
Soc Choice Welfare (2002) 19: 241–263

99992002

Representation of e¤ectivity functions in coalition proof
Nash equilibrium: A complete characterization

Hans Keiding1, Bezalel Peleg2

1 Institute of Economics, University of Copenhagen, Studiestraede 6,
1455 Copenhagen K., Denmark (e-mail: Hans.Keiding@pop.oko.ku.dk)
2 Institute of Mathematics and Center for Rationality and Interactive Decision
Theory, Hebrew University of Jerusalem

Received: 24 June 1999/Accepted: 20 September 2000

Abstract. The concept of coalition proof Nash equilibrium was introduced
by Bernheim et al. [5]. In the present paper, we consider the representation
problem for coalition proof Nash equilibrium: For a given e¤ectivity function,
describing the power structure or the system of rights of coalitions in society,
it is investigated whether there is a game form which gives rise to this e¤ec-
tivity function and which is such that for any preference assignment, there is a
coalition proof Nash equilibrium.
It is shown that the e¤ectivity functions which can be represented in co-

alition proof Nash equilibrium are exactly those which satisfy the well-known
properties of maximality and superadditivity. As a corollary of the result, we
obtain necessary conditions for implementation of a social choice correspon-
dence in coalition proof Nash equilibrium which can be formulated in terms
of the associated e¤ectivity function.

1 Introduction

The theory of implementation is concerned with the construction of rules
for choice of alternatives in a society such that the equilibrium behavior of
the individuals results in choices satisfying certain, preassigned properties.
The implementation problem in its classical formulation, as found e.g. in
Hurwicz [10] and Maskin [11], starts with a social choice function or corre-
spondence and consists in the design of a game form, such that for all con-
ceivable assignments of preferences to individuals, the equilibrium outcome of
the game coincides with the outcome prescribed by the social choice corre-
spondence.
In the characterization of social choice rules which are implementable in

cooperative equilibria, the concept of an e¤ectivity function introduced by



Moulin and Peleg [12] turned out to play an important role. An e¤ectivity
function is a formal description of a power structure in a society; it de-
scribes for each coalition alternative subsets of alternatives such that the
coalition can force outcome to belong to these subsets. There are obvious
ways of associating e¤ectivity functions with social choice correspondences
and game forms, and these e¤ectivity functions will coincide in some impor-
tant cases.
It may actually be argued, that the e¤ectivity function is a concept of

considerable independent interest. Indeed, it may be interpreted as a specifi-
cation of the rights of the coalitions in society; the fact that a coalition of
individuals has a right to demand that society’s choice belongs to a particular
subset of the alternatives may be described by e¤ectivity of the coalition for
this subset. Thus, e¤ectivity functions describe systems of rights in the sense of
Gärdenfors [8] or constitutions (cf. Peleg [15]).
Given an e¤ectivity function, the representation problem (for a particular

solution concept) consists in finding a game form with which the given e¤ec-
tivity function is associated, and such that for any preference profile, there
exists an equilibrium (of the type considered). If the representation problem
has a solution, then the specifications of rights described by the e¤ectivity
function may indeed be resolved in society by equilibrium behavior within
some given rules, namely those of the game form. As a by-product, one
obtains a social choice rule, namely the equilibrum outcomes at any profile,
which is implemented by the game form, and which in interesting cases has the
same e¤ectivity function. The work by Moulin and Peleg [12] on implemen-
tation in strong Nash equilibrium may be restated in these terms: If an e¤ec-
tivity function satisfies the properties of maximality (see Sect. 4 for a defini-
tion) together with another one called stability, then it has a representation in
strong Nash equilibrium.
In the present paper, we consider the representation problem in another

and weaker equilibrium, namely that of coalition proof Nash equilibrium
introduced by Bernheim et al. [5]. Loosely speaking, a choice of strategies by
the individuals is a coalition proof Nash equilibrium if no coalition can find
another strategy which gives a better outcome for its members given the
choices of the others, provided that none of its subcoalitions defect from the
new strategies in order to achieve something still better.
The above naive description does not quite capture the essence of the def-

inition; the notion of a defection is not made clear. To do that, one has to
define coalitional improvements in a recursive way as it will be done in Sect. 2
below. Note that although coalition proof Nash equilibrium might be con-
sidered as a cooperative solution concept, it is non-cooperative in its nature; it
allows only for such coalitional actions which are self-enforcable since it is
never in the interest of a subcoalition to defect.
In the present paper, we give a characterization of the e¤ectivity functions

which have a representation in coalition proof Nash equilibrium. It is shown
that the properties of maximality, and superadditivity are both necessary and
su‰cient conditions for an e¤ectivity function to be represented in coalition
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proof Nash equilibrium. These conditions on the e¤ectivity function, which
imply that it may be considered as the power structure inherent in a coalition
proof Nash implementable social choice correspondence, are strictly weaker
than the corresponding conditions related to strong Nash equilibrium as
treated in Moulin and Peleg [12]. This is as it should be, since strong Nash
equilibrium is a stronger concept than coalitional proof Nash equilibrium. But
it is important to notice that the conditions are really quite weak; thus, rep-
resentation in coalition proof Nash equilibrium is something which must ob-
tain very generally.
In this work, we consider the e¤ectivity function as the primitive concept

of the analysis of implementation. The e¤ectivity function is a description
of power structure which does not exploit the notion of preference profiles.
However, several social choice correspondences may give rise to the same
e¤ectivity function, being di¤erent representations of the same power struc-
ture. What we show is that if the e¤ectivity function satisfies the three condi-
tions of superadditivity, monotonicity, and maximality, then at least one of
the social choice correspondences which represent the e¤ectivity function is
coalition proof Nash implementable. The e¤ectivity function characterization
does not therefore give us a method of checking implementability on the par-
ticular social choice correspondence, but it allows us the determine whether
there is an equivalent social choice correspondence – equivalence being
defined in terms of equality of underlying power structure – which is imple-
mentable.
The paper is organized as follows: In Sect. 2, we give the definitions of the

necessary game theoretical concepts, including that of coalition proof Nash
equilibrium. In Sect. 3 we define implementation in coalition proof Nash
equilibrium, and in Sect. 4, e¤ectivity functions are introduced and discussed,
and we establish the first (necessity) part of our characterization result. In
Sect. 5, for a given e¤ectivity function satisfying the properties of maximality,
monotonicity, and superadditivity, we consider a notion of cooperative solu-
tion which in a certain sense generalizes the core of an e¤ectivity function as
discussed in Moulin and Peleg [12]. This solution concept is used in Sect. 6 to
define a particular game form. In Sect. 7, this game form is shown to represent
the original e¤ectivity function, thereby establishing the su‰ciency part of our
characterization theorem. A final Sect. 8 contains some concluding remarks as
well as a discussion of other contributions to the literature and their relation
to the present work.

2 Coalition proof Nash equilibria

In this section, we recall the definition of coalition proof Nash equilibria
(Bernheim et al. [5]) and discuss some simple properties of this solution con-
cept.
Let N ¼ f1; . . . ; ng with nb 2 be a set of players. A coalition is a non-

empty subset of N. We denote by 2N the set of all coalitions. If S A 2N and for
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each i A S, Di is a nonempty set, then we denote by
Q

i AS D
i ¼ DS the Car-

tesian product of the sets Di.

Definition 2.1. An n-person game in strategic form is a 2n-tuple

G ¼ ðS1; . . . ;Sn; h1; . . . ; hnÞ;
where S i is a nonempty set for every i A N, and hi is a function from SN to R

for all i A N.

Let G ¼ ðS1; . . . ;Sn; h1; . . . ; hnÞ be an n-person game in strategic form.
Then S i is the set of strategies of player i, i A N, and hi is i ’s payo¤ function

for every i A N.
We now recall the definitions of Nash and strong Nash equilibria.

Definition 2.2. Let G ¼ ðS1; . . . ;Sn; h1; . . . ; hnÞ be an n-person game, let sN A
SN, and let S A 2N . Then tS A SS is an improvement of S upon sN if

hiðtS; sNnSÞ > hiðsNÞ
for all i A S.

Definition 2.3. Let G ¼ ðS1; . . . ;Sn; h1; . . . ; hnÞ be an n-person game and let

sN A SN . Then sN is a Nash equilibrium (NE) of G if no i A N has an im-

provement upon sN .

Definition 2.4. Let G ¼ ðS1; . . . ;Sn; h1; . . . ; hnÞ be an n-person game and let

sN A SN . Then sN is a strong Nash equilibrium (SNE) of G if no S A 2N has

an improvement upon sN .

The foregoing definitions are entirely standard, but now we proceed to
consider another solution concept, namely that of coalition-proof Nash equi-
librium (Bernheim et al. [5]). We start with an informal discussion:
Let G ¼ ðS1; . . . ;Sn; h1; . . . ; hnÞ be a game in strategic form and let

sN A SN. An improvement tS upon sN is ‘‘self-enforcing’’ or ‘‘self-supporting’’
if no subcoalition T of S has an incentive to deviate from it. Clearly, if S is a
one-player coalition then tS is self-supporting. However, improvements of
larger coalitions may not be self-supporting as can be seen from the following
example.

Example 2.5. Let G ¼ ðS1;S2; h1; h2Þ, where S1 ¼ fs11 ; s12g, S2 ¼ fs21 ; s22 ; s23g,
and h1 and h2 are given by the following matrix:

s21 s22 s23

s11 ð1; 1Þ ð3; 0Þ ð1; 0Þ
s12 ð0; 0Þ ð2; 2Þ ð0; 0Þ

First, let sN ¼ ðs12 ; s23Þ. Then tN ¼ ðs11 ; s21Þ is a self-supporting improvement
of the coalition N upon sN . Indeed, tN is a NE. Now, let mN ¼ ðs12 ; s22Þ. Then
mN is an improvement upon tN . However, mN is not self-enforcing. Indeed,
player 1 benefits by deviating.
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The notion of a self-supporting improvement is made precise by the fol-
lowing definition.

Definition 2.6. Let G ¼ ðS1; . . . ;Sn; h1; . . . ; hnÞ be a game in strategic form, let

sN A SN, and let S A 2N . An internally consistent improvement (ICI) of S

upon sN is defined by induction on jSj, the number of members of S, as follows:

(i) If jSj ¼ 1, that is S ¼ fig for some i A N, then t i A S i is an ICI of S upon

sN if hiðt i; sNnfigÞ > hiðsNÞ (i.e. if t i is an improvement upon sN). (ii) If

jSj > 1 then tS A SS is an ICI of S upon sN if (a) tS is an improvement of S

upon sN (see Definition 2.2), and (b) if T HS and jT j < jSj then T has no ICI

upon ðtS; sNnSÞ.

Now we can define the equilibrium concept which is central in this paper:

Definition 2.7. Let G ¼ ðS1; . . . ;Sn; h1; . . . ; hnÞ be a game in strategic form.

Then sN A SN is a coalition-proof Nash equilibrium (CNE) if no S A 2N has

an ICI upon sN .

Remark 2.8. In the original definition of a CNE in Bernheim et al. [5], the
concept of an ICI was not used; instead, the equilibrium was defined induc-
tively using self-enforcing strategy n-tuples, where self-enforcing means that
there are no ICI’s of proper subcoalitions. The two ways of defining the
equilibrium are obviously equivalent; we have opted for the present one since
it is more convenient for the applications to follow.

Example 2.9. Let G ¼ ðS1;S2; h1; h2Þ, where S i ¼ fs i
1; s

i
2g, i ¼ 1; 2, and h1

and h2 are given by the following matrix:

s21 s22

s11 ð1; 1Þ ð0; 0Þ
s12 ð0; 0Þ ð0; 0Þ

Then sN ¼ ðs11 ; s21Þ is a CNE. However, the NE mN ¼ ðs12 ; s22Þ is not a CNE.
Indeed, sN is an ICI of N upon mN . Note also that in the game of Example
2.5, sN ¼ ðs11 ; s21Þ is a CNE of G . However, sN is not a SNE.

Remark 2.10. Let G ¼ ðS1; . . . ;Sn; h1; . . . ; hnÞ be a game in strategic form.
Then every CNE of G is a NE of G , and every SNE of G is a CNE.

There are as far no general existence results available for the CNE’s, but in
the special case of games with only two players, some results may be obtained;
first of all, we notice that if G ¼ ðS1;S2; h1; h2Þ is a 2-person game, then
sN A SN is a CNE i¤ (i) sN is a NE, and (ii) there is no NE mN such that
hiðmNÞ > hiðsNÞ for i ¼ 1; 2.

Theorem 2.11. Let G ¼ ðS1;S2; h1; h2Þ be a 2-person game. If

(i) S i is a compact metric space, i ¼ 1; 2,
(ii) SN is a topological space with the product topology,
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(iii) hi is continuous, i ¼ 1; 2, and
(iv) G has a NE,

then G has a CNE.

The proof of Theorem 2.11 is left to the reader.

Corollary 2.12. Let G ¼ ðS1;S2; h1; h2Þ be a 2-person game. If jS ij < y,
i ¼ 1; 2, and G has a NE, then G has a CNE.

The following example shows that there exist 3-person games having no
CNE.

Example 2.13. Let G ¼ ðS1;S2;S3; h1; h2; h3Þ, where S i ¼ fs i
1; s

i
2g, i ¼ 1; 2; 3,

and hi, i ¼ 1; 2; 3, are given by the following pair of matrices:

s21 s22 s21 s22

s11 ð0; 0; 0Þ ð�1;�1; 0Þ s11 ð1; 1;�kÞ ð0; 0;�kÞ
s12 ð�1;�1; 0Þ ð1; 1; 0Þ s12 ð0; 0;�kÞ ð�1;�1; 1Þ

s31 s32

It can be showed that if 0 < k < 1=8, then sN ¼ ðs11 ; s21 ; s31Þ is the only NE of
G 	, but sN ¼ ðs11 ; s21 ; s31Þ is not a CNE. Indeed, ðs12 ; s22Þ is an ICI of f1; 2g
upon sN .

We conclude this section by noticing that if improvements of coalitions in
the game G can be supported by binding agreements, then every improvement
may have a destabilizing e¤ect. In that case only SNE’s are equilibrium
choices. However, we recall that binding agreements, or contracts, are possi-
ble only in cooperative games (see, e.g., Sect. 9 of Aumann [4]). In this paper
we consider only non-cooperative games, so that binding agreements are not
available in our framework.

3 Coalition proof Nash consistency

In this section, we continue our introductory description of the problem,
introducing the notions of game forms and consistency.
Let A be a finite set of m alternatives, mb 2. A linear order on A is a

complete, reflexive, transitive, and antisymmetric binary relation on A. We
denote by L the set of all linear orders on A. Let N ¼ f1; . . . ; ng, nb 2, be a
set of players.
For any set D, the set of all subsets of D is denoted PðDÞ, and we write

P2ðDÞ for PðPðDÞÞ. The set of all nonempty subsets of D is denoted 2D.
For R A L a linear order, we write xRy for the expression ‘‘x is better

than or equals y in the order R’’. If B;C A 2A, we write BRC for xRy, all
x A B; y A C. If B is a subset of A, RjB denotes the linear order on B induced
by R.
Let S A 2N . An S-profile is a map RS : S ! L. We write Ri for RSðiÞ, i A S,

so that RS ¼ ðRiÞiAS. An N-profile is called a profile and written RN ¼
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ðR1; . . . ;RnÞ. We identify RN with ðRS;RNnSÞ for all S0q, N and profiles
RN .

Definition 3.1. A game form is an ðnþ 1Þ-tuple G ¼ ðS1; . . . ;Sn; pÞ, where S i

is a nonempty set for every i A N, and p : SN ! A is a function. We assume

throughout that p is onto.

If G ¼ ðS1; . . . ;Sn; pÞ, then S i is the set of strategies of player i, i A N, and
p is the outcome function.
To define a game from a game form, we need the preferences of the

players. For convenience in comparison with the game theoretical concepts
of Sect. 2, we introduce utility representations of the preferences: Let R A L.
A function u : A ! R is a utility representation of R if for all x; y A A,

xRy iff uðxÞb uðyÞ:

It is trivial that there exist utility representations for any R A L. Moreover, if u
and u 0 are utility representations of R, then each is a monotone transforma-
tion of the other one.

Definition 3.2. Let G ¼ ðS1; . . . ;Sn; pÞ be a game form and let RN A LN be a

profile. A game G is associated with G and RN if G ¼ ðS1; . . . ;Sn; h1; . . . ; hnÞ,
where each hi is defined by

hiðsNÞ ¼ uiðpðsNÞÞ

for some utility ui representing Ri.

Since we shall be concerned only with coalition proof Nash equilibria,
which are obviously invariant under strictly monotone transformations of the
players’ payo¤s, we may choose an arbitrary game associated with each pro-
file RN and denote it by GðG;RNÞ.
Suppose now that G ¼ ðS1; . . . ;Sn; pÞ is a given game form. Then each

profile RN A LN corresponds to a game GðG;RNÞ, and we may consider a
certain solution or equilibrium for games, for example Coalition Proof Nash
Equilibrium, which then assigns to GðG;RNÞ a set of equilibrium strategy
choices, and thereby indirectly gives a set of alternatives to each profile. We
shall make this idea of a correspondence between profiles and alternatives
precise:
A social choice correspondence (SCC) is a function H : LN ! 2A. An SCC

is called a social choice function if HðRNÞ is a singleton for each profile
RN A LN . Intuitively, if H is an SCC and RN A LN , then HðRNÞ is the set of
alternatives chosen by the group N according to the rule H.

Definition 3.3. Let G ¼ ðS1; . . . ;Sn; pÞ be a game form. G is Coalition Proof

Nash Consistent (CNC) if for each preference profile, the set of coalition proof

Nash equilibria is nonempty, i.e. CNEðGðG;RNÞÞ0q, all RN A LN .

We note that if G is coalition proof Nash consistent, then the correspon-
dence RN 7! pðCNEðGðG;RNÞÞÞ is a social choice correspondence. Actually,
we can say a little more:
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Lemma 3.4. Let G ¼ ðS1; . . . ;Sn; pÞ be a game form which is coalition proof

Nash consistent. Then the social choice correspondence pðCNEðGðG; �ÞÞÞ is

non-imposed in the sense that for each alternative a A A, there is a profile

RN A LN such that pðCNEðGðG;RNÞÞÞ ¼ fag.

Proof. Let RN A LN be a profile with a ¼ maxRi for all i A N. Choose a
strategy array sN with pðsNÞ ¼ a (such a strategy array exists since p is onto).
Then sN is a CNE of GðG;RNÞ since it is even a SNE: There is no coalition S
having an improvement tS of sN because for all i, pðsNÞ ¼ a is already max-
imal. Also, if b A Anfag, then b B CNEðGðG;RNÞÞÞ. r

4 The representation problem with coalition proof Nash equilibria

We now proceed to introduce one of the main concepts of the paper, namely
that of representation. We begin with the concept of an e¤ectivity function:

Definition 4.1. An e¤ectivity function is a map E : PðNÞ ! P2ðAÞ satisfying the

following conditions:

(i) for all B A PðAÞ, B B EðqÞ,
(ii) for all B A 2A, B A EðNÞ,
(iii) for all S A PðNÞ,q B EðSÞ,
(iv) for all S A 2N , A A EðSÞ.

An e¤ectivity function assigns to each coalition S a family of sets EðSÞ,
with the interpretation that if B A EðSÞ, then S may force the outcome of soci-
ety’s choice to be an element of B, or equivalently, S may preclude that society
chooses something from AnB. Thus, the e¤ectivity function may be considered
as a description of a system of rights which are to be valid for the society con-
sidered, a constitution in the sense of Gärdenfors [8] (see also Peleg [15]).
A game form gives rise to (at least) two di¤erent types of e¤ectivity func-

tions:

Definition 4.2. Let G ¼ ðS1; . . . ;Sn; pÞ be a game form, S A 2N a coalition,

and B a nonempty subset of the set A of alternatives in G. We say that S is a-

e¤ective for B if there is a strategy choice sS ¼ ðs iÞi AS such that for all strategy

choices sNnS ¼ ðs iÞi ANnS, pðsS; sNnSÞ A B, and b-e¤ective for B if for each

strategy choice sNnS, there is sS such that pðsS; sNnSÞ A B.
The a-e¤ectivity function associated with G is the e¤ectivity function

EG
a : PðNÞ ! P2ðAÞ given by

EG
a ðSÞ ¼ fB A 2AjS is a-effective for Bg;

for S A 2N, and EG
a ðqÞ ¼ q.

The b-e¤ectivity function associated with G is the e¤ectivity function EG
b

which to each coalition S assigns the family of subsets B A 2A such that S is b-

e¤ective for B.
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We collect some obvious consequences of these definitions in a lemma:

Lemma 4.3. The a- and b-e¤ectivity functions of a game form G satisfy:

(1) for all S A 2N, EG
a ðSÞHEG

b ðSÞ,
(2) EG

a ðNÞ ¼ EG
b ðNÞ,

(3) for B A 2A, S A 2N, if B A EG
a ðSÞ, then AnB B EG

b ðNnSÞ.
(4) If B B EG

a ðSÞ, then AnB A EG
b ðNnSÞ.

In general, the inclusion in Lemma 4.3.(1) may be proper (see e.g., Peleg
[13]). We shall be particularly interested in the situation where equality
obtains, and, as it is known from previous work on implementation in strong
Nash equilibria (see Moulin and Peleg [12]), such equality does obtain in
many interesting situations. Indeed, one of the main results of the present
paper is that the equality of a- and b-e¤ectivity functions of a game form G

obtains when G is CNC.

Definition 4.4. Let E : PðNÞ ! P2ðAÞ be an e¤ectivity function. A representa-

tion of E (with respect to coalition proof Nash equilibrium) is a game form

G ¼ ðS1; . . . ;Sn; pÞ such that

(1) E ¼ EG
a ,

(2) G is coalition proof Nash consistent (CNC).

The representation problem for a given e¤ectivity function consists in
finding a representation. In the interpretation, the existence of a representa-
tion means that the system of rights in society described by the e¤ectivity
function is consistent in the sense that there exists a set of rules (formally, a
game form) such that the individuals and groups in society can exercise their
rights simultaneously even when acting strategically within the framework
provided by their rules.
As noted in the previous section, a CNC game form gives rise to a social

choice correspondence RN 7! pðCNEðG;RNÞÞ, so that a representation of an
e¤ectivity function (with respect to coalition proof Nash equilibrium) induces
a particular social choice correspondence.

Definition 4.5. Let G ¼ ðS1; . . . ;Sn; pÞ be a game form and let H : LN ! 2A

be a social choice correspondence. Then G CNE-implements H if for every

profile RN A LN, HðRNÞ ¼ pðCNEðGðG;RNÞÞÞ. H is CNE-implementable if

there exists a game form G ¼ ðS1; . . . ;Sn; pÞ which CNE-implements H.

Let G be CNC. The social choice correspondence RN 7! pðCNEðG;RNÞÞ
clearly is CNE-implemented by G. In the case where G is a representation of
an e¤ectivity function E, it might be conjectured that there is some connection
between properties of E and properties of the SCC which is implemented by
G, and this is indeed the case.
Before we proceed, it will be useful to introduce another way of con-

structing e¤ectivity functions, namely from social choice correspondences:

Definition 4.6. Let H : LN ! 2A be a non-imposed social choice correspon-

dence, let S A 2N, and let B A 2A. We say that S is a-e¤ective for B if there
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exists an S-profile RS such that for all ðNnSÞ-profiles QNnS, HðRS;QNnSÞHB

and S is b-e¤ective for B if for every ðNnSÞ-profile QNnS, there exists an S-

profile RS such that HðRS;QNnSÞHB.
The a-e¤ectivity function associated with H is the e¤ectivity function

EH
a : PðNÞ ! P2ðAÞ given by

EH
a ðSÞ ¼ fB A 2AjS is a-effective for Bg;

for S A 2N, and EH
a ðqÞ ¼ q, and the b-e¤ectivity function associated with H is

the e¤ectivity function EH
b which to each coalition S assigns the family of sub-

sets B A 2A such that S is b-e¤ective for B.

Remark 4.7. It is clear that Lemma 4.3.(1)–(3) hold also for EH
a ;EH

b . That
also 4.3.(4) holds if H is CNE-implementable will emerge as a consequence of
the results below.

Now we may combine all the previously introduced notions in our first
fundamental result, which is due to Peleg [14]. A proof of the theorem can be
found in Abdou and Keiding [2] (Theorem 7.2.2, pp. 141–143).

Theorem 4.8. Let E : PðNÞ ! P2ðAÞ be an e¤ectivity function, let G ¼
ðS1; . . . ;Sn; pÞ be a representation of E, and let H : LN ! 2A be a social

choice correspondence. If

HðRNÞH pðCNEðG;RNÞÞ

for all RN A LN, then

E ¼ EG
a ¼ EG

b ¼ EH
a ¼ EH

b :

Remark 4.9. In Abdou and Keiding [2], an SCC H which satisfies the
assumptions of the theorem, namely that there is a game form G such that
HðRNÞH pðCNEðG;RNÞÞ for all profiles RN A LN , is said to be partially

CNE-implemented. However, this is not a standard terminology, cf., e.g.,
Dasgupta et al. [7].

We conclude this section by noting that as a consequence of Theorem 4.8,
an e¤ectivity function which has a representation (with respect to coalition
proof Nash equilibrium), must have certain properties.

Definition 4.10. Let E : PðNÞ ! P2ðAÞ be an e¤ectivity function.

(a) E is superadditive if for all B;C A 2A, S;T A 2N, B A EðSÞ;C A EðTÞ, if
SXT ¼ q, then BXC A EðSWTÞ,
(b) E is monotonic if for all B;C A 2A, S;T A 2N, B A EðSÞ, if BHC and

SHT, then C A EðTÞ.
(c) E is maximal if for all B A 2A, S A 2N, if B B EðSÞ then AnB A EðNnSÞ.

The three properties (a)–(c) above are not independent. Indeed, it is rather
easy to show that if E is maximal and superadditive, then it is monotonic: If
B A EðSÞ, BHC, SHT , and C B EðTÞ, then AnC A EðNnTÞ by maximality.
Now, S and NnT are disjoint coalitions, and by superadditivity, BX ðAnCÞ A
EðSW ðNnTÞÞ. But BX ðAnCÞ ¼ q, and we have a contradiction.
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The following is an immediate consequence of Lemma 4.3 and Theorem
4.8, and as such it is essentially a restatement of results in Peleg [14] and
Abdou and Keiding [2]:

Theorem 4.11. Let E : PðNÞ ! P2ðAÞ be an e¤ectivity function which has

a representation (with respect to coalition proof Nash equilibrium) G ¼
ðS1; . . . ;Sn; pÞ. Then E is superadditive, monotonic, and maximal.

Proof. By Theorem 4.8, E ¼ EG
a ¼ EG

b . It is easily seen from the definition
that EG

a is superadditive: Indeed, suppose that S;T A 2N are disjoint coali-
tions, that S is a-e¤ective for B and that T is a-e¤ective for C. Then there is a
S-strategy sS such that for all ðNnSÞ-profiles tNnS, we have pðsS; tNnSÞHB.
Furthermore, there is a T-strategy mT such that for all ðNnTÞ-strategies nNnT ,
in particular for the strategy ðsS; tNnðT WSÞÞ, we have pðmT ; nNnT ÞHC. Obvi-
ously, the coalition SWT is a-e¤ective for BXC.
To show that E is maximal, we need only combine Lemma 4.3.(4) and

Theorem 4.8. Finally, monotonicity follows from maximality and super-
additivity. r

Remark 4.12. Let G ¼ ðS1; . . . ; sn; pÞ be a game form. If G is CNC, then by
Theorem 4.8, EG

a ¼ EG
b . If n ¼ 2, then G is CNC i¤ it is Nash consistent.

Hence, for n ¼ 2, G is CNC i¤ EG
a ¼ EG

b (see, e.g., Abdou [1] for a charac-
terization in terms of e¤ectivity functions of two-person game forms which are
Nash consistent).

Remark 4.13. Theorem 4.8 supplies a simple necessary condition for CNE-
imple-mentability: If an SCC is CNE-implementable, then EH

a ¼ EH
b is max-

imal (see Definition 4.10). This condition is easy to check: For example it
shows that the Pareto correspondence is not CNE-implementable. Boylan [6]
proves (essentially for a generalized lobbying model) that on a restricted do-
main (he assumes continuity and monotonicity of the utility function of a
player in her own transfer), weak (Maskin) monotonicity is a necessary and
su‰cient condition for CNE-implementability. As Maskin monotonicity does
not imply the maximality of the a-e¤ectivity function of a social choice cor-
respondence (see, again, the Pareto correspondence), our results, for unre-
stricted (finite) domains, are independent of those of Boylan [6].

As we see, if an e¤ectivity function has a representation, then it must be
superadditive and maximal. The logical next question is: Do such e¤ectivity
functions have further properties?
The answer is no. Given an arbitrary e¤ectivity function E which is

superadditive and maximal, it is possible to find a game form which is CNC
and represents E. This result is the subject of our discussion in the following
sections.

5 Uniform domination and u-e¤ectiveness

Before we proceed to state and prove a converse of Theorem 4.11, we insert in
this section a short discussion of some solution concepts for games defined in
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e¤ectivity function form. These solution concepts may have independent
applications; the reason for our treatment of them is that they are used later in
the definition of the game form which will be used in our solution of the repre-
sentation problem. For a more detailed discussion of these concepts, the
reader is referred to Abdou and Keiding [2].
We start with the notion of uniform domination:

Definition 5.1. Let E : PðNÞ ! P2ðAÞ be an e¤ectivity function and RN A LN a

profile. For S A 2N a coalition and B a subset of A we say that the alternative x

is uniformly dominated (shorthand: u-dominated) by B via S at RN if B A EðSÞ,
x B B, and BRSAnB. The alternative x is u-dominated via S at RN if there is

B A 2A such that x is u-dominated by B via S at RN, and x is u-dominated at RN

if there is S A 2N such that x is u-dominated via S at RN .

Thus for an alternative to be u-dominated via S, we demand that there is
some set B of alternatives for which S is e¤ective and which moreover is such
that all players in S agree that everything in B is better than everything not
in B.

Example 5.2. Let E : Pðf1; 2; 3; 4gÞ ! P2ðfx; y; zgÞ be defined by the rule

B A EðSÞ , jBj þ jSjb 4

(E is a so-called additive e¤ectivity function, cf. Moulin and Peleg [12]). It is
easily seen that E is superadditive and maximal.
Consider the profile

1 2 3 4

x y z y
y z x z
z x y x

Here, x is u-dominated by fy; zg via f2; 4g. The alternative z is dominated (in
the usual sense of this word) by fyg via the coalition f1; 2; 4g, but this is not a
case of u-domination.

It is clear from the definition that it is rather hard to u-dominate. The fol-
lowing notion is introduced in order to capture the idea that a coalition might
not u-dominate an alternative but on the other hand might make it look as if it
did.

Definition 5.3. Let E : PðNÞ ! P2ðAÞ be an e¤ectivity function and RN A LN a

profile. For S A 2N a coalition and B A 2A a subset of alternatives we say that S

is u-e¤ective for B at RN if there exists an S-profile T S such that for each al-

ternative x A AnB, there is S 0 A 2S satisfying the conditions

(a) x is u-dominated via S 0 at ðT S;RNnSÞ,
(b) BRS 0

x.
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Example 5.4. In the profile of Example 5.2, the coalition f1; 2; 4g is u-e¤ective
for fyg. Indeed, consider the f1; 2; 4g-profile Tf1;2;4g

1 2 4

y y y
x z z
z x x

As before x is u-dominated in ðTf1;2;4g;R3Þ by fy; zg via f2; 4g, and yRf2;4gx.

Furthermore, z is u-dominated by fyg via f1; 2; 4g, and yRf1;2;4gz. We con-
clude that f1; 2; 4g is u-e¤ective for fyg.

In the example, the coalition which was u-e¤ective for the subset fyg was
also e¤ective in the usual sense of the word, that is fyg A Eðf1; 2; 4gÞ. This is a
general fact, as shown from the following lemma (for a proof, see Abdou and
Keiding [2], p. 148):

Lemma 5.5. Let E be a monotonic and superadditive e¤ectivity function, and let

RN A LN . If S A 2N is u-e¤ective for B A 2A at RN, then B A EðSÞ.

Having introduced u-e¤ectiveness, the following concept to be introduced
is that of indirect u-domination:

Definition 5.6. Let E : PðNÞ ! P2ðAÞ be an e¤ectivity function and RN A LN a

profile. An alternative x A A is indirectly u-dominated at RN by the subset B of

A via the coalition S A 2N if S is u-e¤ective for B, x B B, and BRSx; x is indi-

rectly u-dominated at RN if there are B A 2A, S A 2N, such that x is indirectly u-

dominated by B via S at RN .

Example 5.7. At the profile RN of Example 5.2, the alternative z was domi-
nated but not u-dominated. However, as we saw in Example 5.4, the coalition
f1; 2; 4g is u-e¤ective for fyg at RN , so that z is indirectly dominated at RN .
Clearly, the alternative x, which is u-dominated at RN , is a fortiori indirectly
u-dominated at RN .

The following result linking together the various concepts introduced
above will be used in the next section:

Theorem 5.8. Let E : PðNÞ ! P2ðAÞ be an e¤ectivity function which is mono-

tonic and superadditive, and let RN A LN be a profile. If B A 2A is a minimal

(for inclusion) set such that some coalition S is u-e¤ective for B at RN, then the

elements of B are not indirectly u-dominated at RN .

For a proof, the reader is referred to Abdou and Keiding [2], pp. 149–150.

Example 5.9. In Example 5.7, it was shown that f1; 2; 4g is u-e¤ective for fyg,
so the alternative y belongs to a minimal (for inclusion) set of alternatives for
which some coalition is u-e¤ective at Rf1;2;3;4g. Therefore, by Theorem 5.8, y
is not indirectly dominated at this profile.
To show that there may be alternatives which are not indirectly dominated
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even at profiles where each alternative is dominated, consider the e¤ectivity
function E : Pðf1; 2; 3; 4gÞ ! P2ðfx; y; z;wgÞ defined by

EðSÞ ¼ fB j jBjb 1g if jSjb 3 or if jSj ¼ 2 and 1 A S;

EðSÞ ¼ q if S ¼ q,

ffx; y; z;wgg otherwise.

�

Again E is superadditive and maximal. There is a profile RN such that each
alternative is dominated at RN , namely

1 2 3 4

x y z w
y z w x
z w x y
w x y z

We claim that x is not indirectly u-dominated at RN . Indeed, x cannot be
indirectly u-dominated via a coalition containing individual 1, so it is enough
to show that f2; 3; 4g is not u-e¤ective for any subset of fy; z;wg. But this
follows from the fact that f2; 3; 4g is the only subset of N not containing in-
dividual 1 which is e¤ective for any proper subset of fx; y; z;wg, and only
wRf2;3;4gx; this means f2; 3; 4g could possibly be u-e¤ective for fwg but not
for other subsets of fy; z;wg, and since f2; 3; 4g is not u-e¤ective for fwg, we
have shown that f2; 3; 4g cannot indirectly dominate x.
Let E : PðNÞ ! P2ðAÞ be a monotonic and superadditive e¤ectivity func-

tion. For later use we define a particular social choice function F : LN ! A as
follows: For any profile RN , there is a set B A 2A such that some coalition
S A 2N is u-e¤ective for B at RN (N is u-e¤ective for A at every profile). Let
MðRN ;EÞ be the set of alternatives belonging to a subset B of A which is
minimal with the property that there is a coalition S A 2N which is u-e¤ective
for B; thenMðRN ;EÞ0q. Put

F ðRNÞ ¼ maxðR1jMðRN ;EÞÞ;
where for any R A L and B A 2A, maxðRjBÞ is the unique alternative x A B

with xRy for all y A B.
The social choice function F will play a crucial role in Sect. 7 when we

consider a coalition proof Nash equilibria in the game derived from the game
form to be introduced in the next section. The choice of individual 1 as the
particular one whose preferences are decisive for the choice of alternative from
the set MðRN ;EÞ is arbitrary, but once the choice is made, it will matter for
the construction of the game form.

6 A representing game form

Throughout this section, E : PðNÞ ! P2ðAÞ is a given monotonic and super-
additive e¤ectivity function. In the following two sections, we show that such
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an e¤ectivity function has a representation: We construct a particular game
form G ¼ ðS1; . . . ;Sn; pÞ and show that (1) E is both the a- and b-e¤ectivity
function of G, and (2) for any given profile, we can define suitable strategies
such that this strategy array is a coalition proof Nash equilibrium. In the
present section we introduce the game form and address the problem (1)
obtaining a first and partial answer to be completed subsequently.
In the definition of the game form G, we start with the strategy set S1, of

player 1, which is defined as

S1 ¼ L�F� A;

where F is the set of all maps

j : 2Nnf1g � 2A ! 2A

taking pairs ðS;BÞ consisting of a coalition S not containing player 1 and a
nonempty subset B of A to a subset jðS;BÞ of A with jðS;BÞHB. Intuitively,
the selection function will be used to pick an alternative which is not uni-
formly dominated via S. Thus, a strategy of player 1 consists of a preference
relation, a selection function of the type described above, and an alternative.
For players i0 1, we define the strategy set S i by

S i ¼ L�F� A�P i � ðN0 � LÞ;

where N0 is the set of nonnegative integers, and where P
i is the set of maps

bi : 6
S A 2Nnfig L

S ! PðA� 2NÞ taking any preference profile QS for S A 2N ,
i B S, to a family biðQSÞ ¼ ðx;SxÞx A B̂Bi

, where B̂Bi is a subset of A and for each

x A B̂Bi, S
x is a coalition containing i. As it is seen below, bi contain a list of

alternatives x which individual i wants to exempt from u-domination, pro-
vided that each individual in Sx has stated the same pair ðx;SxÞ.
To define the outcome function p, we need some notation: For sN ¼

ðs1; . . . ; snÞ a strategy n-tuple in

S1 � � � � � Sn;

with s1 ¼ ðQ1; j1; x1Þ, s i ¼ ðQi; j i; xi; bi; ðt i;PiÞÞ, i0 1, define

S½sN � ¼ fi A N j j i 0 j1 or xi 0 x1g

(thus, S½sN � never contains player 1), and let the S½sN �-profile R½sN � be given
by

R½sN � ¼ ðQiÞi AS½sN �:

Finally, the sets Bi are determined by

Bi ¼ fx A A j bSx A 2N ; i A Sx : ðx;SxÞ A bhððQ jÞj AS½sN �nfigÞ; all h A Sxg

if S½sN �0 fig and Bi ¼ q if S½sN � ¼ fig.
Now there are two cases:
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Case 1: S½sN � ¼ q. We let

pðsNÞ ¼ x1;

i.e. the outcome is the alternative stated by player 1, which by the definition of
S½sN � is the alternative stated by any player i.

Case 2: S½sN �0q. Define the set B½sN � as the set of alternatives x for which
there is no subcoalition S 0 of S½sN � such that x is u-dominated at R½sN � via S 0

and x B Bi for all i A S 0, i.e.

B½sN � ¼ An
�
y A A j bS 0 A 2S½s

N �;B A EðS 0Þ :

BQS 0
AnB; y A AnB; y A An 6

i AS 0
Bi

�
;

(B½sN � is non-empty since it contains the set of alternatives which are not u-
dominated at the profile R½sN �, and the latter set is non-empty by Theorem
5.8). Now let the outcome be given by

pðsNÞ ¼ maxðPi0 jj1ðS½sN �;B½sN �ÞÞ;

where i0 is the smallest of the integers i A S½sN � such that ti b t j, all j A S½sN �.
Thus, the component ti in the strategy s i determines whose preferences (as
stated in the strategy) are to be decisive for the final choice. The role of the
sets Bi is a little more obscure; they are there to make it possible to exempt
certain alternatives from domination.
Essentially, the outcome rule is as follows: At first, the set S½sN � of players

who disagree with player 1 (as shown by the choice of selection function and
alternative) is determined. If nobody disagrees, the unanimously stated alter-
native is chosen. Otherwise, we look at the set of alternatives which are not
uniformly dominated in the disagreeing coalition (when it is taken into con-
sideration that the players may exempt alternatives from domination by
including them in Bi). From this set, a subset is chosen according to the se-
lection function of player 1. Now the final choice from this subset is made by
the member of S½sN � who has stated the largest ti, and according to his linear
order Pi.
We remark that the notion of u-domination, originally introduced in

Abdou and Keiding [2] and reviewed in Sect. 5 above, enters into the very
definition of the game form.
A first result about G connects it to the given e¤ectivity function E:

Lemma 6.1. For all coalitions S A 2N, EðSÞHEG
b ðSÞ. Moreover, if E is maxi-

mal, then EG
a ðSÞHEðSÞHEG

b ðSÞ for all S.

Proof. We show that B A EðSÞ minimal for inclusion implies B A EG
b ðSÞ. If

1 B S, choose an S-profile QS such that BQSAnB. Then for each tNnS with
t1 ¼ ðQ1; j1; x1Þ, the S-strategy sS with

s i ¼ ðQi; j; xi;q; ð0;QiÞÞ;
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where j is an arbitrary selection function with j0 j1, gives SHS½ðsS; tNnSÞ�
and B½ðsS; tNnSÞ�HB, so that pðsS; tNnSÞ A B.
If 1 A S, let j be a selection function such that jðS 0;B 0ÞHB whenever

BXB 0 0q; choose Q1 such that BQ1AnB, let x A B and define sS by
s1 ¼ ðQ1; j; xÞ,

s i ¼ ðQ1; j; x;q; ð0;Q1ÞÞ

for i A S, i0 1. For any tNnS, if B½ðsS; tNnSÞ�HAnB, then each alternative in
B must be u-dominated at the profile R½ðsS; tNnSÞ�. By the definition of Q1,
such u-domination must be via subcoalitions of NnS. It follows by the proof
of Lemma 5.5 that we must have AnB A EðNnSÞ. However, this contradicts
superadditivity of E since B A EðSÞ. We conclude that B A EG

b ðSÞ.
For the second statement of the lemma, let B A EG

a ðSÞ. If B B EðSÞ, then
by maximality of E, AnB A EðNnSÞ, and by the first part of the proof,
AnB A EG

b ðNnSÞ. However, from the definition of EG
a and EG

b we have that

B A EG
a ðSÞ implies AnB B EG

b ðNnSÞ, and we conclude that B A EðSÞ. r

Remark 6.2. In the case that the game form G is tight in the sense that
EG
a ¼ EG

b , we get from Lemma 6.1 that E
G
a ¼ EG

b ¼ E. Tightness of G in its

turn will be a consequence of the results in the next section, since here it will
be shown that G is coalition proof Nash consistent, so that in particular, G is a
representation of EG

a , whence by Theorem 4.8, E
G
a ¼ EG

b .

7 Proof of coalition proof Nash consistency

In the present section, we show that the game form defined in Sect. 6 is CNC.
We start by defining suitable strategies and then proceed to check that they
indeed are equilibrium strategies.
Let RN be an arbitrary profile; we let x ¼ FðRNÞ, where F is the particular

social choice function defined at the end of Sect. 5.
For player 1, the strategy s1 is defined as ðR1; j; xÞ; the selection function

j A F is defined as follows:
Let D1 be the set of ðS;BÞ A 2Nnf1g � 2A such that there is some y A B,

y0 x, with xRiy for some i A S (some alternative in B is worse than x for
some members of S). Choose any such y and let jðS;BÞ ¼ fyg.
Let D2 be the set of ðS;BÞ with BRSx for which there is a two-element

subset B 0 of B such that for some i; j A S,

maxðRijB 0Þ0maxðR jjB 0Þ

(so that the members of S disagree on the best element of B 0); such a subset B 0

is called an admissible pair. An admissible pair fz1; z2g dominates another
admissible pair fw1;w2g if fw1;w2gRSz1 or fw1;w2gRSz2 (so a pair is domi-
nated by another if both alternatives of the first are considered better than one
of the alternatives in the other pair by all members of the coalition under
consideration); clearly, if there are admissible pairs, then there are also undo-
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minated admissible pairs. Define the partial relation � on the undominated
admissible pairs by

fw1;w2g � fz1; z2g if ½w1 ¼ z1;w2R
Sz2�;

possibly after a renumbering of fz1; z2g (so that one of the alternatives is the
same in the two sets and the other is dominated via S). Then � is acyclic and
therefore admits minimal elements; Let jðS;BÞ select an admissible pair
which is minimal for �.
Finally, let D3 ¼ ð2Nnf1g � 2AÞnðD1WD2Þ; for ðS;BÞ A D3, there exists a

unique w A B such that BRSw; put jðS;BÞ ¼ fwg.
This concludes the description of the function j, (which of course depends

on the sincere profile RN ). The very elaborate definition of j, in particular for
its restriction to D2, will be used in the proof of Lemma 7.2 below, where it
helps us to establish a recursiveness property of improvements which is crucial
for our reasoning.
If i0 1, then s i ¼ ðQi; j; x; bq; ð0;RiÞÞ, where j and x were defined

above, and bq is the constant function with valueq. To define the preference
relation Qi, we use that according to the definition of x A FðRNÞ, there is a
pair ðB; SÞ A 2A � 2N with x A B such that B is minimal for inclusion among
sets B belonging to pairs ðB;SÞ with S u-e¤ective for B at the profile RN . By
Definition 5.3, there is an S-profile TS ¼ ðT iÞ

i A S such that each y B B is u-
dominated at ðTS;RNnSÞ and BRS 0

y for some non-empty S 0 H S. Now define
Qi as T i if i A S and as Ri otherwise.
This completes the definition of the particular strategy array sN . In the

remaining part of the section, we show that the strategies defined above are
indeed coalition proof Nash equilibria, and that they result in the outcome
prescribed by the social choice function F.
We start with the last assertion which is an easy consequence of the defi-

nitions:

Lemma 7.1. pðsNÞ ¼ x ¼ F ðRNÞ.
Proof. We have S½sN � ¼ q so that Case 1 in the definition of p applies. r

Now we want to establish that sN is a CNE of the game GðG;RNÞ. This
means that no coalition can have an ICI against sN (cf. Definition 2.6). We
start with coalitions which do not contain the first player:

Lemma 7.2. Let S A 2N be a coalition with 1 B S. Then S has no internally

consistent improvement of sN .

The proof of Lemma 7.2 is rather long, and to facilitate reading we pro-
vide an overview of the proof: In order to prove that coalitions containing
individual 1 have no ICI we show that if S has an improvement tS, then it
cannot be an ICI, since some subcoalition has an ICI of ðtS; sNnSÞ. To show
this, we exhibit an improvement with the property that if some subcoalition
has an ICI, then this would also be an ICI of ðtS; sNnSÞ, from which we can
then conclude that S has no ICI of sN . We indicate the distinct parts (i)–(v) of
this reasoning as we proceed in the proof.
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Proof. If the coalition S has no improvement of sN , we are done. So, let tS be
an improvement of sN , t i ¼ ð ~QQi; ~jj i; ~xxi; ~bbi; ð~tti; ~PPiÞÞ, i A S, with pðtS; sNnSÞ ¼ q,
where qRSx and q0 x. We must show that tS is not internally consistent.
(i) First of all, we choose a particular subcoalition Sy of S having an im-

provement of ðtS; sNnSÞ:
If S½ðtS; sNnSÞ� ¼ q, then q ¼ x by the definition of the outcome function

p, a contradiction. We consider first the case where S½ðtS; sNnSÞ� ¼ S; the
general case is treated afterwards.
Let R½ðtS; sNnSÞ� ¼ T S, B½ðtS; sNnSÞ� ¼ B. If ðS;BÞ A D1, then j would

choose an alternative y such that xRiy, contradicting that the outcome is
preferred to x by all members of S. Suppose then that ðS;BÞ A D2; in this case
jðS;BÞ ¼ B 0, where B 0 is such that

maxðRijB 0Þ ¼ y0 z ¼ maxðR jjB 0Þ

for some i; j A S. Suppose w.l.o.g. that q0 y. Then i A S can improve upon
the strategy array ðtS; sNnSÞ simply by changing the last component of the
strategy t i to some pair ðt̂t i; P̂PiÞ, where t̂t i > maxf~tt j j j A Sg and max P̂Pi ¼ y.
This improvement by the coalition fig is internally consistent, so tS cannot be
an ICI.
It remains to consider the case where ðS;BÞ A D3, so that RijB 0 ¼ R jjB 0

for all i; j A S and B 0 HB, meaning that RijB ¼ R jjB for all i; j. By the defi-
nition of j, we get that pðtS; sNnSÞ ¼ q satisfies BRSq (that is, q is the worst
alternative in B for all i A S), and BHC, where C ¼ fw A A j wRSqg.
Now x ¼ F ðRNÞ ¼ pðsNÞ is not indirectly u-dominated at RN (Theorem

5.8); using Definition 5.6 we conclude that S is not u-e¤ective for C at RN ;
using Definition 5.3 we get the existence of some alternative y B C with
the property that for each subcoalition S 0 of S, y is not u-dominated at
ðT S;RNnSÞ via S 0, or CRS 0

y does not hold. If qRSy, then y is not u-dominated
in ðT S;RNnSÞ, meaning that y A BHC, a contradiction; therefore,
fi A S j yRiqg0q. Since CRS 0

y holds for any subcoalition of Snfi A S j yRiqg
we get that y is not u-dominated at ðT S;RNnSÞ via any such subcoalition.
Thus there is y B C, i.e. with qRiy for some i A S, and Sy HS, Sy 0q, such
that yRSyq and y is not u-dominated at ðT S;RNnSÞ via any subset of SnSy.
We now choose a pair ðy;SyÞ with the above properties in such a way that Sy

is minimal for set inclusion.
(ii) Next, we define suitable strategies n i for the members of Sy so that n

Sy

is an improvement of ðtS; sNnSÞ:
Define strategies n i ¼ ð ~QQi; ~jj i; ~xxi; b̂bi; ðt̂t i; P̂PiÞÞ for i A Sy with b̂bi such that

b̂biðT SnfigÞ ¼ ~bbiðT SnfigÞW fðy;SyÞg

and b̂bi agrees with ~bbi on all other profiles, t̂t i ¼ maxf~tti j i A Sg þ 1, and P̂Pi A L

some linear order with max P̂Pi ¼ y, leaving everything else unchanged. Then
in the new strategy array ðnSy ; tSnSy ; sNnSÞ, we have

B½ðnSy ; tSnSy ; sNnSÞ� ¼ BW fyg:

By construction, j assigns to the pair ðS;BW fygÞ either the set fyg (in the
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case where xRiy for some i A S, so that ðS;BW fygÞ A D1, since in that case y
is the only alternative which is not preferred to x by all individuals in S), or a
subset of BW fyg containing y (since the preferences Ri for i A S agree on B

but do not agree on BW fyg, so that ðS;BW fygÞ A D2, and all admissible
pairs from BW fyg must contain y). Consequently

pðnSy ; tSnSy ; sNnSÞ ¼ y

and nSy is indeed an improvement for Sy of ðtS; sNnSÞ.
If no subcoalition has an ICI of ðnSy ; tSnSy ; sNnSÞ, then the original im-

provement was not an ICI, and we would be through.
(iii) We now claim that if a coalition has an ICI of ðnSy ; tSnSy ; sNnSÞ, then it

would also have an ICI of ðtS; sNnSÞ. Once this claim has been proved, we
have shown that S has no ICI of sN .
Suppose therefore that some proper subcoalition S 00 of Sy has an ICI m

S 00

of

ðnSy ; tSnSy ; sNnSÞ

with

pðmS 00
; nSynS 00

; tSnSy ; sNnSÞ ¼ z; zRS 00
y:

Then S½ðmS 00
; nSynS 00

; tSnSy ; sNnSÞ� is a subset of S containing SnS 00 and some
(possibly empty) subset S 000 of S 00; let

R½ðmS 00
; nSynS 00

; tSnSy ; sNnSÞ� ¼ ð ~TT S 000
;T SnS 00 Þ;

where ~TT S 000
is some S 000-profile.

(iv) We now show that mS 00
is an ICI of sN as well, at least in the case

where mS 00
is su‰ciently well-behaved:

Suppose that in some of the strategies m i, for i A S 000, the first component
has been changed to some Q̂Qi 0 ~QQi. Then R½ðmS 00

; nSynS 00
; tSnSy ; sNnSÞ�0T S,

and

B½ðmS 00
; nSynS 00

; tSnSy ; sNnSÞ� ¼ B½ðmS 00
; tSnS

00
; sNnSÞ�:

This means that mS 00
is an improvement of ðtS; sNnSÞ as well. Similarly,

improvements of ðmS 00
; nSynS 00

; tSnSy ; sNnSÞ are also improvements of
ðmS 00

; tSnS
00
; sNnSÞ etc., so that if mS 00

is an ICI of ðnSy ; tSnSy ; sNnSÞ, then it is
also an ICI of ðtS; sNnSÞ, and we are done.
(v) The final part of the argument consists in eliminating all other cases

than the simple one treated under (iv) above. For this, we make use of the the
elaborate definition of the selection function j chosen by individual 1 in s1.

Thus, assume that only the components b̂bi and ðt̂t i; P̂PiÞ have been changed
in the strategy m i, for i A S 00, so that S½ðmS 00

; nSynS 00
; tSnSy ; sNnSÞ� ¼ S. Let

B̂B ¼ B½ðmS 00
; nSynS 00

; tSnSy ; sNnSÞ�:

From the minimality property of Sy we know that no proper subcoalition Sz

of Sy is such that zR
Szq and not u-dominated at ðT S;RNnSÞ via SnSz. Since

the strategy changes leading to y consisted only of exempting y from domi-
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nation, we have that no subcoalition of Sy can achieve an alternative z B C.
Thus, z A C.
Suppose that y B B̂B. Then, by our definition of ~bbi for i A Sy, we have that

mS 00
is an improvement upon ðtS; sNnSÞ via S 00. If mS 00

is an ICI upon
ðnSy ; tSnSy ; sNnSÞ then it is also an ICI upon ðtS; sNnSÞ. Thus, we may assume
that fy; zgH B̂B.
It follows from fy; zgH B̂B that ðS; B̂BÞ B D3. We cannot have ðS; B̂BÞ A D1,

since in that case jðS; B̂BÞ could not choose z A C. Thus, ðS; B̂BÞ A D2, and j

selects an undominated and �-minimal admissible pair fz;wg containing z.
Now zRSq, and if also wRSq, then fz;wg is dominated by fy; qg, a contra-
diction. Therefore, qRiw for some i A S, and fq;wg is also an admissible pair.
Assume that fq;wg is dominated, meaning that there is another admissible
pair fw 0;w 00g with qRSw 0, wRSw 0; we cannot have that zRSw 0 since in that
case fz;wg would also be dominated, consequently fz;w 0g is admissible; if
fz;w 0g is dominated, then so is fz;wg, contradiction, so fz;w 0g is undomi-
nated; however, fz;wg � fz;w 0g, contradicting �-minimality. We conclude
that fq;wg is undominated, and then we get another contradiction of the �-
minimality of fz;wg. We conclude that jðS; B̂BÞ cannot be a pair containing z.
This establishes the claim that only the case considered in (iv) can occur, and
therefore we have established the claim stated in (iii).
Summing up, we have shown that if S½tS; sNnSÞ� ¼ S then tS is not an ICI

of sN . Suppose now that S½ðtS; sNnSÞ� ¼ ~SS is a proper subset of S. Then

pðt ~SS; sNn ~SSÞ ¼ pðtS; sNnSÞ ¼ q;

and the restriction t
~SS of tS is an improvement of ðs ~SS; tSn

~SS; sNnSÞ. By the
preceding arguments, we know that there is a subcoalition ŜS of t

~SS having an

ICI of ðt ~SS; tSn
~SS; sNnSÞ. But this means that tS is not an ICI of sN . r

The remaining cases to be treated in order to prove that sN is indeed a
coalition proof Nash equilibrium, namely those of coalitions containing the
individual 1, are much simpler to deal with.

Lemma 7.3. Let S A 2N be a coalition with 1 A S. Then S has no internally

consistent improvement of sN .

Proof. Suppose that the coalition S with 1 A S has an improvement tS of sN

with pðtS; sNnSÞ ¼ q. From the definition of x and the fact that qR1x, we have
that q does not belong to any minimal set B such that some S is u-e¤ective for
B. In particular, q does not belong to the set B used in the definition of the
preference component Qi of the strategies s i, i ¼ 1; . . . ; n.
Let t1 ¼ ð ~QQ1; ~jj1; ~xx1Þ. If ~jj1 ¼ j and ~xx1 ¼ x, then S½ðtS; sNnSÞ�HS and

1 B S½ðtS; sNnSÞ�, and S½ðtS; sNnSÞ� has an improvement of sN . By lemma 6.2
this improvement is not internally consistent, and the same must hold for tS.
Suppose now that ~jj10j or ~xx10x. Then NnS is contained in

S½ðtS; sNnSÞ� ¼ ŜS. Let ðB; S Þ A 2A � 2N be the pair used in the definition of
Qi for i0 1. Since q B B we have that there is S 0 H S so that q is u-dominated
at QS 0

and BRS 0
q. From x AB we infer that S 0XS ¼q. But then R½ðtS; sNnSÞ�
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can be written as ðQS 0
;QŜSnS 0 Þ, and since q is u-dominated at this profile, we

have a contradiction. r

The results of Lemma 7.1, 7.2, and 7.3 may be summarized as follows:

Theorem 7.4. Let RN A LN, and let x ¼ FðRNÞ. Then there exist strategies

s1; . . . ; sn such that sN ¼ ðs1; . . . ; snÞ is a CNE in G, and pðsNÞ ¼ x.

Combining Theorem 7.4 and Lemma 6.1 together with Remark 6.2, we get
the desired converse of Theorem 4.11:

Theorem 7.5. Let E : PðNÞ ! P2ðAÞ be an e¤ectivity function which is maxi-

mal and superadditive. Then there is a game form G ¼ ðS1; . . . ;Sn; pÞ which

represents E, i.e.

(i) E is a- and b-associated with G, E ¼ EG
a ¼ EG

b ,
(ii) for each RN A LN, the game ðG;RNÞ has a coalition proof Nash equilib-

rium.

The result may also be formulated in terms of implementation:

Corollary 7.6. Let E : PðNÞ ! P2ðAÞ be an e¤ectivity function which is maxi-

mal and superadditive. Then there is an SCC H : LN ! 2A such that

(i) H is CNE-implementable,

(ii) E is a- and b-associated with H, E ¼ EH
a ¼ EH

b .

It may be noticed that the maximality property of the e¤ectivity function E
is used only to establish the second part of Lemma 6.1, which in its turn is
invoked only to obtain the final result of Theorem 7.5.

8 Concluding comments

In this paper we provide a complete solution to the problem of representation
of e¤ectivity functions in coalition proof equilibria: For each maximal and
superadditive e¤ectivity function E we can find a coalition proof Nash consis-
tent game form G such that EG

a ¼ E. Furthermore, G is tight, that is EG
a ¼ EG

b .
This result has two immediate applications. First, if we model rights-

systems by e¤ectivity functions (Gärdenfors [8]), then existence of representa-
tions is essential for possible consistent behavior of the members of a society
(who obey the rights-system). If an e¤ectivity function E is the constitution of
a society, then the members of the society can exercise their rights simulta-
neously only if E has a consistent representation (Peleg [15]). Clearly, we
treated only one solution, namely, coalition proof Nash equilibrium.
Second, our result supplies a simple necessary condition for implement-

ability in coalition proof Nash equilibria (see Remark 4.13). In particular, the
Pareto correspondence is not CNE-implementable in our case of unrestricted
finite domains. Thus, our results are independent of those of Boylan [6] (see,
again, Remark 4.13).
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Our result is comparable to the main result of Moulin and Peleg [12]. We
recall that Moulin and Peleg [12] prove that an e¤ectivity function is repre-
sentable in strong Nash equilibrium if and only if it is stable and maximal (see
also Peleg [13], Theorem 6.4.4). Finally, our work is linked to the works of
Gurvich [9] and Abdou [1] on Nash-consistency of two-person game forms,
because a two-person game form is Nash-consistent if and only if it is CNC
(see Remark 4.12).
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