weak game and let 2 ≤ |A| <
∞. Then C(G, A, ·) has no weak constitutional implementation.
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Proof. Let H(RN ) = C(G, A, RN ) for every RN ∈ LN . If i ∈ N is a vetoer, then
N \ {i} is blocking, because i is not dictator. Nevertheless, EH(N \ {i}) = {A},
because i is a vetoer. Thus, H violates (4.1). Q.E.D.,

Remark 4.8 addresses the constrains on constitutional implementation in the
context of committees. In particular it implies that in the UN Security Council one
cannot use constitutional implementation to implement the core correspondence
because of permanent members’ veto power.

5 Further examples

In this section we present two examples which are closely related to the results in
Sect. 4. First we show that (4.1) does not imply that all implementations (in NE’s)
are weakly constitutional. We remark that Yamato’s GF is weakly constitutional in
this case (see Yamato 1992).

Example 5.1. Let G = (4, 3), let A = {a, b, c}, and let H(RN ) = C(G, A, RN )
for all RN ∈ LN . As N \ {i} ∈ W (H), for every i ∈ N , H satisfies (4.1). We
now consider the following GF Γ = (Σ1, Σ2, Σ3, Σ4; π; A):

(i) Σ1 = Σ2 = gr(H) × Z+ × A, and Σ3 = Σ4 = gr(H) × Z+. Let
σ = (σ1, σ2, σ3, σ4) ∈ Σ. π is defined by the following rules. For σi ∈ Σi let σi

k

be the k-th component of σi.
(ii) If (σi

1, σ
i
2, σ

i
3) = (RN , a, 0) for all i ∈ N , then π(σN ) = a;

(iii) If (σi
1, σ

i
2, σ

i
3) = (RN , a, 0) for all i �= j, then π(σN ) = aj if aj ∈

L(a, Rj), and π(σN ) = a otherwise.
If (iii) is not satisfied, then let (tj , j) be the lexicographic maximum of

(σi
3, i), i ∈ N . We now further distinguish the following possibilities.

(iv) j ∈ {1, 2}. Then π(σN ) = aj ;
(v) If j ∈ {3, 4} and σ1

4 = σ2
4 = a, then π(σN ) = a;

(vi) If j ∈ {3, 4} and σ1
4 �= a or σ2

4 �= a, then π(σN ) = aj .

Notice that H satisfies Maskin monotonicity and no veto power. Furthermore,
our GF is identical to Maskin’s (1985) except for our condition (v). As the reader
may easily verify Γ implements H in NE. However, {a} ∈ EΓ ({1, 2}) whereas
EH({1, 2, }) = {A}.

Our next example shows that the EF of an almost constitutional implementation
may not be derived from a simple game.

Example 5.2. Let G = (5, 4), let A = {a, b, c}, and for R ∈ L let β(R) = y,
where y ∈ A and xRy for all x ∈ A. Now define an SCC H by

H(RN ) = {x ∈ C(G, A, RN )| |{i ∈ N |β(Ri) = x}| < 3}

for all RN ∈ LN . H is Maskin monotonic and satisfies no veto power. Further-
more, H is anonymous and neutral (see Sect. 2.3 in Peleg 1984a for the relevant
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definitions). Clearly

EH(S) =






2A, , |S| ≥ 4
{A \ {x}|x ∈ A}, |S| = 3
{A} , |S| = 1, 2
∅ , S = ∅

We shall now prove that H has a constitutional implementation and thereby obtain
the counter-example.

Let Γ = (Σ1, . . . , Σ5; π; A) be defined by the following rules.
(i) Σi = gr(H) × Z+ × 2N × A for every i ∈ N .
Let σi = (RN

i , ai, ti, Si, bi), i ∈ N , where RN
i ∈ LN , ai ∈ H(RN

i ), ti ∈
Z+, Si ∈ 2N , and bi ∈ A. We now specify π.

(ii) If (RN
i , ai, ti, Si) = (RN , a, 0, N) for all i ∈ N , then π(σ) = a.

(iii) If (RN
i , ai, ti, Si) = (RN , a, 0, N) for all i ∈ N \ {j}, then π(σ) = aj if

aj ∈ L(a, Rj), and π(σ) = a otherwise.
(iv) If there exists S ⊂ N, |S| = 3, such that (RN

i , ai, ti, Si, bi) =
(RN , a, 0, S, b) for all i ∈ S, then let j be the unique player such (tj , j) is the
lexicographic maximum of (tk, k), k ∈ N . Furthermore, let π(σ) = aj if j ∈ S,
and π(σ) = aj if j /∈ S and aj �= b, and, finally, π(σ) = a if j /∈ S and aj = b.

(iv) In all other cases let (tj , j) be the lexicographic maximum of (tk, k), k ∈ N ,
and let π(σ) = aj .

As the reader may easily verify, Γ implements H in NE. We only will prove
that EH = EΓ . Clearly, EΓ (S) = 2A if |S| ≥ 4, and EΓ (S) = {A} if |S| = 1, 2.
Thus, let S ⊂ N, |S| = 3, and let x ∈ A. Choose RN ∈ LN and y ∈ A \ {x} such
that y ∈ H(RN ). If σi = (RN , y, 0, S, x) for all i ∈ S, then π(σS , µN\S) �= x for
all µN\S ∈ ΣN\S . Thus, EΓ (S) = {A \ {ξ}|ξ ∈ A}.

6 Some results on constitutional implementation

We shall prove in this section two results:
(i) Every implementation in NE of a two-person SCC is a constitutional imple-

mentation; and
(ii) if H is a (non-dictatorial and unanimous) three-person SCC that has a

constitutional implementation, then EH is derived from three-person strong simple
game.

In the course of the proof of the second result we shall obtain some results on
NE implementation of independent interest.

6.1 Two-person Nash implementation

Let N = {1, 2}, let 2 ≤ |A| < ∞, and let H : LN → 2A be an SCC. If
Γ = (Σ1, Σ2; π; A) is a finite GF (i.e., |Σi| < ∞, i = 1, 2), that implements H
in NE’s, then EΓ is maximal (see Gurvich 1989; Abdou 1995).



200 B. Peleg, E. Winter

Theorem 6.1. Let N = {1, 2}, let 2 ≤ |A| < ∞, and let H : LN → 2A be an
SCC. If the finite GF Γ = (Σ1, Σ2; π; A) implements H in NE’s, then EΓ = EH .

Proof. It is sufficient to prove that EH({i}) ⊇ EΓ ({i}) for i = 1, 2. (Recall that
we assume that both H and Γ are surjective.) Thus, let say, B ∈ EΓ ({1}). We may
assume that B �= A. By definition, there exists σ1 ∈ Σ1 such that π(σ1, µ2) ∈ B,
for all µ2 ∈ Σ2. Let R1 ∈ L(A) satisfy BR1A \ B (i.e., xR1y for all x ∈ B and
y ∈ A\B). If Q2 ∈ L(A) and µ is an NE of (Γ, (R1, Q2)), then π(µ) ∈ B. Hence,
H(R1, Q2) ⊆ B for all Q2 ∈ L(A). Therefore, B ∈ EH({1}). We have proved
that EH({1}) ⊇ EΓ ({1}). Similarly, EH({2}) ⊇ EΓ ({2}). As EΓ is maximal
and EH is superadditive, EΓ = EH . Q.E.D.

As a corollary of the proof of Theorem 6.1 we obtain the following result: Let
2 ≤ |A| < ∞, and let H : LN → 2A be an SCC, and let Γ = (Σ1, . . . , Σn; π; A)
be a finite GF that implements H in NE’s. Then EH({i}) ⊇ EΓ ({i}) for all
i ∈ N . This result is a special case of (the proof) of Theorem 4.1 in Peleg, Peters
and Storcken (2001).

6.2 Constitutional implementation of unanimous SCCs

We start with the following general result.

Theorem 6.2. Let H : LN → 2A be non-dictatorial and satisfy the unanimity
condition. If H has a constitutional implementation, then H is Maskin monotonic
and

N \ {i} ∈ W (H) for every i ∈ N. (6.1)

The following lemma is used in the proof of Theorem 6.2.

Lemma 6.3. Let Γ = (Σ1, . . . , Σn; π; A) be a GF. Assume that there exist two
coalitions S, T ⊂ N, S ∩ T = ∅, and an alternative x ∈ A such that A \ {x} ∈
EΓ (S)∩EΓ (T ). Then there exist RN ∈ LN and an NE of (Γ, RN ) whose outcome
is Pareto dominated.

Proof of Theorem 6.2. Let Γ = (Σ1, . . . , Σn; π; A) be a constitutional implemen-
tation of H . Then, in particular, Γ implements H in NE’s. Hence H is Maskin
monotonic. As H is unanimous, H must be Paretian. Thus, all the NE’s of Γ are
Pareto optimal. We shall now prove the following claim:

If i ∈ N, then EH({i}) = {A}. (∗)

Assume, on the contrary, that there exist j ∈ N and x ∈ A such that A \
{x} ∈ EH({j}). Then A \ {x} ∈ EΓ ({j}). Let R̂j ∈ L satisfy t(R̂j) = x (i.e.,
xR̂jy for all y ∈ A). Then H(RN\{j}, R̂j) = {x} for all RN\{j} ∈ LN\{j}.
Indeed, if H(QN\{j}, R̂j) \ {x} �= ∅ for some QN\{j}, then, by (3.1), A \ {x} ∈
EΓ (N \ {j}), contradicting Lemma 6.3. Thus, {x} ∈ EH({j}) which implies
A \ {y} ∈ EH({j}) for all y ∈ A. Therefore, by the foregoing argument,

[R̂j ∈ L and y = t(R̂j)] ⇒ H(RN\{j}, R̂j) = {y}
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for all RN\{j} ∈ LN\{j} and y ∈ A. Hence j is a dictator for H ,and the desired
contradiction has been obtained.

We now prove (6.1). Assume, on the contrary, that there exist i ∈ N and
B ∈ 2A such that B /∈ EH(N \ {i}). Then B /∈ EΓ (N \ {i}). Hence, by (3.1),
if Ri ∈ L, a ∈ B, and L(a, Ri) = B, then a /∈ H(QN\{i}, Ri) for all QN\{i} in
LN\{i}. Thus, A \ {a} ∈ EH({i}) contradicting (∗). Q.E.D.

We now prove Lemma 6.3.

Proof of Lemma 6.3. Choose σS ∈ ΣS and σT ∈ ΣT such that π(σS , µN\S) �= x
for all µN\S ∈ ΣN\S , and π(σT , µN\T ) �= x for all µN\T ∈ ΣN\T . Further,
let σN\(S∪T ) ∈ ΣN\(S∪T ), and denote y = π(σ) = π(σS , σT , σN\(S∪T )). Now
choose a profile RN ∈ LN that satisfies xRiyRiA \ {x, y} for all i ∈ N . Then
σ = (σS , σT , σN\(S∪T )) is an NE of (Γ, RN ) and y = π(σ) is not Pareto optimal.
Q.E.D.

Corollary 6.4. Let N = {1, 2, 3} and let H : LN → 2A be a non-dictatorial and
unanimous SCC. Then H has a constitutional implementation if and only if H is
Maskin monotonic and EH = E(G), where G = (3, 2).

Corollary 6.4 is an immediate consequence of (6.1) and Theorem 4.4. The next
corollary sheds new light on the no veto power assumption.

Corollary 6.5. Let H : LN → 2A be a non-dictatorial and unanimous SCC. If H
has a constitutional implementation, then H satisfies no veto power.

Proof. As the reader may easily verify (6.1) and Maskin monotonicity imply no
veto power. Q.E.D.

Remark 6.6. The SCC H of Example 5.2 is non-dictatorial and unanimous. Nev-
ertheless, by Example 5.2, it has a constitutional implementation whose EF is not
derived from a simple game.

The next example shows that unanimity is a necessary condition for Theorem
6.2.

Example 6.7. Let N = {1, 2, 3} and let |A| = 4. For R ∈ L let β(R) = y, where
y ∈ A and xRy for all x ∈ A. Define H : LN → 2A by

H(RN ) = {x ∈ A|x �= β(Ri) for i = 1, 2, 3}.

Then H is surjective and Maskin monotonic (but not unanimous). Also

EH(S) = {B ⊆ A| |B| ≥ 4 − |S|} for |S| = 1, 2, 3.

Thus, H does not satisfy (6.1). Nevertheless, we claim that H has a constitutional
implementation.
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Consider the following GF Γ = (Σ1, Σ2, Σ3; π; A). Let Σi = gr(H) ×
Z+, i ∈ N , where Z+ = {0, 1, 2, . . . }. π is defined by the following rules. Let
σi = (RN

i , ai, ti) where RN
i ∈ LN , a ∈ H(RN

i ), ti ∈ Z+, for i ∈ N .

(i) If (RN
i , ai, ti) = (RN , a, 0) for all i ∈ N , then π(σ) = a.

(ii) If (RN
i , ai, ti) = (RN , a, 0) for all i �= j, then π(σ) = aj if aj ∈ L(a, Rj),

and π(σ) = a otherwise.

(iii) In all other cases let (tj , j)be the lexicographic maximum of (tk, k), k ∈ N ,
and let π(σ) = aj .

As the reader may easily verify, EΓ = EH . Furthermore, Γ implements H in
NE’s.

7 Discussion

We shall now present some (straightforward) extensions of our results, and compare
our construction in the proof of Theorem 4.4 with some earlier constructions of
implementations in NE (see Maskin 1985 and Yamato 1992). We also shall comment
on the importance of our work from the point of view of applications.

7.1 Refinements of Nash equilibrium

An equilibrium concept e is a refinement of NE if for every GF Γ =
(Σ1, . . . , Σn; π; A), and for every RN ∈ LN , e(Γ, RN ) ⊆ NE(Γ, RN ). Let
e be a refinement of NE and let H : LN → 2A be an SCC. If the GF
Γ = (Σ1, . . . , Σn; π; A) implements H in e, then, obviously, Γ satisfies (3.1).
We say that a GF Γ is a weak constitutional implementation of H in e if: (i) Γ
implements H in e; and (ii) EΓ ⊆ EH . It follows now that (4.1) is a necessary
condition for weak constitutional implementability by any refinement of NE. Thus,
the SCC of Example 3.2 is not weakly constitutionally implementable in any re-
finement of Nash.

For the rest of this subsection we focus on the subgame perfect equilibrium
(SPE) concept. (Thus, we consider extensive GF’s, and not only GF’s). As every
GF is, trivially an extensive GF, we obtain that every implementation in NE is an
implementation in SPE. Therefore, Theorem 4.4 is generalized to SPE implemen-
tation. ((iii) of Definition 4.1 is generalized in a straightforward manner). However,
strong monotonicity is not a natural condition for implementation in SPE’s. Thus,
the extension of our results to implementation in SPE’s and in undominated Nash
equilibria (see Jackson et al. 1994) remains as an open problem.

7.2 Weak preferences

All our results remain true for weak preference orderings, that is, complete and
transitive binary relations.
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7.3 Previous constructions of NE implementations

Our construction of NE implementation in the proof of Theorem 4.4 is comparable
with that of Yamato (1992). Let H be a strongly monotonic SCC that satisfies
(4.1). Yamato’s GF is a weak constitutional implementation of H which may not
be almost constitutional. We enlarge the message space of each player and thereby
obtain an almost constitutional implementation.

7.4 Sen’s liberal paradox and constitutional implementation

Let H : LN → 2A be an SSC. H satisfies minimal liberalism ML if there exist
i, j ∈ N, i �= j such that EH(k) �= {A}, k = i, j (see Peleg 1998). Peleg (1998)
found tension between ML and Nash implemenation (See Theorem 5.1 ibid). Here
we have the following corollary of Theorem 6.2.

Corollary 7.1. Let H be a constitutionally implementable SCC. If H satisfies ML,
then H violates unanimity.

Corollary 7.1 expresses tension between ML and unanimity on the class of
constitutionally implementable SCC’s. Thus it generalizes the liberal paradox to
our model. Also, it may explain why we concentrated on the notion of almost con-
stitutional implementation. Indeed, there is no tension between ML and unanimity
on the set of almost constitutionally implementatable SCC’s.
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