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Abstract

We show existence and uniqueness of a cost allocation mechanism, satisfying standard axioms,
on two classes of cost functions with major nondifferentiabilities. The first class consists of convex
functions which exhibit nondecreasing marginal costs to scale, and the second of piecewise linear
functions. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The allocation of a joint cost of producing a bundle of infinitely divisible consumption
goods is a common practical problem with no obvious solution. Biller et al. (1978) applied
the theory of nonatomic games, introduced by Aumann and Shapley (1974), to set equi-
table telephone billing rates which allocate the cost of service among users. Following this
application Billera and Heath (1982) and Mirman and Tauman (1982) offered an axiomatic
justification of the Aumann–Shapley (A–S) prices using economic terms only. It has been
shown that the A–S prices are a natural extension of the average cost prices from a sin-
gle product to an arbitrary finite number of products with nonseparable production cost
functions (see Tauman (1988)).

The A–S prices satisfy four simple properties of the average cost prices — cost sharing,
additivity, rescaling invariance, and monotonicity — and, in addition, another property, con-
sistency, which ties pricing of multiple commodities with that of a single one. Furthermore,
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the prices are uniquely determined by these five properties (axioms) on the class of differ-
entiable cost functions with no fixed cost component, as was shown by Billera and Heath
(1982) and Mirman and Tauman (1982). Other sets of axioms uniquely characterizing the
A–S prices were also proposed in Young (1985), Hart and Mas-Colell (1989) and Monderer
and Neyman (1988).

The A–S price mechanism, however, can only be applied when a cost function is dif-
ferentiable, while typical cost functions possess major nondifferentiabilities. For instance,
minimal factor cost functions, which compute the cost of producing a given bundle of output
commodities by finding the least expensive configuration of input commodities, are generi-
cally non-differentiable. The natural question that arises is whether the A–S mechanism can
be extended to classes non-differentiable cost functions, and still be uniquely characterized
by the above five axioms.

In this paper we exhibit a price mechanism on the class of cost functions which are convex
or piecewise linear, that satisfies the five axioms. These cost functions are important: all
minimal factor cost functions are convex, and in many applications they are piecewise linear
(see Samet et al. (1984)). Our main result is Theorem 1, which shows that this mechanism is
the only one satisfying the axioms on the following two subclasses: (1) convex cost functions
that exhibit non-decreasing marginal costs to scale; (2) piecewise linear cost functions.

Unlike most results in axiomatic cost sharing, our results follow only partially previous
developments in the theory of values of nonatomic games. For instance, the uniqueness of
the Aumann–Shapley value, shown by Aumann and Shapley (1974), was the inspiration
behind the aforementioned uniqueness theorem of Billera and Heath (1982) and Mirman
and Tauman (1982). Tauman (1988) gives a comprehensive account of other such instances.
In the case of general convex cost problems, the extended A–S price mechanism is related to
the Mertens (1988) value, defined on a space of nonatomic cooperative games containing all
convex and concave functions of finitely many nonatomic measures on the space of players.
For this reason we call our extension the Mertens mechanism. Uniqueness of the Mertens
value is, however, unknown beyond the space of finite-type market games (as established
in Haimanko (2000a)). Therefore, the uniqueness of Mertens mechanism has to be shown
directly, albeit with some help drawn from Haimanko (2000a).

The paper is organized as follows. Section 2 provides the necessary definitions, notations
and statement of the result. Its proof is brought in Section 3, technical parts of which are
deferred to the Appendix A.

2. Definitions and statement of the result

In what follows Rk is the k-dimensional Euclidean space, Rk+ — a subset of all vectors
with nonnegative coordinates, and Rk++ — a subset of all vectors with strictly positive
coordinates. A cost problem is a pair (f, a), where, for some positive integer k, a ∈ Rk++
andf is a real valued function onDa = {x ∈ Rk+|0 ≤ x ≤ a} withf (0) = 0. The vector a is
interpreted as quantities of commodities 1, . . . , k that are produced, and f as a cost function:
for each x ∈ Daf (x) is viewed as the cost of producing the bundle x = (x1, . . . , xk) of
commodities. Given a set (class)F of cost problems we denote by Fk the subset of problems
(f, a) for which a ∈ Rk++.
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A price mechanism on a class F of cost problems is a function ψ : F → ∪∞
k=1R

k such
that ψ(f, a) ∈ Rk whenever (f, a) ∈ Fk . The j th coordinate of ψ(f, a) is denoted by
ψj (f, a).

Before we introduce the axioms on ψ , several notations are needed. Given x, y ∈ Rk we
denote by x · y the internal product of x and y, and x ∗ y is defined as (x1y1, . . . , xkyk); we
also write α−1 = (1/α1, . . . , 1/αk) and (α ∗f )(x) = f (α ∗x) for α ∈ Rk++ and a function
f on Rk+. Given m ≥ k ≥ 1 and an ordered partition π = (S1, . . . , Sk) of {1, 2, . . . , m},
π∗ : Rm → Rk is defined by π∗(x)i = ∑

j∈Si
xj for every x ∈ Rm.

Definition 1. A price mechanism ψ on F is:

1. cost sharing if for every k ≥ 1 and (f, a) ∈ Fk

a · ψ(f, a) = f (a); (2.1)

2. additive if for (f1, a), (f2, a) ∈ Fk such that (f1 + f2, a) is also in Fk

ψ(f1 + f2, a) = ψ(f1, a) + ψ(f2, a); (2.2)

3. consistent if for every m ≥ k ≥ 1, b ∈ Rm++, ordered partition π = (S1, . . . , Sk) of
{1, 2, . . . , m}, cost function f such that both (f, π∗(b)) and (f ◦ π∗, b) are in F , and
i, j with j ∈ Si ,

ψj (f ◦ π∗, b) = ψi(f, π
∗(b)); (2.3)

4. rescaling invariant if for every α, a ∈ Rk++ and f such that (f, a), (α∗f, α−1 ∗a) ∈ Fk

ψ(α ∗ f, α−1 ∗ a) = α ∗ ψ(f, a); (2.4)

5. monotone if for every (f, a), (g, a) ∈ Fk are such that (f − g)(x) is a nondecreasing
function on Da ,

ψi(f, a) ≥ ψi(g, a). (2.5)

Remark 1. Given a permutation θ of {1, . . . , k}, denote θ∗x = (xθ(1), . . . , xθ(k)) for any
x ∈ Rk . By taking m = k in the definition of consistency one sees that any consistent price
mechanism ψ is symmetric, i.e. for any (f, a) ∈ Fk and permutation θ of {1, . . . , k}

ψθ(j)(f ◦ θ∗, b) = ψj (f, θ
∗b), (2.6)

provided (f ◦ θ∗, b) and (f, θ∗b) are in Fk .

Remark 2. Assume that whenever (f, a) ∈ Fk , the cost problem (f α
j , (a, aj )), where

f α
j (x1, . . . , xk, xk+1) = f (x1, . . . , xj−1, αxj + (1 − α)xk+1, xj+1, . . . , xk), (2.7)

1 ≤ j ≤ k and α ∈ (0, 1), is in Fk+1. Then any consistent and rescaling invariant price
mechanism ψ on F also satisfies the dummy axiom — if (f, a) ∈ Fk is such that f (x) is
constant in the j th coordinate, then

ψj (f, a) = 0. (2.8)
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Indeed, given such (f, a), consider (f α
j , (a, aj )) for α �= (1/2). By symmetry,

ψj (f
α
j , (a, aj )) = ψk+1(f

α
j , (a, aj )). (2.9)

On the other hand, by rescaling invariance and consistency,

ψj (f
α
j , (a, aj )) = αψj (f, a) and ψk+1(f

α
j , (a, aj )) = (1 − α)ψj (f, a). (2.10)

To reconcile (2.9) and (2.10), the equality (2.8) must hold.

Remark 3. If Fk contains only nondecreasing cost functions, then additivity and mono-
tonicity of ψ imply that it is also 0-homogeneous: ψ(f, a) = ψ(cf, a) for all (f, a) ∈ Fk

such that (cf, a) is also in Fk for any c > 0.

To define classes of cost problems that we will consider, some further notations are in
order. Given (f, a), a point x in the interior of Da , and y ∈ Rk , the directional derivative
of f at x in the direction y is

df (x, y) = lim
ε↓0

f (x + εy) − f (x)

ε
. (2.11)

The limit exists for all convex functions f . For k ≥ 1 denote by Fk+ the set of all cost
problems (f, a) for which a ∈ Rk++, f is a convex and vanishing at 0 Lipschitz function
with nondecreasing marginal costs to scale, i.e. for 0 < x < a, y ∈ Rk+ and t ≥ 1 such that
tx < a

df (x, y) ≤ df (tx, y). (2.12)

By Fk
l we denote the set of cost problems (f, a), a ∈ Rk++, such that f is nondecreasing,

continuous, vanishing at 0, and piecewise linear (i.e. there is a partition of Rk into finitely
many regions of the form {x ∈ Rk|∀l = 1, . . . , n, x ·al ≤ bl} for finite sequences {al}nl=1 ⊂
Rk and {bl}nl=1 ⊂ R, such that f coincides with some affine function on the intersection of
each region with Da). Let Fi = ∪∞

k=1F
k
i for i ∈ {+, l}.

We now proceed to show the existence of a mechanism on both F+ and Fl that is si-
multaneously cost sharing, additive, consistent, rescaling invariant and monotone. Given
(f, a) ∈ Fk+ and a point x in the interior of Da , the function df (x, ·) is convex and finite on
all Rk (Theorem 23.1 of Rockafellar (1970)). By convexity, all its directional derivatives
also exist and are finite. They will be denoted by

df (x, y, z) = lim
ε↓0

df (x, y + εz) − df (x, y)

ε
. (2.13)

Directional derivatives df (x, y) and df (x, y, z) can be defined also for x on the boundary
of Da , provided x + εy + δz ∈ Da for all ε, δ > 0 small enough.

The directional derivatives df (x, y) and df (x, y, z) also exist for all piecewise linear
functions f , and in particular those in cost problems of the class Fl .

Consider now a price mechanism defined onFk+ andFk
l as follows. LetX = (X1, . . . , Xk)

be a vector of independent random variables, each one having the standard Cauchy
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distribution. Then define

(ϕM)j (f, a) = EX

(∫ 1

0
df (ta, a ∗ X, ej ) dt

)
, (2.14)

where ej is the j th unit vector, and EX stands for the expectation operator.
We call ϕM the Mertens mechanism, due to its close affinity to the Mertens value,

defined in Mertens (1988). Indeed, consider a standard measurable space of players I ,
partitioned into a finite number of measurable uncountable (disjoint) sets, I1, . . . , Ik —
the types of players. If µ1, . . . , µk are nonatomic probability measures, each supported
on the corresponding type, and f is a convex function on [0, 1]k , vanishing at 0, then
(ϕM)j (f, (1, . . . , 1)) is precisely the Mertens value of the players of j th type, in the game
f (µ1, . . . , µk).

The Mertens mechanism is clearly additive, rescaling invariant and monotone. Its cost
sharing property is due to the efficiency axiom of the Mertens value. The consistency of
ϕM follows from the fact that if X = (X1, . . . , Xk) are independent and have the standard
Cauchy distribution, then, for each ordered partition π = (S1, . . . , Sk) of {1, 2, . . . , m} and
a ∈ Rk++, the random variables π∗(a∗X)1, . . . , π

∗(a∗X)k are independent and distributed
as π∗(a)1X1, . . . , π

∗(a)kXk .
The following theorem states the reverse implication.

Theorem 1. Letψ be a cost sharing, additive, consistent, rescaling invariant and monotone
price mechanism on either F+ or Fl . Then ψ = ϕM.

The proofs of the theorem for the two cases are rather similar. We give a complete proof
for a price mechanism on F+ in the next section, and the proof for Fl is built upon the one
for F+ in Section A.4 of Appendix A.

3. Proof of Theorem 1 for F+F+F+

For a positive integer k ≥ 2, denote by Dk the “diagonal” {x ∈ Rk|∀i, j, xi = xj },
1k = (1, . . . , 1) ∈ Rk . Let Sk

⊥ be the “equator” of the unit sphere in Rk perpendicular to
1k , i.e. {x ∈ Rk|‖x‖ = 1, x · 1k = 0}, where ‖ ‖ stands for the Euclidean norm. Given
x ∈ Rk − Dk , denote by Υ k(x) the point of intersection of Sk

⊥ with the half-plane that
contains the point x and has Dk as its boundary.

Endow the set Λk = ([0, 1]k −Dk)∪ [0, 1]×Sk
⊥ with topology defined by the following

sequential requirements: let (xn)∞n=1 be a sequence in Λk . It converges to x ∈ [0, 1]k − Dk

only if it is in [0, 1]k−Dk starting at some n, and it converges to x in the Euclidean topology.
It converges to (t, y) ∈ [0, 1] × Sk

⊥ if it can be partitioned into two subsequences such that:

1. the first one is of the form (tn, yn) ⊂ [0, 1] × Sk
⊥, either finite or converging to (t, y) in

the Euclidean topology;
2. the second one is of the form (wn) ⊂ ([0, 1]k − Dk), either finite or converging to t1k

in the Euclidean topology and Υ k(wn − t1k) →n→∞ y.
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The set Λk is metrizable and compact in this topology, being homeomorphic to the “tube”
[0, 1] × {x ∈ Rk| 1 ≤ ‖x‖ ≤ 2, x · 1k = 0}.

Denote by M
k

+ the space of all differences f1 − f2, where f1, f2 are convex non-
decreasing Lipschitz functions on [0, 1]k with fi(0) = 0, both showing nondecreasing

marginal costs to scale. Given f ∈ M
k

+, we define a function g(f )i on Λk as follows.
First, let g(f )i |[0,1)k−Dk (x) = df (x, ei), and g(f )i |(0,1)×Sk

⊥
(t, y) = df (t1k, y, ei). For

y ∈ Sk
⊥ define g(f )i(0, y) = df (0, y + 1k, ei) and g(f )i(1, y) =df (1k, y − 1k, ei). If

x ∈ [0, 1]k − [0, 1)k , define g(f )i(x) = −df (x,−ei). Note that g(f )j can be defined
in the same way for any function f on [0, 1]k for which all directional derivatives, and
directional derivatives of directional derivatives, exist.

Let ψ be a cost sharing, additive, consistent, rescaling invariant and monotone price
mechanism on F+. Observe that ψ can be extended to the class of cost problems (f, a),

with a ∗ f ∈ M
k

+, by the formula

ψ(f, a) = ψ(f1, a) − ψ(f2, a), (3.1)

where (f1, a), (f2, a) ∈ Fk+ andf = f1−f2. This extension is well-defined, as follows from
the additivity of ψ . The extended ψ is also cost sharing, additive, homogenous, consistent,
rescaling invariant and monotone.

Denote by B(Λk) the Banach space of bounded measurable functions on Λk , with the

supremum norm, and by C(Λk) the subspace of continuous functions. As any f ∈ M
k

+
is completely determined by the knowledge of g(f ) = (g(f )i)

k
i=1, the function ψk

j on a

subspace V = {g(f )|f ∈ M
k

+} of (B(Λk))k is well-defined by the formula

ψk
j (g(f )) = ψj (f, 1k). (3.2)

It is, moreover, a linear functional, by additivity and homogeneity of ψ .
If the functions g(f ) are all nonnegative then f is nondecreasing. By monotonicity

of ψ , ψj (f, 1k) is nonnegative, and therefore ψk
j is a positive functional. For any c =

(c1, . . . , ck) ∈ Rk

ψk
j (c) = cj , (3.3)

if c is a k-tuple of constant functions, in which the ith function has the value ci . Indeed,
by linearity of ψk

j , it suffices to consider the case of c = ei . The claim follows by taking
f (x) = xi , and applying the dummy and cost sharing axioms.

If (B(Λk))k is viewed as the Banach space of bounded measurable functions on the union
of k disjoint copies of Λk , ψk

j is a positive projection on it. The functional ψk
j can thus be

extended to a positive functional on the entire (B(Λk))k , by Kantorovitch theorem (Zaanen
(1988), Theorem 83.15). It is a sum of (ψk

j )i — positive functionals on each coordinate of

(B(Λk))k , i.e. on the space B(Λk). By the property expressed in (3.3), (ψk
j )i(c) = 0 for

any constant function c and i �= j , and this, together with positivity, implies (ψk
j )i = 0 for

i �= j . Therefore, ψk
j = (ψk

j )j is a function of the j th coordinate alone.
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From Riez representation theorem, applied to the restriction of ψk
j to C(Λk), there is a

nonnegative measure λk
j ∈ M(Λk) such that for every g ∈ C(Λk)

ψk
j (g) =

∫
g(x) dλk

j (x). (3.4)

As ψk
j (ej ) = 1, by (3.3), λk

j is a probability measure.

Lemma 1. For every f such that g(f )j exists, and is continuous λk
j — almost everywhere,

and bounded,

ψk
j (g(f )j ) =

∫
g(f )j (x) dλk

j (x). (3.5)

Proof. The proof is a verbatim repetition of the proof of Lemma 3.5 in Haimanko
(2000a). �

The following Lemma gives some further properties of the measure λk
j .

Lemma 2.

1. The measure λk
j is supported on the set [0, 1] × Sk

⊥.
2. For any t ∈ [0, 1],

λk
j ([0, t] × Sk

⊥) = t.

3. For any t ∈ (0, 1] and Borel set S ⊂ Sk
⊥,

λk
j ([0, t] × S) = λk

j ([0, t] × (−S)), (3.6)

where −S = {−x|x ∈ S}.

Proof. See Section A.1 of the Appendix A. �

By part 1 of Lemma 2, λk
j can be viewed as a measure on [0, 1] × Sk

⊥. We denote by t λk
j

the measure on [0, t] × Sk
⊥ given by

t λk
j (S) = λk

j ([0, t] × S). (3.7)

For α ∈ [0, 1], and 0 ≤ j ≤ k, let Γ α
j : Sk+1

⊥ → Rk be the map given for x = (x1, . . . , xk+1)

by Γ α
j (x)l = xl for l �= j , and Γ α

j (x)j = αxk+1 + (1 − α)xj . Also denote Υ α
j = Υ k ◦Γ α

j

whenever it is defined. The map [0, 1]×Sk+1
⊥ → [0, 1]×Sk

⊥, given by (t, y) �→ (t, Υ α
j (y)),

whenever defined, is also denoted by Υ α
j .

Lemma 3. If 0 ≤ j ≤ k then for almost every α ∈ (0, 1]

λk
j = Υ α

j ◦ λk+1
k+1, (3.8)
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i.e. for any Borel set K ⊂ [0, 1] × Sk
⊥, λk

j (K) = λk+1
k+1((Υ

α
j )−1(K)). Also, (3.8) holds for

α = 0, provided k ≥ 3.

Proof. See Section A.2 of the Appendix A. �

Lemma 4. For every k ≥ 3, the measure λk
j is independent of j; it will be denoted by λk

from now on. Additionally, for every permutation θ of {1, . . . , k},

dλk(t, y) = dλk(t, θ∗y). (3.9)

Proof. See Section A.2 of the Appendix A. �

Properties of the measures λk , stated in the above lemmas, determine these measures
uniquely, as we show next. Let (Ui)

∞
i=1 be a sequence of identically independently dis-

tributed (i.i.d.) random variables, each with a standard Cauchy distribution, and denote
by κk the probability measure on Sk

⊥ that describes the distribution of Υ k(U1, . . . , Uk).
Lemma 3.14 of Haimanko (2000a) provides sufficient and necessary conditions on a se-
quence (ηk)∞k=3 of probability measures to be equal to (κk)∞k=3 :

1. ηk = Υ α
1 ◦ ηk+1 for every k and almost every α in [0, 1];

2. specifically, ηk = Υ 0
1 ◦ ηk+1;

3. ηk(S) = ηk(−S) for every k and Borel subset S of Sk
⊥;

4. dηk(y) = dηk(θ∗y) for every k and permutation θ of {1, . . . , k}.
By part 2 of Lemma 2, (tλk/t)∞k=3 is a sequence of probability measures. By Lemma 3, part
3 of Lemma 2 and 4, for each t ∈ (0, 1] the sequence of measures (tλk/t)∞k=3 obeys (1)–(4)
above, and so it is equal to (κk)∞k=3. Therefore, λk is a product measure — λk = L × κk ,
where L is the Lebesgue measure on [0, 1]. Note that now Υ α

j ◦λk+1 is continuous in α, and

so (3.8) actually holds for all α and k ≥ 2. Thus, in particular, λ2 = Υ 0
1 ◦(L×κ3) = L×κ2.

Proposition 1. Let f ∈ M
k

+.

1. The functions df (·1k, ·, z), z ∈ Rk , are continuous atλk — almost every (t, y) ∈ (0, 1)×
Sk

⊥.
2. For λk — almost every (t, y) ∈ (0, 1) × Sk

⊥ and every z ∈ Rk , if xn → t1k and
Υ k(xn − t1k) → y, then df (xn, z) → df (t1k, y, z).

Proof. See Section A.3 of the Appendix A. �

From our characterization of the measures λk and Proposition 1, the function g(f )i is

continuous at λk — almost every point of Λk for every f ∈ M
k

+ and 1 ≤ i ≤ k. Lemmas 1
and 2 now yield

ψ(f, 1k) = ϕM(f, 1k) (3.10)
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for all f ∈ M
k

+, k ≥ 2, since we have shown that any two price mechanisms that obey the
axioms induce the same measures λk . By the cost sharing axiom, (3.10) also holds for all
(f, 1) ∈ F 1+. Rescaling invariance of both ψ and ϕM concludes the proof of Theorem 1 for
the class F+.
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Appendix A

Before presenting the proofs, we introduce several notations and facts from the theory
of convex functions. A vector p ∈ Rk is called a subgradient of f at an interior point
x ∈ [0, 1]k if

f (y) − f (x) ≥ p · (y − x) (A.1)

for all y ∈ Rk . The set of all such p will be denoted by ∂f (x). Directional derivatives
df (x, y) are given by

df (x, y) = max
p∈∂f (x)

p · y (A.2)

(Theorem 23.4 of Rockafellar (1970)). The set of subgradients of the convex function
df (x, ·) at y is

[∂f (x)]y = {p′ ∈ ∂f (x)|p′ · y = max
p∈∂f (x)

p · y = df (x, y)}, (A.3)

and

df (x, y, z) = max
p∈[∂f (x)]y

p · z (A.4)

(Theorem 23.4 and Corollary 23.5.3 of Rockafellar (1970)).

A.1. Proof of Lemma 2

1. Observe first that any polynomial p on [0, 1]k is in M
k

+. Indeed, if f is given by f (x) =∑k
j=1(xj + 1)2 − k, then p + Kf is a nondecreasing convex function with increasing

marginal costs to scale for large enough K > 0. Therefore, p = (p + Kf) − Kf ∈ M
k

+.
Theorem 1.1 of Mirman and Tauman (1982), or proof of the main theorem in Billera

and Heath (1982), show that the axioms of cost sharing, additivity, rescaling invariance,
consistency and monotonicity suffice to determine price mechanism on the class of cost
problems with polynomial cost functions as the A–S mechanism. The restriction of ψ
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to this class is therefore uniquely determined. By the definition of A–S mechanism, for

any polynomial p ∈ M
k

+

ψk
j (p, 1k) =

∫ 1

0

d

dxj
p(t1k) dt. (A.5)

Let x /∈ Dk . For any ε > 0 there is an open neighborhood O of x, disjoint from

Dk , and a nondecreasing polynomial p ∈ M
k

+ such that (d/dxj )p|O > (1/2) and
(d/dxj )p|Dk < ε. This fact, together with (A.5), (3.5) and the positivity of λk

j imply

that λk
j (O) = 0, and so λk

j is supported on [0, 1] × Sk
⊥.

2. It follows from (A.5), (3.5), and the density of functions (d/dxj )p(t1k) for polynomials

p ∈ M
k

+ in C([0, 1]).
3. Let c1, c2 ∈ Rk+ with ci ·1k = 1, t ∈ (0, 1], and π = (S+, S−)— a partition of {1, . . . , k}

such that for i ∈ S+ai = c1
i − c2

i is nonnegative, and for i ∈ S−ai = c2
i − c1

i is positive.

Let f ∈ M
k

+ be the sum f1 + f2, where f1(x) = min((1/2)(c1 + c2 − a) · x, (1 −
(1/2)

∑k
i=1ai)t), andf2(x) = g(π∗(a∗x)), forg(x1, x2) = min(x1, x2, (

∑k
i=1ai)(1/2)).

By formula (3.5) and part 1 of this lemma, ψj (f1, 1k) = (1/2)(c1
j + c2

j − aj ). By effi-
ciency, consistency and rescaling invariance of ψ , ψj (f2, 1k) = (t/2)aj . Therefore

ψ(f, 1k) = 1
2 t (c

1 + c2). (A.6)

Denote w = c1 − c2. Observe that

df (t01k, y, ej ) =
{

c1
j , if w · y > 0;

c2
j , if w · y < 0.

(A.7)

if t0 < t , and

df (t01k, y, ej ) = 0 (A.8)

if t0 > t . Lemma 1 and (A.6) thus implies that

t λk
j ({y|w · y ≥ 0}) = t λk

j ({y|w · y ≤ 0}) = 1
2 (A.9)

provided

t λk
j ({y|w · y = 0}) = 0. (A.10)

Since (A.10) holds for almost every w, (A.9) also holds almost everywhere. It is well-
known that (3.6) follows from this fact (e.g. Lemma 2.3 in Rubin (1999)).

A.2. Proofs of Lemmas 3 and 4

The proofs necessitate some preparations. Denote by ∆k the (k − 1)-dimensional sim-
plex in Rk , i.e. the set {x ∈ Rk+|x · 1k = 1}. Given a convex and compact subset C of
∆k and t ∈ [0, 1], denote by fC the function on Rk+ defined by fC(x) = minc∈Cx · c,
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and by hC,t the function hC,t (x) = min(fC(x), fC(t1k)). Let Mk be the linear sub-

space of M
k

+ spanned by all functions hC,t with a compact C ⊂ ∆k which is strictly
convex (i.e. the extreme points of C coincide with its relative boundary in ∆k) and t ∈
[0, 1], and denote by HMk the subspace of Mk spanned by functions fC for C as
above.

Lemma 5. λk
j is the unique measure such that (3.5) holds for all f ∈ Mk .

Proof. For a compact and strictly convex C ⊂ ∆k the function fC is continuously differ-
entiable on Rk − Dk . The function dfC(·1k, ·, ej ) is 0-homogeneous in t and continuous
at all y ∈ Sk

⊥ (it follows from the fact that dfC(t1k, y, ej ) = dfC(y, ej )). As

dhC,t (t1k, y, ej ) =
{

∂fC(t ′1k, y, ej ), if t ′ ∈ [0, t];
0, otherwise,

(A.11)

discontinuities of dhC,t (·1k, ·, ej ) are all confined to the set {t}×Sk
⊥. Therefore, (3.5) holds

for all hC,t , for compact and strictly convex C ⊂ ∆k and t ∈ [0, 1] (and thus the entire
space Mk), by part 2 of Lemma 2 and Lemma 1.

To show uniqueness of λk
j , note that it suffices to do so for every t λk

j , t ∈ (0, 1], defined
in (3.7). By (A.11) and (3.4),∫

dfC(t1k, y, ej ) d(tλk
j )(y) = ψk

j (g(hC,t )). (A.12)

It was shown in Proposition 3.8 of Haimanko (2000a) that the space {df (t1k, ·, ej )|f ∈
HMk} is dense in C(Sk

⊥), and therefore the measure t λk
j is determined uniquely by the

knowledge of ψk
j on df (·1k, ·, ej ), or ψ on all (f, 1k), f ∈ Mk . �

We are now in a position to prove Lemmas 3 and 4.

Proof of Lemma 3. Observe that for almost every α ∈ (0, 1]

1λk+1
k+1({y ∈ Sk+1

⊥ |Γ α
j (y) ∈ Dk}) = 0, (A.13)

since the sets (Γ α
j )−1(Dk) are disjoint for different α. For f ∈ Mk , let f α

j ∈ M
k+1
+ be

given by f α
j (x) = f (Γ α

j (x)). The set [0, 1]×{y|Γ α
j (y) ∈ Dk}∪N×Sk+1

⊥ ⊂ [0, 1]×Sk+1
⊥

contains all possible discontinuity points of df α
j (·1k+1, ·, ek+1), for some finite subset N of

[0, 1]. For α that satisfies (A.3) this set has λk+1
k+1-measure 0, as follows from the definition

of 1λk+1
k+1 and parts 1 and 2 of Lemma 2.

Given f ∈ Mk and α > 0 that satisfies (A.13), it follows from the consistency and
rescaling invariance of ψ that

ψk
j (g(f )j ) = 1

α
ψk+1

k+1 (g(f
α
j )k+1). (A.14)
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Thus, by applying Lemma 1 to f α
j ,

ψk
j (g(f )j ) = 1

α

∫
df α

j (t1k+1, (y1, . . . , yk+1), ek+1) dλk+1
k+1(t, (y1, . . . , yk+1))

(A.15)

=
∫

df (t1k, Γ
α
j (y1, . . . , yk+1), ej ) dλk+1

k+1(t, (y1, . . . , yk+1)). (A.16)

Using Remark 4 (to be shown in the proof of Proposition 1), the last integral is∫
df (t1k, Υ

α
j (y1, . . . , yk+1), ej ) dλk+1

k+1(t, (y1, . . . , yk+1)) (A.17)

=
∫

df (t1k, (y1, . . . , yk), ej ) d(Υ α
j ◦ λk+1

k+1)(t, (y1, . . . , yk)). (A.18)

On the other hand, by Lemma 5, if

ψk
j (f, 1k) =

∫
df (t1k, y, ej ) dλ(t, y) (A.19)

holds for all f ∈ Mk for a probability measure λ, then λ = λk
j . Therefore, Υ α

j ◦λk+1
k+1 = λk

j ,
and hence (3.8) holds for almost every α ∈ (0, 1].

We show now that (3.8) holds for α = 0, provided k ≥ 3. By the first part of the lemma,
there is a sequence αn > 0 satisfying (A.13), such that αn → 0. Let 1 ≤ j ≤ k and f ∈ Mk .
By (A.15) and (A.16), for every n

ψj (f, 1k) = lim
n→∞

∫
df (t1k+1, Γ

αn

j (y1, . . . , yk+1), ej ) dλk+1
k+1(t, (y1, . . . , yk+1)),

(A.20)

and a limit as n → ∞ of the right-hand side can be taken. Since for almost every t ,
df (t1k, ·, ej ) is continuous on Rk+ − Dk , the bounded convergence theorem yields

ψk
j (f, 1k) =

∫
(y1,y2,...,yk)/∈Dk

df (t1k, (y1, . . . , yk), ej ) dλk+1
k+1(t, (y1, . . . , yk+1))

(A.21)

+
∫ 1

0
df (t1k, a

k
j , ej ) dλk+1

k+1(t, {ak+1
k+1}) +

∫ 1

0
df (t1k,−ak

j , ej ) dλk+1
k+1(t, {−ak+1

k+1})
(A.22)

where

ak
j ∈ Sk

⊥, (ak
j )l =




k − 1√
k2 − k

, l = j,

− 1√
k2 − k

, otherwise.
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Since ψ is cost sharing,
∑k

j=1ψ
k
j (f, 1k) = f (1k). If, in addition, f ∈ HMk ,

k∑
j=1

df (t1k, y, ej ) = f (1k) (A.23)

for all t ∈ [0, 1], y ∈ Rk . Therefore, summing the right-hand and the left-hand sides of the
equality (A.22) over j = 1, . . . , k, we obtain

f (1k) = f (1k)
1λk+1

k+1({y|(y1, y2, . . . , yk) /∈ Dk}) (A.24)

k∑
j=1

[df (t1k, a
k
j , ej )

1λk+1
k+1({ak+1

k+1}) + df (t1k,−ak
j , ej )

1λk+1
k+1({−ak+1

k+1})]. (A.25)

If k ≥ 3 one can easily find closed and strictly convex C1, C2 ⊂ ∆k such that ∂fC1(εa
k
j ) =

∂fC2(εa
k
j ) for j �= 1 and ε ∈ {1,−1}, ∂fC1(−ak

1) = ∂fC2(−ak
1), and ∂fC1(a

k
1) differs from

∂fC2(a
k
1) in the first coordinate (e.g. take a strictly convex C1 ⊂ ∆k and modify it slightly

at a small neighborhood of the point c1 at which maxy∈C1y1 = c1 to create a set C2; now
use the fact that ∂fCi

(y)= {c ∈ Ci |c · y = fCi
(y)}, i = 1, 2). By (A.4), the function

f = fC1 − fC2 violates the equality in (A.24) and (A.25) if λk+1
k+1({ak+1

k+1}) > 0, and so

λk+1
k+1({ak+1

k+1}) = 0. Similarly it can be shown that λk+1
k+1({−ak+1

k+1}) = 0.
Therefore, the summands in (A.22) are zero, and thus the equality in (A.21) and (A.22)

can be rewritten as

ψk
j (f, 1k) =

∫
df (t1k, (y1, . . . , yk), ej ) dΥ 0

j ◦ λk+1
k+1(t, (y1, . . . , yk)). (A.26)

Since it holds for all f ∈ Mk ,

λk
j = Υ 0

j ◦ λk+1
k+1,

by Lemma 5. �

Proof of Lemma 4. By Lemma 3, for any j = 1, . . . , k

λk
1 = Υ 0

1 ◦ λk+1
k+1 = Υ 0

j ◦ λk+1
k+1 = λk

j (A.27)

(since clearly Υ 0
1 =Υ 0

j ). Therefore, λk
j = λk is independent of j .

By Remark 1, for every f ∈ Mk+1 and every permutation θ of {1, . . . , k, k + 1} that
fixes k + 1

ψk+1
k+1 (g(f )k+1) = ψk+1

k+1 (g(f ◦ θ∗)k+1). (A.28)

From application of (3.5) to both sides of (A.10) and Lemma 5 it follows that

dλk+1
k+1(t, y) = dλk+1

k+1(t, θ
∗y). (A.29)

Now (A.29) imply that for every permutation θ of {1, . . . , k}
dλk(t, y) = dλk(t, θ∗y). (A.30)

�
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A.3. Proof of Proposition 1

It clearly suffices to give the proof only for convex f ∈ M
k

+ with nondecreasing marginal
costs to scale. 1

Remark 4. Observe that

df (t1k, 1k) = −df (t1k,−1k) (A.31)

for almost every t ∈ (0, 1). Fix any t for which this equality holds. Then

max
p∈∂f (t111k)

p · 1k = df (t1k, 1k) = −df (t1k,−1k) = min
p∈∂f (t111k)

p · 1k, (A.32)

and so p · 1k is constant for all p ∈ ∂f (t1k). Therefore, by (A.4), the function df (t1k, ·, z)
is constant on every half-plane that has Dk as its boundary, for almost every t ∈ (0, 1); in
particular, df (t1k, y, z) = df (t1k, Υ

k(y), z) for all y ∈ Rk − Dk .

1. We first prove that functions {df (·1k, w)}w∈Rk are continuous at almost every t ∈ (0, 1).
Indeed, given w ∈ Rk+, the function df (·1k, w) is monotone by the assumption of
nondecreasing marginal costs to scale, and thus continuous at almost every t — say, at
all t ∈ T , where T ⊂ (0, 1) has the Lebesgue measure 1. In fact, it can be assumed
that the functions df (·1k, w) are all continuous at every t ∈ T for w ∈ W — a dense
countable subset of Rk+, and that (A.31) holds for all t ∈ T . Let (tn)∞n=1 be a sequence
converging to some t0 ∈ T , and define a sequence (gn)

∞
n=0 of convex functions on Rk

by

gn(w) = df (tn1k, w). (A.33)

Thus, (gn)
∞
n=1 converges to g0 pointwise on W , and therefore on the entire Rk+ (Theorem

10.8 of Rockafellar (1970)).
Given w ∈ Rk let w′ ∈ Rk+ be such that w′ − w = t1k for some t ≥ 0. Since t0 ∈ T ,

lim
n→∞df (tn1k, 1k) = − lim

n→∞df (tn1k,−1k) = df (t01k, 1k). (A.34)

By (A.2)

lim
n→∞ max

p∈∂f (tn111k)
p · 1k = lim

n→∞ min
p∈∂f (tn111k)

p · 1k = df (t01k, 1k). (A.35)

Therefore, using (A.12),

lim
n→∞df (tn1k, w) = lim

n→∞ max
p∈∂f (tn111k)

p · w (A.36)

= lim
n→∞ max

p∈∂f (tn111k)
[p · w′ − p · (t1k)] = ( lim

n→∞ max
p∈∂f (tn111k)

p · w′) − df (t01k, t1k)

(A.37)

1 This proposition is the only spot in the proof of Theorem 1 that uses the assumption on nondecreasing marginal
costs to scale of cost functions in F+.
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= lim
n→∞df (tn1k, w

′) − df (t01k, t1k) = df (t01k, w
′) − df (t01k, t1k), (A.38)

where the last equality in (A.38) follows from the previous paragraph. By Remark 4,
df (t01k, ·) is linear, and so right-hand side of (A.38) is df (t01k, w). This shows that
the functions (gn)

∞
n=1 converge to g0 pointwise on the entire Rk .

Note that the set [∂f (t01k)]y contains only one point for 1λk-almost every y ∈ Sk
⊥

(since it is so for Lebesgue almost every y ∈ Rk , and [∂f (t01k)]y = [∂f (t01k)]Υ k(y) by
Remark 4), and fix one such y = y0. Also let t0 ∈ T . Given sequences (tn)

∞
n=1 ⊂ (0, 1)

and (yn)
∞
n=1 ⊂Sk

⊥ converging to t0 and y0, respectively, let (gn)
∞
n=1 be defined as in

(A.33) above. Then ∂g0(y0) = [∂f (t1k)]y0 contains only one element, and gn converges
to g0 pointwise. This yields

dgn(yn, z) → dg0(y0, z), (A.39)

after applying Theorem 24.5 of Rockafellar (1970) to the sequence (dgn(yn, z))
∞
n=1. We

are done since dgn(yn, z) = df (tn1k, yn, z) for n ≥ 0.
2. For any (t, y) ∈ (0, 1) × Sk

⊥ and a sequence (xn)
∞
n=1 such that xn → t1k and Υ k(xn −

t1k) → y, denote tn = ∑k
i=1(xn)i , and define functions

fn(x) = f (x + (tn − t)1k). (A.40)

Observe that dfn(wn, z) = df (xn, z) where wn = xn + (t − tn)1k . It suffices to show
that for all t ∈ T (defined in part 1 of the proof) and y such that [∂f (t1k)]y contains
only one point (and this is the case 1λk — almost everywhere)

lim
n→∞dfn(wn, z) = df (t1k, y, z). (A.41)

Since (wn − t1k)/‖wn − t1k‖ →n→∞ y, (A.41) follows by Theorem 24.6 of Rockafel-
lar (1970). Although this theorem requires a fixed function f , rather than a sequence
(fn)

∞
n=1, its proof goes through provided limn→∞dfn(t1k, yn) = df (t1k, y), where

yn = (wn − t1k)/‖wn − t1k‖. This equality is indeed satisfied by part 1 of the proposi-
tion, or its proof.

A.4. Proof of Theorem 1 for Fl

Denote by M
k

l the space of all piecewise linear functions on [0, 1]k that vanish at 0,

and replace M
k

+ throughout the proof in Section 3 by the space M
k

l . Extend given price
mechanism ψ on Fl , satisfying axioms (1)–(5), to the class of cost problems (f, a) with

a ∗ f ∈ M
k

l , as in Section 3. Apply now all the steps of the proof in Section 3, with the
following modifications:

1. The proof of part 1 of Lemma 2 requires a change, but remains similar to that for

M
k

+. Samet et al. (1984) prove that axioms of cost sharing, additivity, rescaling invariance,
consistency and monotonicity suffice to determine a unique price mechanism, defined on
the class of piecewise linear cost functions differentiable at all but finitely many points of
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Dk (denote this class by (M
k
)′), as the A–S mechanism. The restriction of ψ to (M

k
)′ is

therefore uniquely determined: for any f ∈ (M
k
)′

ψ(f, 1k) =
∫ 1

0

d

dxj
f (t1k) dt. (A.42)

As in the original proof of this lemma, one shows that the measureλk
j is supported on [0, 1]×

Sk
⊥, using functions f ∈ (M

k
)′ for which g(f )j is continuous λk

j — almost everywhere
instead of polynomials p. The second claim of the lemma follows from (A.42), Lemma
1, and the fact that any function in C([0, 1]) can be uniformly approximated by functions

(d/dxj )f (t1k), for f ∈ (M
k
)′ which are differentiable at all but finitely many points of

Dk , and g(f )j is continuous λk
j -almost everywhere.

2. The second part of the proof of Lemma 5 remains correct once it is established that

ψk
j (h), for h ∈ Mk , is determined by the knowledge of all ψk

j (g(f )j ), f ∈ M
k

l (in Section

3 this step was trivial since Mk ⊂ M
k

+). This is what we show next.

Remark 5. If C ⊂ ∆k is a polytope, then fC , hC,t are all in M
k

l .

Lemma 6. For any strictly convex and compact C ⊂ ∆k there is a sequence (Cn)
∞
n=1 of

polytopes in ∆k such that

lim
n→∞ψk

j (g(hCn,t0)) = ψk
j (g(hC,t0)) (A.43)

for every t0 ∈ [0, 1].

Proof. By Gruber (1993) any suchC can be approximated by a sequence (Cn)
∞
n=1 of convex

closed polytopes in ∆k in a way that fCn →n→∞ fC pointwise. It is easy to deduce from
this, using Theorem 24.5 in Rockafellar (1970), thatg(fCn) →n→∞ g(fC) in the supremum
norm. It follows that g(hCn,t0) →n→∞ g(hC,t0) in the supremum norm outside an open set
Oε = (t0 −ε, t0 +ε)×Sk

⊥ ∪{x ∈ [0, 1]k||fC(x)− t0| < ε} for any given ε > 0. By part 1 of
Lemma 2 λk

j (Oε) →ε→0 0. On the other hand, given ε > 0 there is a function g ∈ C(Λk)

with values in [ε, 1 + ε], such that g|Oε ≡ 1 + ε and g|(O2ε)
c ≡ ε, and a natural number N

such that for n ≥ N both g(hC,t0)j − g(hCn,t0)j + g and g(hCn,t0)j − g(hC,t0)j + g are
nonnegative. Clearly

∫
g(x) dλk

j (x) < 4ε(1 + ε). By the positivity of ψk
j , the definition of

λk
j , and arbitrariness of ε,

lim
n→∞ψk

j (g(hCn,t0)) = ψk
j (g(hC,t0)). (A.44)

3. Equality (A.14) in the proof of Lemma 3 no longer follows from consistency and rescaling

invariance of ψ , since Mk is not a subset M
k

l . However, as in the proof of Lemma 6 it can
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be shown that

lim
n→∞ψk+1

k+1 (g((hCn,t0)
α
j )k+1) = ψk+1

k+1 (g((hC,t0)
α
j )k+1). (A.45)

Since

ψk+1
k+1 (g((hCn,t0)

α
j )k+1) = αψk

j (g(hCn,t0)j ) (A.46)

by consistency and rescaling invariance, (A.45) and Lemma 6 yield

ψk+1
k+1 (g((hC,t0)

α
j )k+1) = αψk

j (g(hC,t0)j ). (A.47)

4. Proposition 1 remains valid, and its proof for M
k

l , which is easier than that for M
k

+, is
given in the next subsection of the Appendix A. �

Remark 6. Theorem 1 can also be proved if F+ is replaced by Fh, the subclass 2 in which
cost functions show constant returns to scale (i.e. homogeneous of degree 1). The proof
follows in a similar, and often much easier, fashion: one only has to uniquely characterize the
measure 1λk

j , and not λk
j , because of the homogeneity of cost functions from Fh. Therefore,

Lemma 2 must be restated accordingly (replace λk
j with 1λk

j , and Mk with HMk — the
subspace of homogeneous functions). The other noticeable change occurs in proofs of parts
1 and 2 of Lemma 5. In the proof of part 1, Haimanko (2000b) characterization of the A–S
price mechanism for continuously differentiable, homogeneous and convex cost problems
is required, instead of the result of Mirman and Tauman (1982). Instead of polynomials p as
in the proof of Lemma 2, functions constructed in Lemma 3.2 of Haimanko (2000a) must
be used, which are in the span of continuously differentiable, homogeneous and convex
functions by Lemma 3.3 there. Part 2 of the lemma becomes redundant, since only 1λk

j

must be determined.

A.5. Proof of Proposition 1 for M
k

l

We show the proposition first for piecewise linear functions f which are affine on every
half-plane that has Dk as its boundary (f may or may not satisfy f (0) = 0). In this case
df (t1k, y) = f (y) − f (0) and df (t1k, y, z) = df (y, z) for every y, z. Also note that the
regions in the definition of piecewise linear function can all be assumed to have the form
{x ∈ Rk|∀l = 1, . . . , n, x · al ≤ 0}, where {al}nl=1 ⊂Sk

⊥, and that on the interior of each
region the functions df (·, z) are constant. It is clear now that if y ∈ Sk

⊥ happens to be in
the interior of one of the regions (and this is the case for almost every y), then assertions of
the proposition hold for all t .

Now let f be any function in M
k

l . There are at most finitely many regions in the definition
of piecewise linear function f whose boundaries intersect, but do not contain, the diagonal
Dk . It follows that for almost every t0 ∈ (0, 1) there is an open neighborhood O of t01k in
[0, 1]k , such that the restriction of f to O coincides with some piecewise linear function

2 The characterization in Theorem 1 is of no use here, because uniqueness of a price mechanism on a class of
cost problems does not, in general, imply uniqueness of the mechanism on a subclass.
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h, which is affine on every half-plane that has Dk as its boundary. As df (t1k, y, z) =
dh(t1k, y, z) for all y ∈ O and any z, assertions of the proposition are proved for such t0
and almost every y ∈ Sk

⊥ by what we have shown in the previous paragraph.
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