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Abstract

Hart and Mas-Colell [2000] show that if all players play “regret-matching”
strategies, i.e., they play with probabilities proportional to the regrets, then
the empirical distribution of play converges to the set of correlated equilibria,
and the regrets of every player converge to zero. Here we show that if
only one player, say player i, plays with these probabilities, while the other
players are “not too sophisticated,” then the result that player i’s regrets
converge to zero continues to hold. The condition of “not too sophisticated”
essentially says that the effect of one change of action of player i on the future
actions of the other players decreases to zero as the horizon goes to infinity.
Furthermore, we generalize all these results to a whole class of “regret-based”
strategies introduced in Hart and Mas-Colell [2001]. In particular, these
simplify the “conditional smooth fictitious play” of Fudenberg and Levine
[1999].

1. Introduction

A game G of N players is a triplet
〈
N,

{
Si

}
i∈N

,
{
ui

}
i∈N

〉
, where N is the set

of players, Si is the set of strategies of player i, and ui :
∏

j∈N Sj → R is the

payoff function of player i. All sets of players and strategies are finite. Denote

by S :=
∏

i∈N Si the set of strategies of all players, and by S−i :=
∏

j 6=i,j∈N Sj

the set of strategies of all players different from i. Denote by ∆Si the set of

probabilities on Si (similarly ∆S is the set of probabilities on S). A strategy

si ∈ Si is a pure strategy of player i, and the elements of ∆Si are the mixed
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strategies of player i. When dealing with mixed strategies one often is interested

not in the actual payoff received, but rather in the expected payoff using those

mixed strategies.

One can also consider a situation where the game G is repeated over and over

again. In this situation the strategy the players play at time t is denoted st (and

the strategy of player i is correspondingly si
t). In this paper we study repeated

games, and their relations to the solution concepts of the one-shot game.

1.1. Correlated Equilibria

In a two-player zero-sum game there exists the value of the game, which is the

payoff that the players can ensure they will get, and optimal strategies, which

ensure this payoff. In a non-zero-sum game and in a game with more than two

players, we cannot talk about a value of the game since such a value does not exist.

Instead of value and optimal strategies one considers equilibrium. Equilibrium is

a vector of strategies, such that no player will increase his payoff by unilaterally

changing his strategy. The leading non-cooperative equilibrium notion for N -

person games in strategic (normal) form is Nash equilibrium, which is an N -tuple

of probabilities on Si, such that no player can increase his payoff by unilaterally

changing his action.

The notion of Nash equilibrium has been generalized by Aumann [1974], who

introduced the concept of correlated equilibrium. Assume that, before the game is

played, every player receives a private signal (which does not affect the payoffs).

The player may (but need not) choose his action in the game depending on this

signal. A correlated equilibrium of the original game is just a Nash equilibrium

of the game with the signals. If the signals are (stochastically) independent

across the players, this is just a Nash equilibrium (in mixed or pure strategies)

of the original game. But the signals could well be correlated, in which case new

equilibria may obtain.

Equivalently, a correlated equilibrium is a probability distribution on N -tuples

of actions, which can be interpreted as the distribution-of-play instructions given

to the players by some “device” or “referee.” Every player is given — privately —

instructions for his play only; the joint distribution is known to all of them. Also,

for every possible instruction that a player receives, the player realizes that the
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instruction provides a best response to the random estimated play of the other

players — assuming they all follow their instructions.

Finally, one can think of the set of correlated equilibria as the following subset

of ∆S, the set of probability distributions on N -tuples of actions: x ∈ ∆S is a

correlated equilibrium if for any random variable Y =
(
Y i

)
i∈N

(Y i with values

in Si) such that1 Y ∼ x, the following holds for all i ∈ N , and for all si ∈ Si such

that Pr
(
Y i = si

)
> 0 :

E
[
ui

(
si, Y −i

)
| Y i = si

]
= max

j∈Si
E

[
ui

(
j, Y −i

)
| Y i = si

]
. (1.1)

1.2. Regrets

A player may be sorry because he played one way instead of another. We can

quantify how sorry he is by the difference between the payoff he would have gotten

had he played differently, and the payoff he actually received. This difference

between payoffs is called the regret.

The regret we consider is obtained by comparing the actual payoff received

to the payoff one would have gotten by playing another pure strategy. In a

one-shot game this regret does not make much sense when dealing with mixed

strategies. However, when dealing with a repeated game the picture is different.

In a repeated game this regret can be described for player i as the difference

between the average payoff of playing k instead of j every time player i played

strategy j, and the average payoff of the actually played strategies. We denote

this regret by Di
t (j, k) — the regret at time t of player i from j to2 k. This

regret is of course a function of how often every strategy s ∈ S was played, or,

put differently, a function of the proportion of play of every strategy s ∈ S. This

proportion is called the empirical distribution of play, and it depends on the time

t of the game. It is denoted by3 zt. Notice that zt is a probability distribution

1The notation Y ∼ x means that Y and x have the same probability distribution.
2A formula for this is

Di
t (j, k) =

1

t

∑

τ≤t;si
τ
=j

[
ui

(
k, s−i

τ

)
− ui

(
j, s−i

τ

)]
.

3zt (s) equals the number of times s was actually played in the first t periods, divided by t.

3



on S, the set of all strategies.4

Hart and Mas-Colell [2000] (henceforth [HM1]) found an interesting connec-

tion (see Section 3 there) between regrets and the set of correlated equilibria

(which can be described as a subset of the set of probability distributions on

S). They prove: Given any ε ≥ 0, let {st}t=1,2,.... be a sequence of plays such

that the limsup of the regret for every player and every strategy is less than or

equal to ε. Then the sequence of empirical distributions zt converges to the set

of correlated ε-equilibria. Furthermore, Hart and Mas-Colell [HM1, Theorem A]

use Blackwell’s [1956] Approachability Theorem to prove that the set of all non-

positive regret vectors is an approachable set for every player. This means that

every player has an adaptive strategy such that, no matter what the other play-

ers do, all his regrets converge to the nonpositive orthant. However, this strategy

is quite complicated, and one must calculate eigenvectors of a different matrix

in every period time t in order to evaluate it. Therefore Hart and Mas-Colell

[HM1, Section 2] construct a simple adaptive procedure in which the transition

probabilities are linearly proportional to the regrets. This procedure has the

property that if all players follow it, then the regrets of every player converge to

the nonpositive orthant. (Hence the empirical distribution zt converges to the set

of correlated equilibria.) Nevertheless, as they state, this property holds only if

all players follow this procedure. Here (in Section 3) we give weak conditions on

the other players’ play that suffice for the regrets of player i to converge to the

nonpositive orthant.5 Furthermore, following Hart and Mas-Colell [2001] (hence-

forth [HM2]), we generalize (in Section 4) the Hart–Mas-Colell strategy to a

larger class of strategies and we prove that the same convergence theorems hold.

In particular, in Section 4.5, we strengthen a theorem of Fudenberg and Levine

dealing with conditional smooth fictitious play.

4A way of describing the regret of player i from j to k in terms of zt is

Di
t (j, k) =

∑

s∈S:si=j

zt (s)
[
ui

(
k, s−i

)
− ui (s)

]
.

5Note that a procedure that is totally correlated between players is not of major interest.
Players can decide on any Nash equilibrium, and this would be a strategy that leads to equilibria.
Hart and Mas-Colell’s procedure is not such a procedure, since it is not based on the game played.
Yet, our result gives added importance to this procedure.
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2. Preliminaries

2.1. The Hart–Mas-Colell Simple Procedure

As mentioned in the introduction Hart and Mas-Colell develop a simple method

that ensures that the empirical distribution of play will converge with probability

one to the set of correlated equilibria.

We describe here the procedure that they developed.

Let G be a game with a finite number of players. Suppose that G is played

repeatedly through time: t = 1, 2, 3, ... . Let si
t be the strategy that player i

played at time t (and s−i
t the strategy other players played, and st the strategy

combination of all players at time t). Let ht := (sτ )τ≤t be the history of the game

until time t.

Let

Ai
t (j, k) := 1{si

t=j}
[
ui

(
k, s−i

t

)
− ui (st)

]

be the regret at the specific time t from j to k. The regret Di
t (j, k) is the average

of Ai
. (j, k), i.e.,

Di
t (j, k) =

1

t

t∑

τ=1

Ai
τ (j, k) .

The positive part of the regret, denoted Ri
t (j, k), is Ri

t (j, k) :=
[
Di

t (j, k)
]
+
. As

we mentioned the transition probabilities πi
t (j, k) of the Hart–Mas-Colell strategy

(henceforth HMS) are proportional to the positive part of the regret. Let µ be

sufficiently large,6 let πi
t (j, k) := (1/µ) · Ri

t (j, k) for k 6= j ∈ Si, and πi
t (j, j) :=

1 −
∑

k∈Si:k 6=j πi
t (j, k).

In the Hart and Mas-Colell strategy player i plays at time t + 1 according to

the probabilities

Pr
(
si
t+1 = si | ht

)
= πi

t

(
si
t, s

i
)
; (2.1)

that is, the transition probabilities from one period to the next are linearly pro-

portional to the regrets. Hart and Mas-Colell prove [HM1, Section 2] that if all

players follow this strategy then with probability one the empirical distribution

of play converges to the set of correlated equilibria. The method used in order to

prove this is to show that the positive part of the regret converges to zero almost

6Specifically, µ should be large enough to ensure πi
t (j, j) > 0 for every i ∈ N and every

j ∈ Si.
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surely for every player and every strategy. (Henceforth, whenever we use the term

“regret converges to zero,” we mean the positive part, i.e., Ri
t (j, k) →t→∞ 0 for

all k 6= j ∈ Si.)

However, if other players do not follow HMS then the regret of player i need

not converge to zero. In Section 3 we show that with some slight conditions on

the other players’ play we can still get this convergence.

2.2. Approachable Sets

Consider a game in strategic form played by a player i against an opponent −i

(which can be nature, or another player, or many other players). The action sets

are the finite sets Si for i and S−i for −i. The payoff functions are vectors in

some Euclidean space. Let at be the payoff to player i at time t, and at be the

average payoff to player i up to time t. A set C is called an approachable set

for player i if player i can guarantee, no matter what player −i does, that the

Euclidean distance, dist (at, C), tends to zero almost surely as t → ∞.

Given a game with a scalar payoff ui, we can look at the vector of regrets

of player i in the one-shot game Ai (defined in the previous subsection) as a

vector payoff. Now we can consider this vector payoff and ask which sets are

approachable. Hart and Mas-Colell [HM1, Section 3] prove that the nonpositive

orthant (denoted R
mi
− where mi =

∣∣Si
∣∣) is approachable for every player i. (Ob-

viously, other sets are also approachable, e.g., any set that includes R
m
− , which

may correspond to correlated ε-equilibria.)

Consider a convex closed set C such that R
m
− ⊆ C and a mapping Λ : R

m\C →

R
m such that Λ is continuous, integrable, and, for every x ∈ R

m\C, the vector

Λ (x) represents a direction from C to x, in the following sense: Λ (x)·x > Λ (x)·y

for all y ∈ C. Hart and Mas-Colell [HM2] prove that if a player uses a strategy

which guarantees that the one-shot payoffs lie in the C-side of the half space

generated by Λ (x) (and not in the x-side), then the average payoff will converge

to C almost surely [HM2, Theorem 2.1]. In Section 4 we prove, similarly to what

Hart and Mas-Colell do in their simple adaptive procedure, that we can use a

strategy linearly proportional to the direction pointed out by operating Λ on the

regret (that is, Λ
(
Di

t

)
), to get, if all players follow this strategy, a similar result.

Furthermore, we show that with some slight conditions on other players’ play, we
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can get the convergence of the regret for player i to this set C, no matter what

the other players do.

3. Consistency of the Hart–Mas-Colell Strategy

3.1. Introduction

In their paper [HM1], Hart and Mas-Colell show a simple adaptive procedure

leading to correlated equilibrium, as we described in Section 2.1. However, as

they point out in Section 4(d), this procedure is not “conditionally universally

consistent.”7 In particular, if only player i follows the procedure we cannot

conclude that all his regrets go to zero. In this section we give sufficient conditions

on the behavior of the other players, which imply that all regrets of player i will

necessarily converge to zero.

3.2. Main Results of This Section

Let G a be a game with a finite number of players. When dealing with player

i we can always look at G as a two-player game between i and −i, where −i is

N\ {i}.8 For any strategy used by −i, we can ask: what is the effect of the action

actually used by player i at stage t of the game, on the action player −i uses

at step t + w? We show that if this effect is as small as f (w) /g (t), for some

functions f, g such that g (t) →t→∞ ∞, and player i uses the Hart and Mas-Colell

strategy HMS (2.1), then, no matter what strategy player −i uses, the regrets of

player i will converge to zero as time goes to infinity.

Formally, assume that for all t, w > 0, given two histories ht+w−1 and h′
t+w−1

such that for every τ < t + w, τ 6= t we have sτ = s′τ and for τ = t we have

s−i
τ = s′−i

τ , si
τ 6= s′iτ (that is, the two histories ht+w−1 and h′

t+w−1 differ only in

player i’s action at time t), then for all s−i in S−i

∣∣Pr
(
s−i
t+w = s−i | ht+w−1

)
− Pr

(
s−i
t+w = s−i | h′

t+w−1

)∣∣ ≤ f (w)

g (t)
(3.1)

for some functions f, g such that g (t) →t→∞ ∞. (Note that there are no condi-

tions on f ; its role is to get a uniform bound for every w.)

7The result is not guaranteed for a player unless all players play according to this strategy.
8We allow other players to be correlated among themselves; hence we may refer to them as

one player.
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What this condition says is that the effect of one change in the action of i on

the action of the other players converges to zero as the horizon goes to infinity.

(For example in the HMS this is so since the effect is of the order 1/t.)

Remarks:

(1) In fact, we need this condition only for w such that w = o (t).

(2) The interdependence between the strategies of the players other than i is

irrelevant.

(3) If all players follow HMS as in (2.1), then by Step M3 of the Appendix

of [HM1] Ri
t+w (j, k) − Ri

t (j, k) = O (w/t) (and the same holds for the corre-

sponding transition probabilities); hence (3.1) holds with f a linear function of

w (specifically, f (w) = 2cw where c is the constant for O (w/t) and g (t) = t).

Theorem 3.1. If player i uses the Hart–Mas-Colell simple strategy of (2.1), then

the regrets of player i are guaranteed to converge to zero a.s. as t → ∞, for any

strategies of the other players that satisfy (3.1).

3.3. Proof of Theorem

We shall make use of the following remarks.

3.3.1. Remarks

In (3.1) we may assume without loss of generality that:

(*1) f (w) ≥ w; and f is monotone increasing. (Otherwise, take F (w) :=

w + maxw′≤w f (w′) instead of f.) We extend f to the entire positive real line in

a manner which will make it one-to-one.

(*2) g (t) ≤ t, (g (t) ≥ 1) and g is monotone nondecreasing. (Otherwise, define

G (t) := min {t, minx≥t g (x)}, and take G instead of g.)

(*3) g (t) − g (t − 1) ≤ 1/t (Otherwise, one can define Ĝ (t) by Ĝ (1) := g (1)

and Ĝ (t + 1) := min
{

g (t + 1) , Ĝ (t) + 1/ (t + 1)
}

, satisfying Ĝ (t) →t→∞ ∞

and Ĝ (t)− Ĝ (t − 1) ≤ 1/t, and take Ĝ (t) instead of g. [Ĝ satisfies (*1) and (*2)

if g does.])

Notice that we require that (3.1) hold for every history. Thus, assume that we

have two histories ht+w−1 and h′
t+w−1 such that for every τ < t we have sτ = s′τ

and for τ ≥ t we possibly have si
τ 6= s′iτ , s−i

τ = s′−i
τ . Then we can define a sequence
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of histories h0
t+w−1 , h1

t+w−1 ,..., hw
t+w−1 , such that h0

t+w−1 = ht+w−1, and hl
t+w−1

differs from hl+1
t+w−1 only in that at stage t+l, we have hl+1

t+w−1 (st+l) = s′t+l. Hence

hw
t+w−1 = h′

t+w−1, and

∣∣Pr
(
s−i
t+w = s−i | ht+w−1

)
− Pr

(
s−i
t+w = s−i | h′

t+w−1

)∣∣ ≤

w−1∑

l=0

∣∣∣Pr
(
s−i
t+w = s−i | hl

t+w−1

)
− Pr

(
s−i
t+w = s−i | hl+1

t+w−1

)∣∣∣ ≤
w−1∑

l=0

f (w − l)

g (t + l)
.

Now since we have assumed that f is monotone increasing, and g is monotone

nondecreasing, it follows that:

∣∣Pr
(
s−i
t+w = s−i | ht+w−1

)
− Pr

(
s−i
t+w = s−i | h′

t+w−1

)∣∣ ≤ wf (w)

g (t)
.

If we define f∗ (w) := wf (w) instead of f (w) we get the following: there exists

f, g such that g → ∞, and for every ht+w−1 and h′
t+w−1 such that for every τ < t

we have sτ = s′τ and for τ ≥ t we possibly have si
τ 6= s′iτ , s−i

τ = s′−i
τ

∣∣Pr
(
s−i
t+w = s−i | ht+w−1

)
− Pr

(
s−i
t+w = s−i | h′

t+w−1

)∣∣ ≤ f (w)

g (t)
(3.2)

holds. Henceforth, we assume that the strategy of −i satisfies (3.2), with f and

g satisfying (*1)-(*3).

An analogous way of looking at this situation is as follows. If all players follow

HMS, then there exists a matrix of transition probabilities Πi′
t , for every player

i′ and stage t. For every player i′ we have
∣∣∣Πi′

t − Πi′
t+w

∣∣∣ = O (w/t); hence

∣∣Pr
(
s−i
t+w = s−i | ht+w−1

)
− Pr

(
s−i
t+w = s−i | ht, s

−i
t+1, ..., s

−i
t+w−1

)∣∣ = O
(w

t

)
.

Consider a given process s such that player i follows HMS and the other players

do not. Suppose that

∣∣Pr
(
s−i
t+w = s−i | ht+w−1

)
− Pr

(
s−i
t+w = s−i | ht, s

−i
t+1, ..., s

−i
t+w−1

)∣∣ = O

(
f (w)

g (t)

)

for some functions f, g such that g (t) →t→∞ ∞. We prove that the regrets of i

converge to zero almost surely.

3.3.2. Lemma

Before proving the theorem we state a simple lemma.
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Lemma 3.2. Assume that the players −i are using strategies that are indepen-

dent of player i’s moves, that is,

Pr
(
s−i
t = s−i | ht−1

)
= Pr

(
s−i
t = s−i | s−i

1 , ..., s−i
t−1

)
,

and that player i uses HMS as in (2.1). Then the regrets of player i converge to

zero a.s., as t → ∞.

Proof: The proof is exactly as in [HM1], except that in Step M4 here we

define ŝt+w differently. ŝt+w is defined by ŝt := st, and the transition probabilities

are:

Pr (ŝt+w = s | ŝt, ..., ŝt+w−1) = Πi
t

(
ŝi
t+w−1, s

i
)
·Pr

(
s−i
t+w = s−i | ht, ŝ

−i
t+1, ..., ŝ

−i
t+w−1

)
.

One can verify that Step M4 is still true with the same proof given in [HM1].

(Given ht, player −i plays with the same probabilities for ŝ and s; therefore

∣∣Pr
(
ŝ−i
t+w = s−i | ht+w−1

)
− Pr

(
s−i
t+w = s−i | ht+w−1

)∣∣ = 0;

and for player i we still have

∣∣Pr
(
ŝi
t+w = si | ht+w−1

)
− Pr

(
si
t+w = si | ht+w−1

)∣∣ = O
(w

t

)
;

hence one can use the same proof.) A similar statement is true also for Step M5

of [HM1]. Step M6 is also true, and the proof remains unchanged. (Notice that

in the proof of M6 we are using only the independence of i and −i, which still

holds, and the fact that player i uses Πi
t as transition probabilities.) The last step

involving the ŝ strategies is M7, which involves only the stochastic matrix Πi
t,

and it is obviously still true; therefore the continuation of the proof as in [HM1]

is still valid.

We now can prove our theorem.

3.3.3. Proof of Theorem 3.1

This proof follows the Hart and Mas-Colell paper [HM1], and we use the same

steps. We use lowercase letters to distinguish steps in our proof from those in

theirs.
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• Steps M1, M2, M3 of [HM1] are generally true , independently of the strate-

gies used.

Define ŝt+w as in the proof of Lemma 3.2.

• Step m4: |Pr (ŝt+w = s | ht) − Pr (st+w = s | ht)| = O
(

wf(w)
g(t)

)
.

We use Hart and Mas-Colell’s lemma in the Proof of Step M4 [HM1]. Since

for every player, the transition probability for the ŝ process differs from the cor-

responding one for the s process by at most O (f (w) /g (t)) (for player i it differs

by O (w/t) which is ≤ O (f (w) /g (t)) by (*1) and (*2)), it follows that

|Pr (ŝt+w = s | ht) − Pr (st+w = s | ht)| =
∑

w′≤w

O

(
f (w′)

g (t)

)
= O

(
wf (w)

g (t)

)
.

(The last equality follows since f is increasing.) ¤

• Step m5:
∣∣αt,w

(
j, s−i

)
− α̂t,w

(
j, s−i

)∣∣ = O
(

wf(w)
g(t)

)
.

This is immediate by Step m4.

• Step m6: α̂t,w

(
j, s−i

)
= Pr

(
ŝ−i
t+w = s−i | ht

) [
Πw+1

t − Πw
t

] (
si
t, j

)
.

The proof of [HM1, Step M6 ] holds, since, by definition of the ŝ process, the

transitions of i and −i are independent.

• Step m7: α̂t,w

(
j, s−i

)
= O

(
w−1/2

)
.

The proof is the same as in [HM1, Step M7 ].

• Step m8: E
[
(t + v)2 ρt+v | ht

]
≤ t2ρt + O

(
tv2f(v)

g(t) + tv1/2
)
.

By steps m5, m7, and M2, it follows that

v∑

w=1

Rt · E [At+w | ht] =
v∑

w=1

O

(
wf (w)

g (t)
+ w−1/2

)
= O

(
v2f (v)

g (t)
+ v1/2

)
.

Substituting into M1(i) yields the result. (Note that the term O
(
v2

)
is not

needed since tv2f (v) /g (t) ≥ v2.) ¤

Now let tn be an increasing sequence of positive integers (to be defined later),

and let vn := tn+1 − tn. Then
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• Step m9.1: E
[
t2n+1ρtn+1

| htn

]
≤ t2nρtn + O

(
tnv2

nf(vn)
g(tn) + tnv

1/2
n

)
.

Step m9.1 follows immediately from m8.

Let f̃ (w) := w2f (w). (Notice that f̃ is a continuous strictly increasing func-

tion, and thus f̃ has an inverse function, denoted by f̃−1.)

Let an := 1
2 f̃−1 (g (n)), and let tn := ⌈nan⌉; (vn = tn+1 − tn).

• Step m9.2:

(i) an is a nondecreasing sequence, and an →n→∞ ∞.

(ii) vn

tn
= O

(
n−1

)
.

(iii) f̃ (vn) /g (tn) = O (1).

(iv) tnv2
nf(vn)

g(tn) + tnv
1/2
n = O

(
na

3/2
n

)
.

Proof: (i) is immediate since all the functions involved are increasing and go

to infinity.

(ii) By (*3) we have g (t) − g (t − 1) ≤ 1/t; also, for x ≥ y ≥ 1 we have

f̃−1 (x) − f̃−1 (y) ≤ x − y since f is increasing and greater than or equal to 1 by

(*1). Hence

2 (an − an−1) ≤ g (n) − g (n − 1) ≤
1

n
.

Thus

vn

tn
≤

1 + (n + 1) an+1 − nan

nan

≤
1 + (n + 1)

(
an + 1

2(n+1)

)
− nan

nan
=

an + 3
2

nan
= O

(
1

n

)
,

as claimed. ¤

(iii) By (i) there exists an n0 such that an ≥ 3/2 for all n > n0. First, we

have vn ≤ 2an for all n > n0. Indeed,

vn − 2an ≤ 1 + (n + 1) an+1 − nan − 2an

≤ 1 + (n + 1)

(
an +

1

2 (n + 1)

)
− (n + 2) an = 1.5 − an ≤ 0.

Thus f̃ (vn) ≤ f̃ (2an) = g (n) ≤ g (tn) since tn ≥ n ·1.5, which yields the result.¤

(iv) By (iii), the first term is O (tn); thus, in total we have O
(
tnv

1/2
n

)
, which

by (ii) is O
(
tn (tn/n)1/2

)
= O

(
na

3/2
n

)
. ¤

12



• Step m10: limn→∞ ρtn = 0 a.s.

Proof: Define bn := t2n ≈ n2a2
n and Xn := bnρtn − bn−1ρtn−1

= t2nρtn −

t2n−1ρtn−1
.

By Step M1(ii) it follows that |Xn| ≤ O
(
tnvn + v2

n

)
, which by M9.2(ii) equals

O
(
t2n/n

)
. Thus

∑

n

1

b2
n

Var (Xn) =
∑

n

O

(
1

n2

)
< ∞.

Next, Steps m9.1 and m9.2 imply that

1

bn

∑

ν≤n

E [Xν | X1, ..., Xν−1] = O
(
n−2a−2

n

)
·
∑

ν≤n

O

(
tνv

2
νf (vν)

g (tν)
+ tνv

1/2
ν

)

= O
(
n−2a−2

n

)
·
∑

ν≤n

O
(
νa1.5

ν

)
= O

(
a−0.5

n

)
→n→∞ 0.

(For the first equality we use m9.1, for the second equality we use m9.2(iv),

and for the third we use aν ≤ an for ν ≤ n which follows by m9.2(i), and
∑

ν≤n ν = O
(
n2

)
.)

Applying the Strong Law of Large Numbers for Dependent Random Variables

yields that ρtn , which is nonnegative and equals (1/bn)
∑

ν≤n Xν , must converge

to 0 a.s. (Here and in the sequel, whenever we mention the Strong Law of Large

Numbers for Dependent Random Variables, we refer to Theorem 32.1.E of Loève

[1978], also quoted in Step M10 of [HM1].) ¤

• Step m11:. limt→∞ Rt (j, k) = 0 a.s.

The proof in [HM1] applies.

3.4. Counterexample

We exhibit an example where the conditions fail and the regrets do not converge

to zero.

Let M > 0 be as large as desired, and 1 > ρ > 0 be as small as desired. We

show that even if we demand that player i’s action have no effect on the strategy

of player −i for the following M − 1 periods after it was played, and that after

M periods the effect be no larger than ρ, yet we can construct an example where

the regrets of player i will not converge to zero almost surely.
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Example 3.3. Consider a two-player game in which the payoff matrix of player

1 is:
L R

T 1 0
B 0 1

Let M > 0 be as large as desired, and 1 > ρ > 0 be as small as desired. Let

player 1 use HMS (2.1), and let player 2 use the following strategy:

Pr
[
s2
t = R | ht

]
=





1 if s2
t−1 = R and s1

t−M = T
1 − ρ if s2

t−1 = R and s1
t−M = B

ρ if s2
t−1 = L and s1

t−M = T
0 if s2

t−1 = L and s1
t−M = B

for all t > M (and arbitrary for t ≤ M). That is, player 2 changes his action with

probability ρ to the worst reply (from the point of view of player 1) to player 1’s

action M periods ago.

Note that in our example for all t, w > 0

∣∣Pr
(
s−i
t+w = s−i | ht+w−1

)
− Pr

(
s−i
t+w = s−i | h′

t+w−1

)∣∣ =

{
0 if w 6= M
ρ if w = M

for any two histories ht+w−1 and h′
t+w−1 such that for every τ < t + w, τ 6= t we

have sτ = s′τ and for τ = t we have s−i
τ = s−i

τ , si
τ 6= si

τ (that is, the two histories

ht+w−1 and h′
t+w−1 differ only in i’s action at time t).

However, O
(

f(M)
g(t)

)
→ 0 for any g such that g → ∞; hence our condition

(3.1) is not fulfilled.

Claim: The regrets of player 1 do not converge to zero with probability 1.

Proof: Suppose that the regrets of player 1 do converge to zero with proba-

bility 1; we shall show that this leads to a contradiction.

For all positive integers t, k > 0 we have

Pr
[
s2
t+k+M = R | s2

t+M = R and s1
t+i = T for i = 1, ..., k

]
= 1,

and

Pr
[
s2
t+k+M = R | s2

t+M = L and s1
t+i = T for i = 1, ..., k

]
= 1 − (1 − ρ)k

(since, once a switch from L to R occurs, s2 remains at R; the probability of no

switch, thus always L, is (1 − ρ)k). Hence

Pr
[
s2
t+k+M = R | s1

t+i = T for i = 1, ..., k
]
≥ 1 − (1 − ρ)k . (3.3)
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The same argument implies that for any positive integer c > k

Pr[s2
t+M+j = R for j = k, ..., c | s1

t+i = T for i = 1, ..., c] ≥ 1 − (1 − ρ)k , (3.4)

since once player 2 is at R he will not switch to L. The same argument obviously

holds for the pair of actions (B, L), replacing T by B and R by L; hence

Pr[s2
t+M+j = L for j = k, ..., c | s1

t+i = B for i = 1, ..., c] ≥ 1 − (1 − ρ)k . (3.5)

Let ε > 0, let k be such that (1 − ρ)k < ε, and let c be such that 2 (M + k) /c <

ε. We divide time into blocks of length c. Let

H1 := {1, 2, ..., c} , H2 := {c + 1, c + 2, ..., 2c} , ... .

Let

Xi :=
1

c

∑

v∈Hi:s1
v=T

[
u1

(
B, s2

v

)
− u1

(
s1
v, s

2
v

)]
, i = 1, 2, 3, ...

(note that |Xi| ≤ 1).9 Similarly, define

Yi :=
1

c

∑

v∈Hi:s1
v=B

[
u1

(
T, s2

v

)
− u1

(
s1
v, s

2
v

)]
, i = 1, 2, 3, ... .

Suppose no change has occurred in player 1’s play in block Hi (denote this event

by H̃i); then by (3.4) and (3.5) we get

E
[
Xi + Yi | H̃i

]
> (1 − ε)2 − ε > 1 − 3ε. (3.6)

Indeed, if the action of player 1 had been T (denote this event by H̃i,T ), then by

(3.4) Pr[s2
t+M+j = R for j = k, ..., c] ≥ 1 − (1 − ρ)k > 1 − ε. Therefore

E
[
Xi + Yi | H̃i,T

]
>

(
c − (M + k)

c
−

M + k

c

)
Pr[s2

t+M+j = R for j = k, ..., c | H̃i,T ]

−
(
1 − Pr[s2

t+M+j = R for j = k, ..., c | H̃i,T ]
)

> (1 − ε)2 − ε > 1 − 3ε.

We can now check the frequency of no change in player 1’s action. The

probability of a change from t to t+1 is either (1/µ) R1
t (T, B) or (1/µ)R1

t (B, T ),

9Since there are only two strategies for player 1 we can conclude that Xi =
(1/c)

∑c

v∈H1

i

[
u

(
B, s2

ti+v

)
− u1

(
s1

ti+v, s2
ti+v

)]
, which is the ith block Hannan [1957] regret,

which in this case coincides with the Hart–Mas-Colell regret.
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hence less than (1/µ) R1
t (T, B) + (1/µ)R1

t (B, T ). Therefore in a block of length

c the probability of a change is no more than

c ·
1

µ
max
t∈Hi

{
R1

t (T, B) + R1
t (B, T )

}
.

Now since R1
t (T, B) and R1

t (B, T ) converge to zero a.s. there exists i0 such that

Pr

[
1

µ
max
t∈Hi

{
R1

t (T, B) + R1
t (B, T )

}
<

ε

c

]
> 1 − ε

for all i > i0 . Hence the probability of a change in player 1’s action in block Hi

is less than c · ε/c · (1 − ε) + ε < 2ε. Therefore

E [Xi + Yi] ≥ E
[
Xi + Yi | H̃i

]
Pr

(
H̃i

)
−

(
1 − Pr

(
H̃i

))

> (1 − 2ε) (1 − 3ε) − 2ε > 1 − 7ε

for all i > i0 . We can easily choose ε such that 1 − 7ε > 0.9; hence the average

satisfies

lim inf
n→∞

E
[
Xn + Yn

]
> 0.9.

But lim infn→∞ E
[
Xn + Yn

]
is less than or equal to limt→∞ R1

t (T, B)+R1
t (B, T ) ,

which contradicts our assumption.

• An interesting question is, what happens if our g (t) does not converge to

infinity but has a subsequence which converges to infinity. Can one still get

convergence of the regrets to zero? (The answer probably depends on how

dense this subsequence is.)

• Another interesting question is, what happens if we do not have f ,g, as in

(3.1) but only require that for any w:

∣∣Pr
(
s−i | ht+w−1

)
− Pr

(
s−i | ht, s

−i
t+1, ..., s

−i
t+w−1

)∣∣ →t→∞ 0.

Can one still get convergence of the regrets to zero?

4. A General Class of Simple Adaptive Procedures

4.1. Introduction

As explained in Section 2.2 above, in [HM2] Hart and Mas-Colell exhibit a class

of adaptive strategies that have a convergence property. Specifically, they define
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a function Λ defined on all R
m except for a closed and convex approachable set

C, which defines “directions” from this set C. Using a strategy which follows Λ

in some sense causes the average payoffs to converge to the set C. Applying this

to the setup of conditional regrets — see [HM2, Section 5.1] — yields strategies

that require the computation of an eigenvector at every step. The question raised

in [HM2] is whether we can find a simple adaptive procedure with reference to Λ,

in the same way as is done [HM1] (which corresponds to the special case of the

l2-potential). In this section we show that the answer to this question is in the

affirmative.

4.2. The Model

Consider a game in strategic form played by a finite set of players N , each

having a finite set of strategies Si. Fix a player i, let mi :=
∣∣Si

∣∣ and Li :=
{
(j, k) : j 6= k and j, k ∈ Si

}
. (From now on we omit i whenever it is obvious

that we are dealing with player i.) Let K ′ be a closed bounded set in R
L contain-

ing in its interior the set of all possible payoffs of player i; we can without loss of

generality assume that 0 ∈ K ′ (as in Section 2.2, we view the vector of regrets of

player i in the one-shot game as his payoff vector). Let K := K ′ + (−K ′); note

that K is compact. Let C ⊆ R
L be a closed convex set10 such that C ⊇ R

L
−. Let

w : R
L → R be defined by w (x) := supy∈C {x · y}. Notice that since C ⊇ R

L
−,

w (x) ≥ 0 if x (j, k) ≥ 0 for all j 6= k, and w (x) = ∞ otherwise. (4.1)

Let Λ and P be as in [HM2, Section 2]; i.e., Λ : R
L\C → R

L, and P : R
L → R

but with the following slightly stronger conditions:11

(D1) Λ is Lipschitz on K\C.

(D2) P is differentiable; ∇P is Lipschitz on K; and ∇P (x) = φ (x) Λ (x) for

almost every x /∈ C, where φ : R
L\C → R++ is a continuous positive function.

(D3) Λ (x) · x > w (Λ (x)) for all x /∈ C.

(D4) Λ can be extended to a Lipschitz function on12 K.

10Using a general set C, rather than R
L
−, allows us to handle strategies like Fudenberg and

Levine’s [1995, 1998, 1999] smooth fictitious play. This will be discussed later in Section 4.5.
11The change is that in both (D1) and (D2) we require Λ and ∇P to be Lipschitz rather than

just continuous, and we have added (D4).
12This added condition is not very strong. In most cases we have a trivial extension to Λ,
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Notice that (D1) and (D2) imply ∇P (x) = φ (x) Λ (x) for every x /∈ C. By

(4.1), (D2), and (D3), for every x /∈ C we have Λ (x) (j, k) ≥ 0 and ∇P (x) (j, k) ≥

0 for all j 6= k; therefore we can w.l.o.g. also assume in (D4) Λ (x) (j, k) ≥ 0 on13

K.

Define ai
t, d

i
t, λ

i
t ∈ R

L by

ai
t (j, k) :=

{
0 if si

t 6= j

ui
(
k, s−i

t

)
− ui

(
j, s−i

t

)
if si

t = j

di
t :=

1

t

t∑

v=1

ai
v

λi
t := Λ

(
di

t

)
.

Notice that λi
t (j, k) ≥ 0 for all j, k. Since ai

t, d
i
t lie in the compact set KL and

Λ is continuous, it follows that λi
t is bounded.

Let µ > 0 be large enough for the following πi
t to be a probability function

such that14 πi
t (j, j) > 0. For every j ∈ Si, let

πi
t (j, k) :=

1

µ
λi

t (j, k) for k 6= j and πi
t (j, j) := 1 −

∑

k∈Si:k 6=j

πi
t (j, k) (4.2)

be the transition probabilities from stage t to t + 1 (we can let the probabilities

πi
0 of the first move si

1 be arbitrary). Notice that these probabilities, the set C,

and the functions Λ and P are defined separately for every different player; for

convenience, we drop the superscript i when it is clear.

Now assume that for every player i′ there is a set Ci′ and functions P i′ and Λi′ .

We show that if all players use these strategies (which are similar to HMS) as in

[HM1], then the regrets of every player i′ will converge to his set Ci′ . Furthermore,

as in Section 3, we show that even if the other players do not follow this strategy,

but change their actions with only slight connection to player i’s actions, then

player i’s regrets converge to Ci.

Theorem 4.1. If every player i uses the strategy given in (4.2), then di
t →t→∞ Ci

a.s. for every player i.

since ∇P is proportional to Λ (notice that ∇P is Lipschitz on K). This condition is needed
since, unlike [HM2], we want a simple procedure in which probabilities are proportional to Λ;
therefore Λ should be defined globally.

13One can take Λ∗ (j, k) := max {0, Λ (j, k)} instead of Λ.
14Any µ greater than maxx∈K

∑
k 6=j

Λ(k,j) (x) will suffice.
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Suppose now that −i does not follow the above procedure but, as in the

previous section, −i plays in a way that given two histories ht and h′
t such that

for every τ 6= t − w we have sτ = s′τ and for τ = t − w we have s−i
τ = s′−i

τ and

possibly si
τ 6= s′iτ , then

∣∣Pr
(
s−i
t+1 = s−i | ht

)
− Pr

(
s−i
t+1 = s−i | h′

t

)∣∣ ≤ f (w)

g (t)
(4.3)

for some functions f, g such that g (t) →t→∞ ∞.

Theorem 4.2. If player i uses strategy (4.2), i.e., Pr
(
si
t+1 = si | ht

)
= πi

t

(
si
t, s

i
)
,

then it is guaranteed that di
t →t→∞ Ci a.s. for any strategies of the other players

satisfying (4.3).

4.3. Proof of Theorem 4.1

Lemma 2.3 of [HM2] shows that there exists a constant c such that

P (x) = c if x ∈ ∂C (= the boundary of C)
P (x) > c if x /∈ C.

Choose ε > 0. We shall show that Pr (lim supP (dt) ≤ c + ε) = 1, and since this

is true for every ε, it follows that Pr (lim supP (dt) ≤ c) = 1, which is equivalent

to dt →t→∞ C a.s., since P is continuous.

Let P1 be as in [HM2, Section 2.2], namely P1 (x) := [P (x) − c]2 for every

x /∈ C and P1 (x) := 0 for x ∈ C. Notice that

∇P1 (x) = 2∇P (x) [P (x) − c] .

Let Q : R
L → R be as in [HM2, Section 2.2, Proof of Theorem 2.1], i.e.,

Q (x) ≥ 0 for all x ∈ R
L, and Q (x) = 0 if and only if P1 (x) ≤ ε; (4.4)

∇Q (x) · x − w (∇Q (x)) ≥ Q (x) ; and (4.5)

∇Q (x) =

{
0, if Q (x) = 0,

r (P1 (x) − ε)r−1 2∇P (x) [P (x) − c], otherwise.
(4.6)
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Let y (x) := r [P1 (x) − ε]r−1
+ 2 [P (x) − c]; now by (4.4) we can write

∇Q (x) = y (x) · ∇P (x) . (4.7)

Notice that by (4.1) it follows that (4.5) can be written as:

∇Q (x) (j, k) ≥ 0 for all j 6= k, and ∇Q (x) · x ≥ Q (x) . (4.8)

Let qt := ∇Q (dt). Notice that by (D2) and the fact that qt = 0, λt = 0 for all

x ∈ C it follows that

qt = λt · y (dt) . (4.9)

In the sequel, the present proof will be divided into steps similar to those of

the Proof of the Main Theorem in [HM1, Appendix].

4.3.1. Steps of the Proof

• Step N1:

(i) E [(t + v) Q (dt+v) | ht] ≤ tQ (dt) +
∑v

w=1 E [at+w | ht] · qt + O
(

v2

t

)
.

(ii) (t + v) Q (dt+v) − tQ (dt) = O (v) .

Proof:

Q (dt+v) = Q

(
t

t + v
dt +

1

t + v

v∑

w=1

at+w

)

= Q (dt) +

(
t

t + v
dt +

1

t + v

v∑

w=1

at+w − dt

)
· ∇Q (dt)

+O

(
t

t + v
dt +

1

t + v

v∑

w=1

at+w − dt

)2

.

The second equality follows since ∇Q is Lipschitz15 on K and hence there exists

0 ≤ t ≤ 1 such that

Q (x + y) = Q (x) + y · ∇Q (x + ty)

≤ Q (x) + y · ∇Q (x) + ‖y‖ k ‖ty‖ = Q (x) + y · ∇Q (x) + O
(
‖y‖2

)
.

15The Lipschitz constant depends on ε, but this does not affect the proof.
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By (4.8) ∇Q (dt) · dt ≥ Q (dt), hence

(t + v) Q (dt+v) = (t + v)Q (dt) +

(
v∑

w=1

(at+w − dt)

)
· ∇Q (dt) + O

(
v2

(t + v)

)

≤ tQ (dt) +

v∑

w=1

at+w · qt + O

(
v2

t + v

)
.

Taking expectation yields (i), and since O
(

v2

(t+v)

)
≤ O (v) and at+w,qt are bounded

we get (ii). ¤

Define

αt,w

(
j, s−i

)
:=

∑

k∈Si

πi
t (j, k) Pr

[
st+w =

(
k, s−i

)
| ht

]
− Pr

[
st+w =

(
j, s−i

)
| ht

]
.

• Step N2:

E [at+w | ht] · qt = µy (dt) ·
∑

(j,s−i)∈Si×S−i

αt,w

(
j, s−i

)
ui

(
j, s−i

t

)
.

Proof: By the same method as in Step M2 of [HM1] we get:

E [at+w | ht] · λt =
∑

(j,s−i)∈Si×S−i

αt,w

(
j, s−i

)
ui

(
j, s−i

t

)

and (4.9) yields the result. ¤

• Step N3:

(i) dt+v (j, k)− dt (j, k) = O
(

v
t

)
.

(ii) qt+v (j, k) − qt (j, k) = O
(

v
t

)
.

(iii) λt+v (j, k) − λt (j, k) = O
(

v
t

)
.

(iv) πt+v (j, k) − πt (j, k) = O
(

v
t

)
.

Proof: Since dt+v = dt + 1
t+v

∑v
w=1 (at+w − dt) and (at+w − dt) is bounded,

(i) is true. Since by (4.6) ∇Q is Lipschitz on the compact set K, (ii) follows. The

fact that Λ is Lipschitz yields (iii) and (iv). ¤

• Steps N4–N7 are exactly the same as Steps M4–M7 in [HM1] based on

N3(iv).

• Step N8: E [(t + v)Q (dt+v) | ht] ≤ tQ (dt) + O
(

v3

t + v
1
2

)
.
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Proof: Steps N5 and N7 imply that αt,w

(
j, s−i

)
= O

(
w2

t + w−0.5
)
. The

fact that K is compact and that y is continuous yields that y is bounded on

K. Therefore the formula of Step N2 yields E [at+w | ht] · qt = O
(

w2

t + w−0.5
)
.

Summing over w and Step N1(i) yield the result. ¤

Let tn :=
⌊
n5/3

⌋
, and let vn := tn+1 − tn = O

(
n2/3

)
.

• Step N9: E
[
tn+1Q

(
dtn+1

)
| htn

]
≤ tnQ (dtn) + O

(
n1/3

)
.

Proof: Immediate by Step N8. ¤

• Step N10 : limn→∞ Q (dtn) → 0 a.s.

Proof: Define bn := tn ≈ n5/3 and Xn := bnQ (dtn) − bn−1Q
(
dtn−1

)
.

By Step N1(ii) we have |Xn| ≤ O (vn) = O (tn/n), thus

∑

n

1

b2
n

Var (Xn) =
∑

n

O

(
1

n2

)
< ∞.

Next, by Step N9 we have

1

bn

∑

ν≤n

E [Xν | X1, ..., Xν−1] ≤ O


n−5/3

∑

ν≤n

ν1/3


 = O

(
n−1/3

)
→ 0.

Applying the Strong Law of Large Numbers for Dependent Random Variables

yields
1

bn

∑

ν≤n

Xν = Q (dtn) →n→∞ 0

a.s. ¤

• Step N11:

(i) limt→∞ Q (dt) → 0 a.s.

(ii) Pr (lim supP (dt) ≤ c + ε) = 1.

Proof: Since for tn < t ≤ tn+1 we have t−tn
tn

≤ vn

tn
= O

(
n−1

)
, by N3 we get

Q (dt) →t→∞ 0 a.s., and by (4.4) and the fact that Q and P are continuous it

follows that Pr (lim supP (dt) ≤ c + ε) = 1.
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4.4. Proof of Theorem 4.2

It is easy to see that all the claims in Section 3.3.1 about f, g and the histories

h, h′ hold also in this case. The Proof of Theorem 4.1 can be used for the Proof of

Theorem 4.2; the only changes necessary are precisely those that were needed in

the Proof of Theorem 3.1 of Section 3. (We use lowercase letters for the steps in

this proof.) Namely, in Step n4 define ŝt+w differently. Here ŝt+w will be defined

by ŝt := st, and the transition probabilities are:

Pr (ŝt+w = s | ŝt, ..., ŝt+w−1) = πi
t

(
ŝi
t+w−1, s

i
)
·Pr

(
s−i
t+w = s−i | ht, ŝ

−i
t+1, ..., ŝ

−i
t+w−1

)

and we get results similar to m4-m7 of Section 3. In Step n8 we get

E [(t + v) Q (dt+v) | ht] ≤ tQ (dt) + O

(
f (v) v2

g (t)
+ v

1
2

)
,

similar to m8.

We now need Steps n9.1 and n9.2 similar to m9.1 and m9.2. Specifically:

• Step n9.1: E
[
tn+1Q

(
dtn+1

)
| htn

]
≤ tnQ (dtn) + O

(
v2

nf(vn)
g(tn) + v

1/2
n

)
.

This follows immediately from n8.

Define f̃ (w) := w2f (w). (Notice that f̃ has an inverse function, denoted by

f̃−1.) Let an := 1
2 f̃−1 (g (n)), and let tn := ⌈nan⌉; (vn = tn+1 − tn).

• Step n9.2:

(i) an is a nondecreasing sequence, and an →n→∞ ∞.

(ii) vn

tn
= O

(
n−1

)
.

(iii) f̃ (vn) /g (tn) = O (1) .

(iv) v2
nf(vn)
g(tn) + v

1/2
n = O

(
a

1/2
n

)
.

The only thing different from Step m9.2 is (iv), which follows immediately

from (iii) and the fact that v = O (an) (proved in Step m9.2 ).

The rest of the proof is the same16 as in Theorem 4.1.

16In Step n10 we get (with bn = tn)

∑

n

Var (Xn) /b2
n =

∑

n

O
(
n−2) < ∞
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4.5. Conditional Smooth Fictitious Play

Fictitious play is a strategy where a player plays a best reply to the empirical

distribution of play zt. It may be viewed as a regret-based strategy, corresponding

to the l∞-potential (cf. [HM2, Section 4.1]). However, this strategy does not

satisfy the above conditions, specifically condition (D1): Λ is not continuous.

Fudenberg and Levine [1995, 1998] present a smoothing of fictitious play. Let

σi
t+1 ∈ ∆

(
Si

)
denote the (possibly mixed) choice of player i at time t + 1.

Fictitious play requires

σi
t+1 ∈ argmax

σi∈∆(Si)

{
ui

(
σi, z−i

t

)}

(note that the maximizer is not necessarily unique). In smooth fictitious play, we

have instead

σi
t+1 = argmax

σi∈∆(Si)

{
ui

(
σi, z−i

t

)
+ ν

(
σi

)}

where ν ≡ νi is a smooth strictly differentiably concave function with gradient

vector approaching infinite length as one approaches the boundary of ∆(Si);

hence, the maximizer is unique.

In the conditional case (Fudenberg and Levine [1998, 1999]), instead of z−i
t

one considers for every j ∈ Si the distribution of play zi
t(j) only in those periods

where i played j, i.e.,

z−i
t (j)(s−i) :=

1

t

∣∣{τ ≤ t : sτ = (j, s−i)}
∣∣ .

Since ui is linear,

argmax
σi∈∆(Si)

{
ui

(
σi, z−i

t (j)
)

+ ν
(
σi

)}
= argmax

σi∈∆(Si)

{
σi · Di

t(j, ·) + ν
(
σi

)}

by Steps n1(ii) and n9.2(ii). The following inequality

1

bn

∑

ν≤n

E [Xν | X1, ..., Xν−1] ≤ O


n−1a−1

n

∑

ν≤n

a0.5
ν




we get by Steps n9.1 and n9.2(iv), and since an is increasing
∑

ν≤n

a0.5
ν ≤ na0.5

n ;

hence
1

bn

∑

ν≤n

E [Xν | X1, ..., Xν−1] → 0.
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(we write σi · Di
t(j, ·) for

∑
k 6=j σi (k) · Di

t (j, k)).

Therefore we define “conditional smooth fictitious play” as the Hart–Mas-

Colell conditional-regret-based strategy (4.2), with Λ (x) := ∇P (x), where

P (x) :=
∑

j∈Si

max
σi

j∈∆(Si)





∑

k∈Si,k 6=j

σi
j(k) · x (j, k) + ν(σi

j)



 , for all x ∈ R

L (4.10)

is the corresponding potential. It follows immediately from the definition of a

Λ-strategy in [HM2, Section 2.1] that the argmax is a Λ-strategy. Notice that

argmaxσi
j∈∆(Si)

{
σi

j · x (j, ·) + ν(σi
j)

}
is a smooth (and in particular twice differ-

entiable) function, as shown by Fudenberg and Levine [1999, Section 3]; thus P

and Λ satisfy properties (D1)–(D4) for17 C := {x | P (x) ≤ m ‖ν‖} (again, see

[HM2, Section 4.1]).

Now, by our results we get that if player i plays conditional smooth fictitious

play as defined above, and for the other players (4.3) holds, then all the conditional

regrets of player i will in the limit be at most m ‖ν‖ (a.s.). Formally, this can be

written, according to Fudenberg and Levine’s notations, as:

Proposition 4.3. The strategy (4.2), where πi
t are transition probabilities given

by the conditional smooth fictitious play potential (4.10), is mi
∥∥νi

∥∥-calibrated

for any strategies of the other players satisfying (4.3). Moreover, if all players

play this way, then the empirical distribution of play zt converges a.s. to the set

of correlated ε-equilibria, where ε = maxi∈N mi
∥∥νi

∥∥ .

The difference between our strategy and that of Fudenberg and Levine is that

we do not have to evaluate eigenvectors, as do Fudenberg and Levine, but our

probabilities are just proportional to Λ.
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