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Abstract

We revisit the well-known result that asserts that an increase in the degree of one’s risk
aversion improves the position of one’s opponents. To this end, we apply Yaari’s dual
theory of choice under risk both to Nash’s bargaining problem and to Rubinstein’s game of
alternating offers. Under this theory, unlike under expected utility, risk aversion influences
the bargaining outcome only when this outcome is random, namely, when the players are
risk lovers. In this case, an increase in one’s degree of risk aversion increases one’s share
of the pie.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

One of the results most frequently quoted in the bargaining literature asserts
that increasing risk aversion reduces a player’s share in the bargaining outcome
and increases that of his opponent. This result1 has appeared in different variations
including both the cooperative and the non-cooperative frameworks (see Kannai,
1977; Khilstrom et al., 1981; Sobel, 1981; Thomson, 1988; Osborne, 1984; and
Roth, 1985, 1989).
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1 Henceforth we will refer to the result mentioned above as “the result.”
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This result has gained popularity partly because it seems very intuitive. The
assumptions under which the result holds, however, are somewhat restrictive.
For instance, Roth and Rothblum (1982) (see also Safra et al., 1990) show that
if the set of feasible agreements includes lotteries, then an increase in one’s
opponent’s risk aversion might be disadvantageous. Safra and Zilcha (1993) show
that if the agents’ risk preferences belong to a wide family of non-expected utility
preferences, then the effect of changes in the degree of risk aversion on the
bargaining outcome is not conclusive. In particular, they show an example where
an agent is hurt by an increase of his opponent’s risk aversion.

Even under the assumptions where the result holds, there are some problems
with its interpretation. Risk aversion affects the bargaining outcome in cases
(like the framework of the Nash bargaining problem) where the underlying
outcomes involve no lotteries and thus no risk at all. Indeed, Roth (1985) uses
the term “strategic risk” when referring to these cases. He interprets this risk as
arising from each player’s ignorance of his opponent’s actions, thus resulting in a
subjective probability that no agreement will be reached during the negotiations
that are underway. But these probabilities are outside the model and their effect
on the bargaining outcome is therefore dubious.

When the underlying outcomes include lotteries, there is still a problem
with the interpretation of the result. Consider a situation where two risk-averse
expected utility maximizers bargain over one perfectly divisible dollar. Even when
the agents can agree on a random division of the money, the Nash bargaining
solution selects a non-random division. Since the outcome in this case is not
random, one would expect that changes in the degree of the agents’ risk aversion
did not affect the outcome. As is well known, however, the Nash bargaining
solution awards increasing shares of the dollar to the agent whose opponent
becomes more risk-averse. The result is even more striking when we consider
the case of two risk-loving agents who bargain over a dollar. In this case, the
Nash bargaining solution selects the random outcome that assigns the whole dollar
to each of the agents with probability 1/2, independently of their degree of risk
loving. In this case, even though the outcome is a non-degenerate lottery, changes
in the degree of risk loving have no effect whatsoever on the outcome.

Instead of considering, as Safra and Zilcha (1993) do, a large class of non-
expected utility preferences, this paper restricts attention to one particular model
of choice under risk. Specifically, we analyze the comparative statics of changes
in risk aversion when agents’ preferences follow the dual theory of choice under
risk proposed by Yaari (1987). Under this theory, the objects of choice are lotter-
ies over monetary outcomes. The termdual refers to the feature that when this
theory is compared to the expected utility theory, the roles of monetary outcomes
and probabilities are reversed. In particular, while the expected utility functional
is linear in probabilities and not necessarily linear in monetary outcomes, the dual
theory utility functional is linear in monetary outcomes and not necessarily linear
in probabilities.
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By restricting attention to the dual theory we are able to obtain some positive
results, which can be compared to the predictions of the model with expected
utility maximizers. Further, these results do not suffer from the interpretational
difficulties that we mentioned above. Another reason for concentrating on the dual
theory is that it proved to be useful in economic applications (see, for example,
Demers and Demers, 1990; Hadar and Seo, 1995; and Volij, 2002). We believe
that the prominence of expected utility theory is derived not only from the fact
that it is supported by an elegant axiomatic characterization (a property that is
shared by the dual theory) but also from its usefulness in economic applications.

Risk aversion is usually defined as aversion to mean-preserving spreads. Under
expected utility maximization, this is equivalent to the concavity of the von
Neumann–Morgenstern utility function. Under the dual theory, risk aversion is
equivalent to the convexity of the “dual function” with which probabilities are
evaluated. As a result, the concept of risk aversion is not entangled with the
agent’s attitude towards wealth. In particular, preferences over sure outcomes
give no information about the agent’s degree of risk aversion. One immediate
consequence is that if the underlying set of allocations involves no lotteries, the
bargaining solution will be invariant to changes in risk attitude. As we pointed out
earlier, this is not the case under the expected utility framework.

If the dual theory resulted in essentially the same predictions concerning the
relation between risk aversion and bargaining outcomes, there would be little
point in carrying out this exercise. The same would be true if the predictions were
ambiguous. The interesting message, however, is that whenever changes in risk
aversion affect the bargaining outcome according to the dual theory, they affect it
in precisely the opposite direction compared with expected utility theory. Namely,
more risk-loving reduces a player’s payoff and increases that of his opponent.
Our analysis includes both Nash’s (cooperative) framework and Rubinstein’s non-
cooperative framework. In both cases, the set of underlying bargaining outcomes
is defined in the standard way, i.e., as consisting of all allocations of a divisible
physical unit (money) plus lotteries on such allocations.

The paper is organized as follows. Section 2 gives a brief review of Yaari’s
dual theory. After presenting a simple bargaining situation in Section 3, Section 4
formulates the corresponding Nash bargaining problem in terms of this theory.
Our first result argues that if both players are risk-averse, then changes in risk
aversion do not affect the Nash bargaining allocation. Then we take up the case of
risk-loving players. We show that if both players are risk-loving, players who
become more risk-loving are worse off while their opponents are better off.
Section 5 considers the strategic framework where two impatient players play a
game of alternating offers. The outcome of this game is consistent with the results
of the cooperative approach. Finally, Section 6 shows that another commonly used
strategic model, one where the players are not impatient but face a probability of
a negotiations breakdown, yields very different results. Moreover, its predictions
are not consistent with the outcomes of the cooperative approach. One should note
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that, in contrast, the two strategic models are strategically equivalent if the players
satisfy the expected utility axioms.

2. A short review of the dual theory of choice under risk

Let r be a random variable that takes values in the unit interval. Denote byGr

its decumulative distribution function (DDF), which is defined by

Gr(x)= Pr{r > x}, 0 � x � 1.

It is known thatGr is non-increasing, right continuous and satisfiesGr(1)= 0.
The random variabler represents a lottery over monetary outcomes. Two random
variables,r and s, are comonotonic if for every pair of states,ω and ω′,
(r(ω) − r(ω′))(s(ω) − s(ω′)) � 0. In words,r ands are comonotonic if, when
going from stateω to ω′ in Ω , both random variables move (weakly) in the same
direction.

The primitive of the dual theory is the set∆ of all non-increasing, right-
continuous functionsG : [0,1] → [0,1] that satisfy G(1) = 0. This set is
interpreted as the set of all DDF’s associated with some random variable defined
on some sufficiently rich probability spaceΩ and taking values in[0,1].

Let 
 be a complete preference relation on∆. Yaari (1987) imposes the
following axioms on
:

1. Continuity (with respect toL1-convergence);
2. Monotonicity: ifGr �Gs thenGr 
 Gs ; and
3. Dual independence: ifr, s, and t are pairwise comonotonic andGr 
 Gs ,

thenGαr+(1−α)t 
 Gαs+(1−α)t .

Continuity is a technical requirement. Monotonicity requires that ifGr

stochastically dominatesGs then Gr 
 Gs . The dual independence axiom is
where the dual theory departs from the traditional expected utility theory. It deals
with portfolios of comonotonic random variables. Dual independence requires
that wheneverr, s, and t are pairwise comonotonic andGr 
 Gs , then any
portfolio containing a proportionα of r and 1−α of t should be weakly preferred
to a portfolio containingα of s and 1− α of t .

Yaari (1987) uses the above axioms in the following representation theorem.

Theorem 1. A complete preference relation 
 satisfies continuity, monotonicity,
and dual independence if and only if there exists a continuous and non-decreasing
real function g, defined on the unit interval, such that for all Gr and Gs belonging
to ∆,

Gr 
Gs ⇔
1∫

0

g
(
Gr(t)

)
dt �

1∫
0

g
(
Gs(t)

)
dt .

Moreover, the function g is unique up to a positive affine transformation.
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The functiong is analogous to the von Neumann–Morgenstern utility function
and, in a sense, we can say thatg “represents” the agent’s preferences.
Graphically, an agent whose preferences are described by the dual theory
evaluates random variables according to the area under a suitable transformation
(the functiong) of their DDF.

Given a functiong that represents an agent’s preference, for any random
variabler, let

U(r)=
1∫

0

g
(
Gr(x)

)
dx.

Theorem 1 says that agents will choose among random variables so as to
maximizeU . Further, Yaari (1987) also shows thatU is “linear” in payments.
Formally, leta > 0 andb be two real numbers and letv andav+b be two random
variables taking values in the unit interval. ThenU(av + b)= aU(v)+ b.

One of the appealing features of the dual theory is that, unlike expected utility
theory, the agent’s attitude towards risk is not entangled with his attitude towards
wealth. More specifically, under the dual theory, marginal utility of wealth is
constant and this feature is consistent with any attitude towards risk. In particular,
Yaari (1987) shows that a preference relation
 that satisfies the dual theory’s
axioms exhibits risk aversion if and only if the functiong that represents
 is
convex. In this paper, we will be interested in the effect of changes in the degree of
an agent’s risk aversion on bargaining outcomes. For this purpose, it is necessary
to understand what it means for one agent to bemore risk-averse than another.
Following Yaari (1986), since risk aversion is characterized by the convexity of
the functiong, it would be natural to define an agent to be more risk-averse than
another if and only if the former’sg is more convex than the latter’s.

Definition 1. Let 
1 and
2 be two preference relations that satisfy the dual
theory’s axioms and that are represented by the functionsg1 andg2, respectively.
We say that
1 is more risk-averse than
2 if and only if there exists a convex
functionh, defined on the unit interval, such thatg1 = h ◦ g2.

For p ∈ [0,1] let 〈1,p〉 denote the lottery that assigns 1 with probabilityp

and 0 with probability 1− p. The above definition is equivalent to requiring that
for every random variabler, if 〈1,p1〉 ∼1 r and〈1,p2〉 ∼2 r, thenp1 � p2. In
words, for every lotteryr, 1’s “probability equivalent” is at least as high as 2’s
“probability equivalent.” Under the dual theory, this is stronger than requiring
that for all lotteries, 1’s certainty equivalent be lower than 2’s certainty equivalent.
Under expected utility, however, this is a weaker requirement.2

2 The interested reader should consult Yaari (1986) for various and equivalent interpretations of
Definition 1.
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The characterization of the risk attitude by means of the convexity of
a univariate non-decreasing function makes it relatively easy to analyze the effect
of risk aversion on the outcome of bargaining situations. This is done in the
following sections.

3. The bargaining situation

Two individuals bargain over one unit of a single commodity (money). Assume
that both bargainers’ preferences over risky prospects satisfy the axioms of the
dual theory of choice under risk and are represented by the functionsf andg,
respectively. Without loss of generalityf and g are chosen so thatf (0) =
g(0) = 0 andf (1)= g(1)= 1.

Any non-negative division of the single commodity is feasible if both agents
agree on it. Otherwise they get 0. As a result, the set of physical outcomes is

X = {
(x1, x2): x1 + x2 � 1, x1, x2 � 0

}
,

and the disagreement physical outcome isD = (0,0).
We shall assume that the bargainers are not constrained to agree on certain

(as opposed to random) outcomes, but that they can agree upon any lottery
over elements ofX. Let (Ω,B, λ) be the probability space that consists of the
unit square, its Borel sets and the Lebesgue measure. Alottery is an random
variable� :Ω → X that assigns one physical outcome to each elementω ∈ Ω .
Note that we can think of a lottery� as two random variables(�1, �2) such that
�i :Ω → [0,1] and �1(ω) + �2(ω) � 1 for all ω ∈ Ω . These are the random
variables of each of the agent’s payoffs. We shall denote byF� the decumulative
distribution function of the first agent’s payoffs and byG� the DDF of the
second agent’s payoffs. Formally,F�(t) = λ({ω ∈Ω : �1(ω) > t}) andG�(t) =
λ({ω ∈Ω : �2(ω) > t}). The set of lotteries will be denoted byL. Consequently,
the utility levels that the agents get from lottery� are given, respectively, by

U1(�)=
1∫

0

f
[
F�(t)

]
dt and U2(�)=

1∫
0

g
[
G�(t)

]
dt . (1)

A lottery � ∈L is efficient if there is no other lottery�′ ∈ L that is weakly preferred
to � by both agents and strictly preferred to� by at least one agent. For the record,
note that agent 1’s and 2’s expected monetary payoffs associated with a given
lottery,�, are given by

1∫
0

F�(t)dt and

1∫
0

G�(t)dt,
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respectively. Moreover, if � is an efficient lottery, then
∫ 1

0 F�(t)dt +∫ 1
0 G�(t)dt = 1.

4. The cooperative approach

In this section, we analyze the effect of changes in the agents’ degree of
risk aversion on the outcome of a simple bargaining problem, when the agents’
preferences satisfy the axioms of the dual theory of choice under risk. Recall that
Nash (1950) defined abargaining problem to be a pair〈S,d〉 whereS is a compact
convex subset ofR2 such thatd ∈ S and there is a points ∈ S such thats � d .
The setS is the set of feasible utility pairs andd is the utility pair that coresponds
to the disagreement outcome. In our case the bargaining problem is given by the
pair 〈S,d〉, where

S = {(
U1(�),U2(�)

)
: � ∈L

}
and d = (

U1(0,0),U2(0,0)
) = (0,0).

It follows from the linearity and monotonicity of preferences in payments that
the setS is comprehensive, that is, ifs ∈ S and 0� s′ � s thens′ ∈ S. Also, since
Ui(�) ∈ [0,1] for i = 1,2, S is bounded. Using Helly’s selection theorem and
the fact thatf andg are continuous functions, it can be shown thatS is closed
as well. Further, given two lotteries�1 = (�1

1, �
1
2) and�2 = (�2

1, �
2
2), we can find

two lotteries�̂1 = (�̂1
1, �̂

1
2) and�̂2 = (�̂2

1, �̂
2
2) such that�̂1

i and�̂2
i are comonotonic,

for i = 1,2 and such thatF�j = F
�̂j

andG�j = G
�̂j

, for j = 1,2. Therefore,

Ui(�̂
j )=Ui(�

j ), for i, j = 1,2. Consider the lottery�∗ = α�̂1 + (1−α)�̂2. Since
�̂1 and �̂2 are comonotonic, we haveUi(�

∗) = αUi(�̂
1) + (1 − α)Ui(�̂

2). This
shows thatS is convex. Therefore,〈S,d〉 is indeed a bargaining problem.

A bargaining solution is a function that takes a bargaining problem〈S,d〉 as an
input and returns a point inS. TheNash bargaining solution is the functionN that
returns the points∗ = (s∗

1, s
∗
2) ∈ S that satisfiess∗ � d and(s∗

1 − d1)(s
∗
2 − d2) �

(s1 − d1)(s2 − d2) for all s = (s1, s2) ∈ S with s � d . Nash (1950) shows thatN
is the only bargaining solution that satisfies the properties of Pareto optimality,
symmetry, independence of irrelevant alternatives, and invariance with respect
to positive affine transformations. Pareto optimality requires that no feasible
agreement is preferred by both agents to the selected agreement. Symmetry
dictates that the selected outcome yield the same utility level for both agents
whenever the problem is symmetric, namely whenever one cannot distinguish
one agent from the other by just looking at the problem〈S,d〉. Independence
of irrelevant alternatives requires that the selected outcome not change if the
feasible alternatives are reduced to a smaller set that still contains the selected
outcome. Lastly, invariance requires that if〈S′, d ′〉 is obtained from〈S,d〉 by
means of the transformationssi → αisi + βi , for i = 1,2, whereαi > 0 and
βi ∈ R, thens∗

i
′ = αis

∗
i +βi , for i = 1,2, wheres∗′ ands∗ are the points selected
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for 〈S′, d ′〉 and〈S,d〉, respectively. This axiom is motivated by the idea that the
selected outcome should depend only on the preferences of the players and not on
their utility representations. Recall that two von Neumann–Morgenstern utility
functions represent the same expected utility preferences if and only if one is a
positive affine transformation of the other. Therefore〈S,d〉 and 〈S′, d ′〉 can be
interpreted as the images of the feasible agreements and disagreement outcomes,
under two pairs (one for each agent) of equivalent utility representations. Note,
however, that the invariance axiom dictates thats∗

i
′ = αis

∗
i + βi , for i = 1,2,

even if the transition from〈S,d〉 to 〈S′, d ′〉 is not due to a change in the utility
representations but to a more significant change in the feasible agreements. We
shall elaborate on this soon after we give the motivation of the invariance axiom
under the dual preferences.

The axioms of Pareto optimality, symmetry and independence of irrelevant
alternatives are uncontroversial, in the sense that if they are reasonable when
agents’ risk preferences satisfy the von Neumann–Morgenstern axioms, they
are also reasonable when agents satisfy Yaari’s axioms. For instance, if it is
reasonable that a bargaining solution should not select inefficient outcomes
in general, the same requirement remains reasonable when the agents’ risk
preferences satisfy the dual theory axioms. The invariance axiom is the only one
that requires some justification under the dual theory. Recall that according to
Yaari’s representation theorem, the agents’ dual functionsf andg are unique up
to positive affine transformations. Further, iff ′ = a1f + b1 andg′ = a2g + b2
wherea1 anda2 are positive reals and,b1 andb2 are arbitrary numbers, then

U ′
1(�) =

1∫
0

f ′(F�(t)
)
dt = a1

1∫
0

f
(
F�(t)

)
dt + b1 = a1U1(�)+ b1 and

U ′
2(�) =

1∫
0

g′(G�(t)
)
dt = a2

1∫
0

g
(
G�(t)

)
dt + b2 = a2U2(�)+ b2.

As a result, the bargaining problem〈S′, d ′〉 where

S′ = {(
U ′

1(�),U
′
2(�)

)
: � ∈ L

}
and d ′ = (

U ′
1(0,0),U

′
2(0,0)

)
is obtained from〈S,d〉 where

S = {(
U1(�),U2(�)

)
: � ∈ L

}
and d = (

U1(0,0),U2(0,0)
)

by means of the transformationss → ais + bi for i = 1,2. In other words,
〈S,d〉 and 〈S′, d ′〉 can be interpreted as the images of the feasible agreements
and disagreement outcomes, under two pairs (one for each agent) of equivalent
cardinal representations. Therefore, if we would like a bargaining solution to
depend on the agents’ risk preferences but not on their respective cardinal
representations, the bargaining solution should satisfy the axiom of invariance
to positive affine transformations.
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We said above that the invariance axiom dictates thats∗ ′
i = αis

∗
i + βi , for

i = 1,2, even if the transition from〈S,d〉 to 〈S′, d ′〉 is not due to a change
in the utility representations but to a more significant change in the feasible
agreements.3 To be specific, consider a situation in which two agents bargain
over 50 (perfectly divisible) poker “chips.” Assume that each chip awards its
owner $0.01, and that both agents’ preferences satisfy the dual theory axioms.
In case of disagreement, both agents get no chips. This situation induces a
bargaining problem〈S,d〉. Consider now a similar situation where both agents
bargain over the same 50 chips but now, agent 2 gets $0.02 for each chip while
agent 1 still gets $0.01 per chip. Given that the dual preferences are linear
in money, the new situation induces a bargaining problem〈S′, d ′〉 whereS′ =
{(s′

1, s
′
2): (s′

1, s
′
2) = (s1,2s2), for some(s1, s2) ∈ S} and (d ′

1, d
′
2) = (d1,2d2).

Since the bargaining problem〈S′, d ′〉 is obtained from〈S,d〉 by means of a
positive affine transformation, any bargaining solution that satisfies the invariance
axiom selects the same division of chips in both situations. One could argue
that this result is reasonable because preferences are linear in money prices. The
motivation of the invariance axiom, however, has nothing to do with the above
change in the bargaining situation because in both situations the same cardinal
representations of the agents’ preferences were used. In any case, the invariance
axiom implies that in both situations the division of the chips be the same.

This feature of the invariance axiom, of having stronger implications than
just the ones suggested by its motivation, is not related to the fact that in the
above example agents have dual preferences. One can easily build a dual example
that shows that the invariance axiom has analogous consequences under expected
utility. To see this, assume again that 2 agents bargain over the same 50 chips.
Now, as opposed to the previous situation, both agents are expected utility
maximizers. Further, each chip awards its owner not $0.01 but a 1% chance
of winning $1. That is, if an agent getsx chips, he is awarded a lottery that
awards $1 with probabilityx/100 and $0 with the complementary probability.
Normalizing utility so thatui(0) = 0 andui(1) = 1, for i = 1,2, we get that the
set of feasible utilities isS = {(s1, s2): s1 + s2 � 0.50} and that the disagreement
point is d = (0,0). Now, consider a similar situation where agent 2 gets a 2%
chance of winning the dollar for each chip he gets while agent 1 gets 1% as
before. The corresponding utilities possibilities set isS′ = {(s′

1, s
′
2): (s′

1, s
′
2) =

(s1,2s2), for some(s1, s2) ∈ S} and again, any bargaining solution that satisfies
invariance should select the same division of the chips in both situations. One
could argue that this result is reasonable because preferences are linear in
probabilities. The above change in the bargaining situation, however, has nothing
to do with the motivation of the axiom because there has been no change in the
cardinal representations of the agents’ preferences.

3 We thank an anonymous referee for suggesting this discussion.
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Summarizing, the axiomatic foundation of the Nash bargaining solution is as
justified in the context of the dual theory as it is in the context of expected utility.
Therefore, we can now turn to the analysis of changes in risk aversion on the
bargaining outcomes.

4.1. The case of risk-averse agents

When the agents are risk-averse, bothf and g are convex functions. As
a result, we have the following proposition.

Proposition 1. Assume that both agents are risk-averse. Then S = X. Further,
if in addition one agent is strictly risk-averse, then a lottery is efficient only if it
assigns probability one to a certain outcome.

Proof. By definitionX ⊆ S. We shall show thatS ⊆ X as well. Let(s1, s2) ∈ S.
Then there is a lottery� ∈L such that

s1 =
1∫

0

f
(
F�(t)

)
dt and s2 =

1∫
0

g
(
G�(t)

)
dt .

Sincef � 0 andg � 0, we have that(s1, s2) � (0,0). Let

s′
1 =

1∫
0

F�(t)dt and s′
2 =

1∫
0

G�(t)dt .

Namely, s′
1 and s′

2 are the expected monetary payoffs that lottery� awards to
agent 1 and agent 2, respectively. Therefore,(s′

1, s
′
2) ∈ X. But since both agents

are risk-averse,f andg are convex functions, which implies thats1 � s′
1 and

s2 � s′
2. SinceX is comprehensive,(s1, s2) ∈ X. This proves the first part of the

claim.
Assume now that� is an efficient lottery. Then, sinceS =X we have

1= s′
1 + s′

2 � s1 + s2 = 1.

Consequently, ass1 � s′
1 ands2 � s′

2, we have

s1 =
1∫

0

f
(
F�(t)

)
dt =

1∫
0

F�(t)dt = s′
1 and

s2 =
1∫

0

g
(
G�(t)

)
dt =

1∫
0

G�(t)dt = s′
2. (2)
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Assume now that one agent is strictly risk-averse. Without loss of generality,
assume that it is agent 1. Then it follows from Eq. (2) thatf (F�(t)) = F�(t)

for all t ∈ [0,1], which in turn implies thatF�(t) is either 0 or 1, that is,� is a
degenerate lottery.✷

As an immediate corollary of Proposition 1, we obtain the following theorem.

Theorem 2. Let 〈S,d〉 be the bargaining problem induced by two risk-averse
agents. The Nash bargaining solution awards a utility level of 1/2 to each agent.
In particular, changes in the degree of risk aversion do not affect the outcome.

Note that when both players are risk-averse, the only agreement that yields
the utility pair (1/2,1/2) is equal division with certainty. Since the outcome
recommended by the Nash bargaining solution does not involve randomness, it
is perfectly reasonable that the degree of agents’ risk aversion has no influence.
An increase in the agents’ risk aversion means that lotteries are less attractive.
But since, by Proposition 1, when agents are risk-averse every utility pair that
can be obtained by means of a lottery can also be obtained by means of a certain
outcome, changes in risk aversion cannot have any effect on the final agreement.

Theorem 2 should be compared with Theorem 1 in Khilstrom et al. (1981)
where it is shown that when the two agents are risk-averse expected utility
maximizers, an increase in the degree of risk aversion of one agent is beneficial
to the opponent. This is true even though the utility pair singled out by the Nash
bargaining solution always corresponds to a certain outcome.

4.2. The case of risk-loving agents

As soon as one of the agents is not risk-averse, efficient outcomes may involve
non-degenerate lotteries. In this case, an increase in the degree of risk loving
(a decrease in the degree of risk aversion) of one agent may affect the outcome
selected by the Nash bargaining solution, as the following theorem shows.

Theorem 3. Let 〈S,d〉 be a bargaining problem and let �∗ be a lottery that
attains the utility levels determined by the Nash bargaining solution. Assume
further that �∗ assigns probability p to the outcome (1,0) and probability (1−p)

to the outcome (0,1). The utility which the Nash bargaining solution assigns to
a player does not decrease as his opponent becomes more risk-loving. That is
N2(S̃, d) � N2(S, d) where 〈S̃, d〉 is obtained from 〈S,d〉 by replacing agent 1
with a more risk-loving agent.

Proof. Since agent 1 has become more risk-loving, there is a concave and non-
decreasing functionh, defined on the unit interval, such that agent 1’s new
preferences are represented by the functionh ◦ f and, therefore, his new utility
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function is given byV1(�) = ∫ 1
0 h(f [F�(t)])dt . Further, since�∗ is a lottery that

assigns probabilityp to the outcome(1,0) and probability(1−p) to the outcome
(0,1), we have thatU1(�

∗) = f (p) and

V1(�
∗)= h

[
f (p)

] = h
[
U1(�

∗)
]
. (3)

Now let �̃ be a lottery such thatU2(�̃) < U2(�
∗). We need to show that̃�

cannot attain the utility levels selected by the Nash bargaining solution for the
bargaining problem〈S̃, d〉. By the way�∗ was selected, we haveU1(�

∗)U2(�
∗) >

U1(�̃)U2(�̃). Therefore,

U1(�
∗) > U1(�̃)

U2(�̃)

U2(�∗)
.

Sinceh is non-decreasing,

h
[
U1(�

∗)
]
� h

[
U1(�̃)

U2(�̃)

U2(�∗)

]
.

By the concavity ofh,

h
[
U1(�

∗)
]
� h

[
U1(�̃)

] U2(�̃)

U2(�∗)
.

By Jensen’s inequality,

h
[
U1(�

∗)
]
� V1(�̃)

U2(�̃)

U2(�∗)
,

which, together with (3) implies thatV1(�
∗)U2(�

∗)� V1(�̃)U2(�̃). Since(V1(�
∗),

U2(�
∗)) �= (V1(�̃),U2(�̃)) we conclude that(V1(�̃),U2(�̃)) �=N (S̃, d). ✷

Note that the above theorem does not assume anything about the agents’ risk-
loving except for the fact that it should be enough to induce the Nash bargaining
solution to select a non-degenerate lottery whose prices are only the two extreme
outcomes. The next result shows that a sufficient condition for this kind of lottery
to be selected is that both agents be risk-loving. Specifically, it is shown that the
utility possibilities frontier corresponds to lotteries that assign some probability to
the outcome(1,0) ∈ X and the remaining probability to the outcome(0,1) ∈X.

Proposition 2. Assume both agents are risk-lovers and let � be an efficient
lottery. Then there exists p ∈ [0,1] such that a lottery, denoted by �∗, that assigns
probability p to the outcome (1,0) and probability (1− p) to the outcome (0,1)
is utility-equivalent to �. If in addition one of the agents is strictly risk-loving,
then �= �∗.
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Proof. Let � be an efficient lottery. Therefore, we have

1∫
0

F�(t)dt +
1∫

0

G�(t)dt = 1.

Let p = ∫ 1
0 F�(t)dt and consequently(1 − p) = ∫ 1

0 G�(t)dt . Consider a lottery
�∗ that awards the commodity to agent 1 with probabilityp and to agent 2 with
probability 1− p. By construction

1∫
0

F�∗(t)dt =
1∫

0

F�(t)dt, (4)

1∫
0

G�∗(t)dt =
1∫

0

G�(t)dt . (5)

Also by construction

T∫
0

F�∗(t)dt �
T∫

0

F�(t)dt, ∀T ∈ [0,1], (6)

T∫
0

G�∗(t)dt �
T∫

0

G�(t)dt, ∀T ∈ [0,1]. (7)

Since both agents are risk-loving, Eqs. (4), (5), and inequalities (6), (7) imply that

U1(�
∗)� U1(�) and U2(�

∗) � U2(�).

But since� is efficient we conclude that�∗ and� are utility-equivalent, which
proves the first part of the proposition. If one of the agents, say agent 1, is
strictly risk-loving, then�∗ �= �, Eq. (4) and inequality (7) would imply that
U1(�

∗) > U1(�), which is impossible. Therefore,�∗ = �. ✷
The following result is an immediate corollary of the above proposition and

Theorem 3.

Corollary 1. Let 〈S,d〉 be a bargaining problem where both agents are risk-
lovers. The utility which the Nash bargaining solution assigns to a player
increases as his opponent becomes more risk-loving. That is N1(S̃, d)� N1(S, d)

where 〈S̃, d〉 is obtained from 〈S,d〉 by replacing agent 2 with a more risk-loving
agent.
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When the agents are risk-lovers, the Nash bargaining solution awards a utility
pair that can be achieved only by a non-degenerate lottery. Consequently, it is
reasonable that changes in the agents’ risk-loving affect the outcome. The reason
why an increase in the degree of risk loving of one’s opponent is beneficial is
analogous to the reason why, under expected utility maximization, an increase in
the degree of risk aversion of one’s opponent is beneficial. Under expected utility
maximization, an increase in one agent’s degree of risk aversion increases his
utility from any certain outcome in such a way that the equality mindedness of
the Nash bargaining solution has no other choice but to “tax” him and transfer
some of the surplus to the other agent. This transfer of utility is implemented by
means of a bigger share of the pie. Similarly, under the dual theory an increase in
one agent’s degree of risk loving increases his utility from any givenlottery in
such a way that the equality mindedness of the Nash bargaining solution has no
other choice but to “tax” the agent who benefits from the increased utility and to
make some stochastic transfer to the other agent.

Again, it is instructive to compare Corollary 1 to the case of two risk-loving
expected utility maximizers. In this case, by choosing von Neumann–Morgenstern
utility functions such thatui(0) = 0 and ui(1) = 1 for i = 1,2, the utility
possibilities set is given byX. As a result, the Nash bargaining solution assigns
an expected utility of 1/2 to each of the bargainers,independently of their degree
of risk loving. This utility pair can be achieved, however, only by the lottery that
assigns the whole pie to each agent with probability 1/2.

Summarizing, Theorems 2 and 3 show that according to the dual theory the
Nash bargaining solution is sensitive to changes in risk attitude only when the
Pareto-efficient agreements (and thus also the Nash solution) involve lotteries.
This is in contrast to the expected utility theory, where the solution is sensitive
to changes in the players’ risk attitudes precisely in cases where Pareto efficiency
implies no lotteries.

5. The strategic approach

In this section, we analyze the effect of risk aversion on the outcome of the
well-known game of alternating offers. Consider the following game, denoted
by Γ . Time is divided into periods. In odd-numbered periods, player 1 proposes
a lottery� ∈ L to which player 2 responds either by accepting it or rejecting it. In
even-numbered periods, player 2 proposes a lottery and player 1 responds. Payoffs
are as follows. If proposal� is accepted in periodt , then player 1 getsU1(�)δ

t−1
1

and player 2 getsU2(�)δ
t−1
2 , where fori = 1,2, δi ∈ (0,1) is playeri ’s discount

factor, andUi is defined in Eq. (1). If no player ever accepts, they both get 0.
The utility functions used here deserve a comment. Within periods, the

function Ui represents agenti ’s risk preferences. Across periods, the function
Ui together with the discount factorδi represent agenti ’s time preferences. In
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Rubinstein (1982), the set of feasible agreements is an abstract set of outcomes,
which are not necessarily lotteries. Hence, the issue of changes in risk aversion
does not arise. There, changes inUi affect playeri ’s time preferences. Here,
since the set of feasible agreements consists of lotteries, changes in the utility
function also affect the within periods risk preferences. We are not deriving
these joint preferences from basic axioms on individual behavior but, as can
be easily checked, the within periods risk preferences satisfy all the dual
theory axioms and the across periods time preferences satisfy all the properties
required by Rubinstein (1982). In particular, preferences are stationary and exhibit
impatience.

We can state now the following result.

Proposition 3. Assume either that both players are risk-averse, with at least one
of them strictly so, or that both are risk-lovers, with at least one of them strictly so.
Then, the game Γ has a subgame perfect equilibrium. Further, there is a unique
pair of efficient lotteries �̂1 and �̂2 such that in every subgame perfect equilibrium:

1. Player 1 proposes �̂1, accepts �̂2 and all lotteries � such that U1(�) > U1(�̂
2)

and rejects all lotteries � such that U1(�) < U1(�̂
2);

2. Player 2 proposes �̂2, accepts �̂1 and all lotteries � such that U2(�) > U2(�̂
1)

and rejects all lotteries � such that U2(�) < U2(�̂
1).

The pair (�̂1, �̂2) is the only pair of efficient lotteries that solves the system

U1(�2)= δ1U1(�1) and U2(�1)= δ2U2(�2). (8)

Proof. Consider the system of Eqs. (8). Proposition 1 tells us that when both
agents are risk-averse, system (8) becomes{

y = δ1(1− x),

x = δ2(1− y),
(9)

wherex is the share of the pie that player 1 offers to player 2 andy is the share of
the pie that player 2 offers to player 1. It is immediately apparent that system (9)
has a unique solution. Similarly, when both agents are risk-lovers, it follows from
Proposition 2 that system (8) becomes{

f (q)= f (1− p)δ1,

g(p) = g(1− q)δ2,
(10)

wherep is the probability with which player 2 gets the whole object and 1− p

is the probability with which player 1 gets the whole object, according to player
1’s equilibrium proposal, and similarlyq and 1− q are the probabilities with
which player 1 and 2 get the whole object, respectively, according to player 2’s
proposal. Since bothf andg are concave functions, the system of Eqs. (10) has
a unique solution as well. Therefore, under the proposition’s premises, our game
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satisfies the assumptions of Osborne and Rubinstein (1994), Proposition 122.1,
which guarantees that the statement of our proposition is true.4 ✷
Theorem 4. If both players are risk-averse, with one strictly so, then an increase
in the risk aversion of one player does not have any influence on the outcome.

Proof. If both players are risk-averse, the unique equilibrium outcome is the
solution to (9), which is independent of the players’ degree of risk aversion.✷

Recall that if the players were risk-averse expected utility maximizers,
a player’s equilibrium share of the object increases as his opponent becomes more
risk-averse.

Theorem 5. Let Γ be a game of alternating offers where both players are risk-
lovers (one of them strictly so) and let Γ̂ be the game of alternating offers that is
obtained from Γ by replacing player 2 with a more risk-loving player. Denote
by � and �̂ the corresponding equilibrium lotteries. Then F

�̂
� F�. Namely,

player 1’s payoff distribution when his opponent is more risk-loving stochastically
dominates player 1’s payoffs when his opponent is less risk-loving.

Proof. If both players are risk-lovers, the unique equilibrium outcome ofΓ is the
solution to{

f (q)= f (1− p)δ1,

g(p) = g(1− q)δ2,

where bothf and g are concave functions. Similarly, the unique equilibrium
outcome ofΓ̂ is the solution to{

f (q)= f (1− p)δ1,

ĝ(p) = ĝ(1− q)δ2,

where ĝ = h ◦ g for some concave functionh : [0,1] → [0,1]. Letting (p, q)

and(p̂, q̂) be the solutions to the above two systems of equations, respectively,
it is well known thatp > p̂ (see for example, Roth, 1985 or 1989). Recalling
that the subgame perfect equilibrium outcome ofΓ (Γ̂ ) is a lottery that assigns
the whole object to player 1 and player 2 with probability 1− p (1 − p̂)
andp (p̂), respectively (see Proposition 3), the random variable of player 1’s
payoffs stochastically increases when player 2 is replaced by a more risk-loving
player. ✷

4 Our game does not satisfy Osborne and Rubinstein’s Assumption A1 but it does satisfy a weaker
version of it, which is all that is needed for their proof to work.
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Note that if the agents were risk-loving expected utility maximizers, then
an increase in the players’ risk loving would have no effect whatsoever on the
equilibrium of the game of alternating offers.

6. On the relation between the strategic and the cooperative approaches

6.1. A limit result

When the players are expected utility maximizers, the predictions of the
cooperative and the strategic approaches are related in the following sense: In
the limit, as the players’ impatience disappears, the subgame perfect equilibrium
outcome of the game of alternating offers converges to the Nash solution of the
associated cooperative bargaining problem (see, for example, Binmore, 1987; and
Binmore et al., 1986). Not surprisingly, the same result holds when the players’
risk preferences satisfy the dual theory axioms. This is stated formally by the
following proposition.

Proposition 4. Consider two agents whose preferences over lotteries are
represented by the dual theory and assume that either both agents are risk-averse
or both are risk-lovers. Let 〈S,d〉 be the bargaining problem induced by these two
agents and let (�̂1(δ), �̂2(δ)) be the pair of lotteries identified in Proposition 3 for
the variant of the game where both agents share the same discount factor δ. Then,
limδ→1(U1(�̂

i(δ)),U2(�̂
i(δ)))=N (S, d), for i = 1,2.

The proof is standard (see, for instance, Osborne and Rubinstein, 1994,
Proposition 310.3) and thus it is omitted.

6.2. A model with exogenous risk of breakdown

In Section 5, we analyzed a game of alternating offers where the players have a
degree of time preference represented by a discount factor. Binmore et al. (1986)
discuss an alternative to this game, where agents do not present time preference
but there is a fixed probability of breakdown after a player rejects a proposal.
Specifically, consider a modification of the game presented in Section 5, such that
there is no discount factor but after every rejection there is a probability, 1− δ,
that the game ends, in which case each bargainer receives 0. Thus, a typical path
of play consists of rejections until periodt (which can be∞), at which point
there will be agreement on the division(x1, x2), unless the game ended before.
This path of play generates the lottery that assigns probabilityδt−1 to the division
(x1, x2) and probability 1− δt−1 to the outcome(0,0). The corresponding utility
levels for players 1 and 2 are, respectively,x1f (δ

t−1) andx2g(δ
t−1), where again

f and g are the “probability-evaluation” functions which represent player 1’s
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and 2’s preferences, respectively. It is well known that if the players were risk-
averse expected utility maximizers, this game would be strategically identical to
the one in which players have a common discount factorδ. As a consequence,
both games would have the same comparative statics properties with respect to
changes in the degree of risk aversion. Further, the subgame-perfect equilibrium
agreement converges to the Nash agreement asδ goes to 1. In our case, however,
when players behave according to the dual theory of choice under risk, the two
games are no longer strategically equivalent. First of all, players’ preferences
will not be stationary in general, which means that one of Rubinstein’s (1982)
basic assumptions fails to hold. If one wants the preferences to be stationary, one
needs to assume that the functionsf andg are of the formpα . Second, even if
both players’ preferences are represented by the same potential function, namely
f (p) = g(p) = pα , still the subgame perfect equilibrium of the game exhibits
comparative statics properties that are opposite to those of the strategic game with
discount factor as well as to those of the Nash bargaining solution. Moreover, asδ

tends to 1, the subgame perfect equilibrium of this game does not converge to the
Nash outcome of the corresponding Nash bargaining problem. To see this, assume
that both players have the same preferences over lotteries, that are represented by
the functionf (p) = g(p) = pα . For concreteness, assume that agents are risk-
averse, namelyα > 1. As pointed out above, every pair of strategies in the game
of alternating offers yields a lottery that assigns probabilityδt−1 to a division
(x1, x2) and probability 1− δt−1 to the outcome(0,0). Denote this lottery by
[t, (x1, x2)]. Note now that player 1 prefers[t, (x1, x2)] to [t ′, (y1, y2)] if and only
if x1(δ

t−1)α > y1(δ
t ′−1)α , if and only ifx1/α

1 δt−1 > y
1/α
1 δt

′−1. But this means that
player 1’s behavior is identical to the behavior of a risk-averse expected utility
maximizer whose von Neumann–Morgenstern utility function isu(x) = x1/α.
A similar reasoning shows the same conclusion for player 2. Since we have
shown that the predictions of the Nash bargaining solution for agents whose
preferences satisfy Yaari’s axioms are different from the predictions for expected
utility maximizers, we conclude that the game of alternating offers with a fixed
probability of breakdown is essentially different from the game with impatient
players. In particular, while an increase in one agent’s degree of risk aversion does
not influence the outcome predicted by the Nash bargaining solution when both
agents are risk-averse, it does reduce that player’s share in the subgame perfect
equilibrium of the game with a fixed probability of breakdown.

7. The ordinal Nash solution

The primitives of our model consist of a set of physical outcomesX,
preferences over the set of lotteries onX and the disagreement outcomeD.
Rubinstein et al. (1992) propose a solution concept that is intended to be applied
to bargaining problems, like ours, that are described in physical terms. They call
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their solution concept theordinal Nash bargaining solution for the good reason
that when agents’ risk preferences satisfy the expected utility axioms, it induces
the (cardinal) Nash bargaining solution on the induced cardinal bargaining
problem. It is only natural then to inquire on the relation between the ordinal
Nash bargaining solution and the cardinal Nash bargaining solution as we applied
it to our problem.

Let 〈p,�〉 be the compound lottery that assigns lottery� with probabilityp and
the disagreement outcome,D, with probability 1− p. An ordinal Nash outcome
is defined to be a lottery�∗ ∈ L such that for allp ∈ [0,1], for all � ∈ L, and
for i = 1,2 andj = 3 − i, it satisfies that if〈p,�〉 �i �

∗ then〈p,�∗〉 
j �. The
interpretation is as follows. If a player is willing to run a risk of negotiations
breakdown in order to get lottery� instead of�∗ with certainty, then his opponent
is willing to run the same risk of breakdown in negotiations to get�∗ rather
than getting� with certainty. Rubinstein et al. (1992) call their solution the
ordinal Nash bargaining solution for the good reason that when the agents’ risk
preferences satisfy the expected utility axioms, and therefore can be represented
by von Neumann–Morgenstern utility functionsui for i = 1,2, then�∗ is such
that

E�∗(u1)E�∗(u2)� E�(u1)E�(u2), ∀� ∈L,

where E�(ui) is agenti ’s expected utility of lottery�.
When agents’ preferences satisfy the dual theory axioms, the ordinal Nash

solution does not induce the Nash bargaining solution on our induced cardinal
problem〈S,d〉. Namely, it is not true that

U1(�
∗)U2(�

∗)� U1(�)U2(�), ∀� ∈ L.

One would like to know if there is an ordinal dual solution that induces the Nash
bargaining solution in our framework. The solution we are looking for is defined
as follows.

Definition 2. A lottery �∗ ∈ L is said to be adual ordinal Nash outcome if for all
α ∈ [0,1], for all � ∈ L, and fori = 1,2 andj = 3− i, we have ifα� �i �

∗, then
α�∗ 
j �.

The interpretation is as follows. If a player prefers a proportionα of lottery �
to lottery �∗, then his opponent prefers the same proportion of lottery�∗ to the
whole lottery�. An argument similar to the one used by Rubinstein et al. (1992)
shows that if both agents’ preferences satisfy the dual theory axioms, then a dual
ordinal Nash outcome�∗ is such that

U1(�
∗)U2(�

∗)� U1(�)U2(�), ∀� ∈ L.
Therefore, the dual ordinal Nash solution induces the Nash bargaining solution
when the agents’ preferences satisfy the dual theory axioms.
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The difference between the two ordinal solution concepts lies on the basic
mixture operations used in their respective definitions. The ordinal Nash solution
is defined by means ofprobability mixtures—the ones that appear in the
independence axiom. The dual ordinal Nash solution on the other hand, is defined
by means ofwealth mixtures or portfolios—the ones that appear in the dual
independence axiom.

Following the insights of Binmore et al. (1986) and the idea behind the dual
ordinal Nash solution, Dagan et al. (2001) define thetime-preference Nash
solution, which turns out to be closely related to the cardinal Nash bargaining
solution. Further, the time-preference Nash solution places no constraint on
the risk preferences of the agents and the comparative statics properties of the
temporal Nash solution are consistent with the results of this paper.

As a corollary of Section 5, we see that there is a discrepancy between
the ordinal Nash solution and the subgame perfect equilibrium outcome of the
game of alternating offers. In particular, as the discount factor approaches 1, the
equilibrium outcomes do not converge to the Nash ordinal solution. In fact, it can
be shown that they converge to the dual ordinal Nash solution. It is interesting
to note that Rubinstein, Safra, and Thomson’s ordinal solution is the limit of
the subgame perfect equilibrium outcome of the strategic game with a risk of
breakdown analyzed in Section 6.2.

8. Conclusions

We have shown that under the dual theory of choice under risk, standard
comparative static results on risk attitude in bargaining are reversed. Further,
within the strategic approach, we showed that the very details of the game
may drastically affect the comparative statics properties of the subgame perfect
equilibrium.

This paper does not argue that one theory is more relevant than the other in the
context of bargaining. This is an empirical question that can be answered only by
means of empirical or experimental research. Unfortunately, this evidence is very
small and weak. For example, Murnighan et al. (1988) report results on several
experiments that try to check the effects of risk aversion on bargaining outcomes.
The results give mild support to the idea that risk aversion is disadvantageous.
While the strategic game they used allows agents to bargain freely over a simple
class of lotteries, it has a strict deadline after which a disagreement outcome is
implemented. This deadline makes the game very similar to the one analyzed in
Section 6.2. At the very last phases of the game, a player who must respond to an
offer knows that if he gives a counteroffer there is a chance that the deadline
is reached. As shown in Section 6.2, when there is a risk of breakdown, the
comparative statics of the model with expected utility maximizers and with dual
utility maximizers are qualitatively the same.
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