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Abstract

An analogue of Vickrey’s (1961) multi-unit auction is provided when
bidders have interdependent values. The analogue is strategically equiva-
lent to a collection of two-bidder single-unit second-price auctions and it
possesses an ex-post e¢cient equilibrium. As an application of this result,
it is shown that the FCC auction possesses an e¢cient equilibrium in the
case of homogeneous goods. Conditions are provided under which the new
auction (and also the FCC auction) revenue-dominates all ex-post equilibria
of ex-post e¢cient individually rational mechanisms.
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1. Introduction

Our interest lies in extending Vickrey’s (1961) ex-post e¢cient multi-unit auction
to environments with interdependent values.1 In addition, we investigate the
revenue properties of this new auction and provide conidtions under which it is
revenue-dominant (in a sense to be explained below). As a by-product of our
analysis we establish the ex-post e¢ciency of the recently designed FCC auction
as well as its revenue-dominance under the same conditions and in the same sense.

When bidders have private values and downward-sloping demand, Vickrey’s
(1961) celebrated auction renders it a dominant strategy for each bidder to report
his true value for each unit. Moreover, the outcome of Vickrey’s auction is then
guaranteed to be ex-post e¢cient. When bidders’ values are interdependent, bid-
ders may have private information that a¤ects others’ values. As a result, bidders
are not only ignorant of others’ values, they are also ignorant of their own val-
ues. Consequently, the strategy “bid your value” is no longer feasible, let alone
dominant. In addition, straightforward examples demonstrate that even in equi-
librium Vickrey’s auction can fail to yield an ex-post e¢cient outcome. Thus, the
introduction of interdependencies in values calls for a modi…cation of Vickrey’s
auction if ex-post e¢ciency is to be achieved.

The interdependent-value auction we present does produce ex-post e¢cient
outcomes and is based upon an important result due to Maskin (1992). He shows
that even with interdependent values, a single-unit Vickrey auction between two
bidders yields an ex-post e¢cient allocation. To exploit this result in the multi-
unit setting, our auction, in e¤ect, consists of …nitely many single-unit auctions
between pairs of bidders contingent upon the incremental units that are at stake
for each of them. The main di¤erence in our auction from Vickrey’s is that bid-
ders engage in two rounds of bidding and submit multiple bids for each unit in
the second round. Nonetheless, in the case of private values our auction e¤ec-
tively reduces to Vickrey’s (1961) and the equilibrium we display reduces to the
dominant bid-your-value strategies.

As in standard auctions, the rules of our auction are independent of the details
of the environment. In particular, the rules do not depend in any way on the
functional forms of the bidders’ utilities or upon the joint distribution of their
private information. This is in contrast, for example, to the direct revelation
mechanism approach. Moreover, the equilibrium we display requires no more

1By interdependent values, we refer to situations in which there may be a common value
component to the bidders’ valuations of the auctioned goods.
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sophistication from the bidders than they would need to play well in a single-unit
Vickrey auction against a single other bidder.

We also establish a sense in which our auction is revenue-dominant. Call a
pure strategy Bayesian Nash equilibrium an ex-post equilibrium if for every vector
of player types the joint action speci…ed by the Bayesian equilibrium strategy is
a Nash equilibrium even after the types are revealed.2 Under certain conditions,
any ex-post equilibrium of an ex-post e¢cient and ex-post individually rational
selling mechanism yields weakly less revenue ex-post than the ex-post equilibrium
of the ex-post e¢cient and ex-post individually rational auction we present. This
revenue result is closely related to a similar result due to Krishna and Perry (1998).

Finally, we consider the FCC’s spectral auction. While the auction employed
by the FCC is considered to have performed well, both in terms of revenue and
e¢ciency, this view has largely been based upon intuition gleaned from single-
unit auctions. The theoretical properties of the signi…cantly more complex FCC
multi-unit auction are simply not known. However, we show that the ex-post
e¢cient equilibrium of our generalized Vickrey auction forms the basis of an ex-
post e¢cient equilibrium of the FCC auction and that, as a by-product, the FCC
auction is ex-post e¢cient and revenue-dominant under the same conditions and
in the same sense as above. We stress that one of these conidtions is that the
units for sale are homogeneous and noncomplementary.

1.1. Other Related Work

Dasgupta and Maskin (1999) provide a selling mechanism that achieves ex-post
e¢ciency when there are a …nite number of possibly heterogeneous goods. But
even when the goods are homogeneous and demand is downward-sloping Dasgupta
and Maskin’s mechanism remains signi…cantly more complex than the auction
we o¤er here. Their selling mechansim requires the agents to submit valuation
correspondences (in e¤ect, a continuum of potential preference pro…les). The
designer is then required to calculate the entire set of …xed points of their product.
When there are multiple …xed points, a possibility even in their equilibrium, the
agents must simultaneously announce the “correct” one to the auctioneer.3 To

2An ex-post equilibrium has the desirable practical feature that no bidder, subsequent to the
auction, regrets his equilibrium bids. This remains so even after …nding out the winning bids of
the other bidders. (Such information is not always public during an auction, while it is typically
made so afterward.)

3Even though, as in any other coordination game, simultaneously announcing any other …xed
point is also an equilibrium in the subgame.
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enusre that the agents can indeed identify the “correct” …xed point, Dasgupta and
Maskin must impose additional restrictions on the agents’ valuation functions. No
such restrictions are required when our auction is employed.

Perry and Reny’s (1997, 1999) work on the linkage principle in multi-unit auc-
tions provides an equilibrium analysis of the two-bidder two-unit Vickrey auction
with interdependent values. Their anlysis is drawn upon here to demonstrate that
even though Vickrey’s (1961) auction was designed with private values in mind,
it continues to yield an ex-post e¢cient outcome when there are two bidders and
any number of units even when the bidders’ values are interdependent.4

Ausubel (1997) constructs an ascending auction for the many-bidder multi-
unit setting. While Ausubel’s ascending auction possesses an ex-post e¢cient
equilibrium in the case of private values, when values are interdependent ex-post
e¢ciency cannnot be guaranteed unless the the bidders are ex-ante symmetric,
their signals are a¢liated and they have ‡at demand schedules up to a …xed capac-
ity. Our auction requires none of these restrictions. Ausubel (1997) also provides
a direct revelation mechanism implementing an ex-post e¢cient allocation in the
many-bidder multi-unit setting with downward-sloping demand.

Jehiel and Moldovanu (1998) study ex-post e¢cient implementation in eco-
nomic environments in which the agents’ signals can be multi-dimensional. They
show that when the signals are of dimension two or above, unless the agents’
signal marginal rates of substitutions coincide, ex-post e¢cient implementation
is typically not possible. An early insight into the di¢culties posed by multi-
dimensional signals can be found in Maskin (1992). Jehiel and Moldovanu also
provide some positive results when signals are of dimension one.5

While our assumption that the bidders’ signals are one-dimensional may be
reasonable in the present case of homogeneous goods, it is less so otherwise. Con-
sequently, an important open problem is the design of an auction that yields
incentive e¢cient outcomes (i.e. e¢cient subject to incentive constraints) in
the presence of multi-dimensional signals. On the other hand, Dasgupta and
Maskin (1999) show that under certain conditions, obtaining incentive e¢ciency
with multi-dimensional signals can be reduced to the problem of obtaining ex-

4While the bidders’ strategies are no longer dominant, they do constitute an ex-post equilib-
rium and reduce to the dominant bid-your-value strategies when values happen to be private.

5Their positive results are derived under the assumption that utilities are linear in signals and
that either there are e¤ectively two alternatives or a continuum. In the latter case additional
assumptions are imposed. For example, it is assumed that the alternatives are linearly ordered
so that every agent’s marginal utility with respect to his own signal is a strictly increasing
function of the alternatives.
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post e¢ciency with one-dimensional signals. Under such conditions, our auction
will yield incentive-e¢cient outcomes even though the bidders’ signals are multi-
dimensional.

2. Preliminaries

There are K units of an identical good to be distributed among N bidders. Each
bidder i privately receives a one-dimensional signal, xi 2 [0; 1]. The entire vector
of signals determines the bidders’ marginal values. So, if the vector of signals is
x = (x1; :::; xN); then bidder i’s marginal value for a kth unit is denoted bymik(x):
Consequently, bidders do not know their own marginal values. We shall maintain
the following assumptions throughout. For all i; j = 1; 2; :::; N; k; l = 1; 2; :::; K
and all x 2 [0; 1]N ;
A.1 mik(x) ¸ mik+1(x)

A.2 mik(x) is continuous and weakly increasing in x:

A.3 For i 6= j; if mik(x) > mjl(x) then the inequality remains strict when xi rises
or xj falls and all other components of x remain unchanged.

The last of these is a weak single-crossing condition. For example, it is satis…ed
whenever one’s own signal a¤ect one’s marginal values at least as much as it a¤ects
others’ marginal values.6

An ex-post equilibrium of a Bayesian game is a joint strategy (i.e. for each
player, a mapping from his types to actions) with the property that for each vector
of types, the joint action speci…ed by the strategies constitutes a Nash equilibrium
of the game in which that vector of types is common knowledge. Note that an
ex-post equilibrium, while not necessarily dominant, remains a Bayesian-Nash
equilibrium for any prior distribution over types. Because of this, and because
we shall focus on ex-post equilibria, there will be no need to explicitly specify the
prior distribution over the bidders’ signals in the sequel.

6As Maskin (1992) notes, the single-crossing property is necessary. For example, if there
are two bidders and one unit, and 1’s valuation is x1 + 2x2 while 2’s is 2x1 + x2; and the
signals are i.i.d. then it is impossible to implement an ex-post e¢cient outcome. The intuition
is straightforward. E¢ciency requires giving the good to the bidder with the lowest signal.
Consequently, when one’s signal increases the good becomes more valuable to him yet he is less
likely to receive it. This is not incentive compatible.
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3. Three Illustrative Cases

Important features of the general case can be obtained by a careful examination
of the cases involving two bidders and one unit (2x1), two bidders and two units
(2x2), and three bidders and one unit (3x1). We shall maintain assumptions A.1-
A.3 and in addition strengthen A.3 for the purposes of illustrating these cases by
assuming that for every x 2 [0; 1]N , every distinct pair of bidders i and j; and
every k; l = 1; :::; K; there is a unique solution, ®; to:

mik(®;x¡i) = mjl(®; x¡i) (3.1)

Call this strengthened version of A.3, A.3+

We begin with the case in which there are N = 2 bidders and K = 1 unit of
the good.

3.1. The 2x1 Case (Maskin 1992)

With just one unit and two bidders, we can simplify the notation somewhat. Let
x denote bidder 1’s signal and y denote 2’s. Both are elements of [0; 1]: Given the
vector of signals (x; y); denote bidder i’s (marginal) value for the good bymi(x; y):
With this notation, (3.1) says that for every pair of signals (x; y) 2 [0; 1]2; there
are unique numbers, ® and ¯ such that

m1(x; ®) = m2(x;®); and (3.2)

m1(¯; y) = m2(¯; y):

Given x; and y; the solutions ® and ¯ have the following signi…cance. Ex-
post e¢ciency requires bidder 1 to obtain the good when m1(x; y) > m2(x; y):
Assumption A.3+ together with (3.2) imply that this will be the case if and only
if x > ¯ and y < ®: Consequently, (see Figure 3.1 for ®) we have

m1(x; y) > m2(x; y) , m1(x; ®) ¸ m1(x; y) > m2(x; y) ¸ m2(¯; y): (3.3)

[Figure 3.1 here]

So, if we were to conduct a Vickrey auction and bidder 1 were to bid b1(x) =
m1(x; ®) and bidder 2 were to bid b2(y) = m2(¯; y); the outcome would be e¢cient.
Moreover, these bids would be in equilibrium even if the bidders knew the vector
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of signals. Indeed, when m1(x; y) > m2(x; y); bidder 1 receives the object, worth
m1(x; y) to him ex-post and he must pay m2(¯; y); leaving him with positive
surplus. Agent 2 receives a payo¤ of zero ex-post and would have to raise her
bid above m1(x; ®) to obtain the object. Because this would require her to pay
m1(x; ®); an amount strictly above her ex-post value of the object, m2(x; y); she
can do no better than obtain a zero payo¤. Based upon this it is straightforward
to demonstrate the following.

Proposition 3.1. Suppose that for every x and y 2 [0; 1]; bidder one submits the
bid b1(x) = m1(x; ®) and bidder two submits the bid b2(y) = m2(¯; y); where ®
and ¯ satisfy (3.2).7 Then the outcome of the Vickrey auction is ex-post e¢cient
and the bid functions (b1(¢); b2(¢)) constitute an ex-post equilibrium.

In equilibrium, each bidder bids his value for the good conditional on the other
bidder’s signal being that which would render him indi¤erent between winning
and losing. When the two bidders are symmetric, this reduces to the equilibrium
derived in Milgrom and Weber (1981).

In conclusion then, a standard Vickrey auction serves to yield an ex-post
e¢cient outcome in this case. We now discuss the case of N = 2 bidders and
K = 2 units to show that the same conclusion applies.8 As we shall see, this
is so because with two-bidders Vickrey’s multi-unit auction decomposes into a
collection of single-unit second-price auctions.

3.2. The 2x2 Case (Perry and Reny 1997)

Returning to our original notation for the marginal values, (3.1) says that for
every pair of signals (x; y) 2 [0; 1]2 there are unique numbers ®; ¯; °; ± 2 [0; 1]
such that

m11(x; ®) = m22(x;®) (3.4)

m22(¯; y) = m11(¯; y)

and

m12(x; °) = m21(x; °) (3.5)

m21(±; y) = m12(±; y)

7Hence, ® and ¯ are functions of x and y; respectively.
8A similar analysis of this 2x2 case is contained in Perry and Reny (1997), while a worked

example can be found in Perry and Reny (1998).
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Before proceeding, recall that in the present quasi-linear utility context, e¢-
ciency amounts to total surplus maximization. In the one-unit setting, e¢ciency
clearly requires giving the unit to the bidder who values it most. Put di¤erently,
it is e¢cient to assign the unit to bidder 1 when the opportunity cost of doing so,
namely bidder 2’s value, is no more than bidder 1’s value. This opportunity cost
perspective (in terms of foregone total surplus) is most helpful in understanding
the 2x2 case.

When two units are available, the opportunity cost of assigning bidder 1 at
least one unit is bidder 2’s marginal value for a second unit. Conversely, the
opportunity cost of assigning bidder 2 a second unit is bidder 1’s marginal value
for a …rst unit. Hence, e¢ciency requires bidder 1 to receive at least one unit
when m11(x; y) > m22(x; y): So, one way to determine whether bidder 1 ought to
receive at least one unit is to consider the …ctitious setting in which there is but
a single unit available and bidder 1’s value for it is m11(x; y) and bidder 2’s value
for it is m22(x; y):

Similarly, the opportunity cost of assigning bidder 1 a second unit is bidder
2’s marginal value for a …rst unit, and vice versa. Therefore we can determine
whether bidder 1 ought to receive both units by considering the …ctitious setting
in which a single unit is available and bidder 1’s value for it ism12(x; y) and bidder
2’s is m21(x; y):

It is a remarkable fact that Vickrey’s (1961) multi-unit auction essentially
reduces, in this 2x2 case, to two single-unit Vickrey auctions, each corresponding
to one of the two …ctitious settings above. The reason for this is that in a 2x2
Vickrey auction, a bidder must pay the other bidder’s lower bid for a …rst unit
and must pay the other bidder’s higher bid for a second unit.9

Indeed, consider conducting a Vickrey auction. The logic of the two …ctitious
single-unit settings suggests that bidder 1’s bid on a …rst unit, b11(x); and bidder
2’s bid on a second unit, b22(y); are given by the corresponding single-unit bids
when the single-unit value functions are m11(¢) and m22(¢): That is,

b11(x) = m11(x;®) and b22(y) = m22(¯; y);

where ® and ¯ satisfy (3.4). Similarly, bidder 1’s bid on a second unit, b12(x);
and bidder 2’s bid on a …rst unit, b21(y); are given by

b12(x) = m12(x; °) and b21(y) = m21(±; y)

9In this 2x2 setting Vickrey’s (1961) auction is as follows. Each bidder submits bids on each
unit. The highest two of the four bids are deemed winning. A winning bidder pays the sum
total of the other bidder’s losing bids.
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where ° and ± satisfy (3.5). Figure 3.2 shows bidder 1’s bids.

[Figure 3.2 here]

To see that these bid functions constitute an ex-post equilibrium and lead to
an ex-post e¢cient allocation, recall from the 2x1 analysis that

m11(x; y) > m22(x; y) , b11(x) ¸ m11(x; y) > m22(x; y) ¸ b22(y);

and

m12(x; y) > m21(x; y) , b12(x) ¸ m12(x; y) > m21(x; y) ¸ b21(y):

Moreover, note that b11(x) ¸ b12(x) and b21(y) ¸ b22(y):10 Consequently, if
say, m11(x; y) > m22(x; y) and m12(x; y) > m21(x; y); then b11(x) > b22(y) and
b12(x) > b21(y); so that bidder 1 will obtain both units in the auction, which is
ex-post e¢cient. Moreover, because bidder 1 must pay b22(y) for a …rst unit and
b21(y) for a second, he earns positive surplus on both units ex-post and so cannot
improve his ex-post payo¤. Similarly, bidder 2 cannot increase her ex-post payo¤
since acquiring a …rst unit would cost b12(x); which is above her ex-post marginal
value for a …rst unit, and acquiring a second unit would cost an additional b11(x);
which is above her ex-post marginal value for a second unit.

Thus, once again, a Vickrey auction su¢ces to yield an ex-post e¢cient out-
come. Indeed, it is straightforward to extend the above analysis to show that
Vickrey’s (1961) multi-unit auction is ex-post e¢cient when there are two bidders
and any number of units. Moreover, in the two-bidder setting Vickrey’s auction
naturally decomposes (as above) into a collection of two-bidder single-unit second-
price auctions. This observation will prove useful in the sequel. But important
new considerations arise when there are three or more bidders. Indeed, with just
three bidders and a single unit Vickrey’s auction is no longer guaranteed to yield
ex-post e¢ciency, as the following example due to Dasgupta and Maskin (1999)
demonstrates.

3.3. The 3x1 Case

Introduce a third bidder with signal z 2 [0; 1]; and denote bidder i’s marginal
value for the single unit by mi(x; y; z): Suppose that

m1(x; y; z) = 3x+ y + 2z

10This is evident from Figure 3.2 for bidder 1’s bids and follows in general from A.1 and the
fact that ® ¸ ° and ¯ ¸ ±:
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m2(x; y; z) = 2x+ 3y + z

m3(x; y; z) = 3z:

Note that when x = y = 1=2; it is e¢cient to give the unit to bidder 1 when
z > 1=2 and to bidder 2 when z < 1=2. But this cannot be achieved by a Vickrey
auction since the bids of bidders 1 and 2 are independent of 3’s signal.

One way to overcome this di¢culty is to give the bidders an opportunity to
condition their bids on one another’s signals. The auction we shall present does so
by introducing two rounds of bidding where second round bids can be conditioned
on those made in the …rst round.11

4. The Main Result: An Ex-Post E¢cient Auction

As we have seen, Maskin (1992) has shown that Vickrey’s second-price auction is
e¢cient in the two-bidder single-unit case, and our result from Section 3.2 shows
that Vickrey’s multi-unit auction is e¢cient when there are two bidders and any
number of units. While the auction below can handle any number of bidders, in
light of the above results it is most useful when there are three or more.

We now describe our auction and display an ex-post equilibrium that is ex-
post e¢cient. An important feature of the auction is that it incorporates two
rounds of bidding. However, the only role of the …rst-round bids is to provide the
bidders with information about one anothers’ signals. Thus, for simplicity only,
we shall ask the bidders to report their signals in the …rst round. Our analysis
extends immediately to the case in which the bidders submit bids, not signals, in
the …rst round. (See Remark 1 below.)

After each bidder receives his private signal, the auction proceeds in two
rounds. In the …rst round each bidder i submits a report, ri; of his signal to
the auctioneer. The vector of reported signals is then revealed. In the second
round, each bidder i submits a collection of bids fbjlikg where j runs through all
other bidders, and l and k run through all units 1; 2; :::; K, where l + k � K + 1:
The second-round bid bjlik can be interpreted as the bid that bidder i would submit
in a two-bidder, single-unit second-price auction when a kth unit is at stake for
him, and an lth unit is at stake for his competitor on the unit, bidder j:

While the …rst-round reports will a¤ect the second-round bids, only the second-
round bids are employed by the auctioneer to determine the allocation and pay-
ments. Suppose then that the collection of second-round bids is fbjlikgi;j;k;l: The

11Section 4.3 below demonstrates how our auction handles the present three-bidder example.
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auctioneer allocates the K units one at a time as follows. A bidder i quali…es to
receive a kth unit if for all bidders j 6= i who so far have been allocated fewer than
l 2 f1; :::; Kg units,

bjlik ¸ bikjl : (4.1)

If more than one bidder quali…es to receive a particular unit, it is allocated to one
of them at random.12 If no bidder quali…es, then the unit is allocated to one of
the N bidders at random.13

After the allocation process is completed, payments are made as follows. If
bidder i is allocated zero units he pays nothing, while if he is allocated k > 0 units
he pays pi1 + ::: + pik; where pik denotes the K ¡ k + 1st-largest number among
the set of second-round bids fbikjlgj 6=i; l=1;:::;K :14

Note that this auction can be implemented without knowledge of the players’
strategies, signals or marginal value functions.

4.1. The Equilibrium Bids

We now introduce the bids that will be submitted by the bidders in equilibrium.15

As we have mentioned, bidder i’s equilibrium bid, bjlik; is that which he would
submit in a two-bidder, single-unit second-price auction when a kth unit is at
stake for him, and an lth unit is at stake for his competitor on the unit, bidder j:
These are de…ned below.

For every i; j = 1; 2; :::;N; every k; l = 1; 2; :::; K and every vector of signals
x 2 [0; 1]N ; precisely one of the following must hold, where (xi; x¡j) denotes the
vector of signals that results when xj in x is replaced by xi; so that xi appears
twice16:

(i) mik(xi; x¡j) < mjl(xi; x¡j)
(ii) mik(xi; x¡j) > mjl(xi; x¡j)
(iii) mik(xi; x¡j) = mjl(xi; x¡j):

12Any tie-breaking rule will do.
13For example, suppose there are three bidders and one unit. The notation bjl

ik can then be
simpli…ed to bj

i : If b2
1 > b12 and b32 > b2

3 and b1
3 > b3

1; then no bidder would qualify to receive the
unit. As we show, this cannot occur in the equilibrium we display.

14Repeated bids count. For example, if the set of bids is f2; 2; 2; 1; 1; 0g; then the second and
third highest bids are both 2; while the …fth highest bid is 1:

15The strategies below appear more complex than those in the examples of Section 3 above.
This is due to our use now of the more permissive A.3 versus our earlier use of A.3+: Nonetheless,
the essence of the strategies remains the same and they reduce to those in Section 3 under A.3+:

16For example, when there are three bidders, (x1; x¡2) = (x1; x1; x3):
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Accordingly, de…ne17

b̂jlik(x¡j) =

8
><
>:

inf® mik(®; x¡j); s.t. mik(®; x¡j) < mjl(®; x¡j);
sup® mik(®; x¡j); s.t. mik(®; x¡j) > mjl(®; x¡j);
mik(xi; x¡j);

if (i) holds
if (ii) holds
if (iii) holds

(4.2)
As in Section 3, b̂jlik(x¡j) = mik(®

¤; x¡j) is the bid that bidder i would submit
in a second-price auction against bidder j for a single unit when bidder i values
the unit according to mik(¢); bidder j values the unit according to mjl(¢); and x¡j
is the vector of signals of all bidders but j:

As a matter of notation, let x¡ij denote the vector resulting from the removal
of components i and j from the vector x:

4.2. E¢ciency

Theorem 4.1. Consider the auction given above. Under A.1-A.3 the following
is an ex-post equilibrium. Given the vector of signals, x; bidder i reports xi in
round one. In round two, if the vector of …rst-round reports is r; then bidder i
submits the collection of bids fb̂jlik(xi; r¡ij)gj;k;l. Moreover, this yields an ex-post
e¢cient allocation.

Remark 1. The incentive to reveal one’s signal in the …rst round is weak. Indeed,
in equilibrium a bidder’s payo¤ is independent of his …rst-round report regardless
of the others’ reports. In addition, in practice it would be more natural for the
bidders to submit bids, not signals, in the …rst round. We now take care of both
concerns. In addition to A.1-A.3, assume that for all i and k; mik(0) = 0, and
that mik(xi; 0; :::; 0) is strictly increasing in xi: Let m¡1

ik denote its inverse. Also
assume for each i that xi = 0 occurs with probability zero. Change the …rst round
of the auction so that each bidder i submits K bids, ¯i1; :::; ¯iK : If some bidder
submits K bids of zero, the auction ends with the units assigned according to
Vickrey’s (1961) auction. Otherwise, the auctioneer reveals every bidder i’s …rst-
unit bid ¯i1.

18 Second-round bids are submitted as in the original auction with the

17Note that it would not be equivalent when say (i) holds, to de…ne b̂jl
ik(x¡j) as

min® mik(®;x¡j); s.t. mik(®;x¡j) � mjl(®; x¡j) since equality can occur at multiple val-
ues of ®: To render the condition equivalent, one would then have to consider the largest value
of ® yielding equality.

18Revealing the bids on any other unit would work just as well.
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proviso that bjlik ¸ ¯ik for all i; k; j; l: An equilibrium of this auction is for bidder
i with signal xi to set each …rst-round bid ¯ik = mik(xi; 0; :::0): In the second
round, each bidder i infers bidder j’s signal according to rj = m¡1

j1 (¯j1) given the
revealed bids ¯j1 (which needn’t be in equilibrium), and bidder i then submits
the collection of bids as given in Theorem 4.1. This is clearly an ex-post e¢cient
ex-post equilibrium since we have only replaced the direct revelation of the signals
by an equilibrium revelation of them through the …rst-round bids. However, this
equilibrium provides somewhat stonger incentives in the …rst round. Indeed, were
the auction to end in the …rst round, a possibility in equilibrium (albeit one with
probability zero), one might regret bidding below mik(xi; 0; :::; 0) on some unit
k since one might end up losing the unit when winning it would have provided
positive surplus. On the other hand, bidding above mik(xi; 0; :::; 0) in the …rst
round runs the risk that one will be constrained to bid higher than is optimal in
the second round.

4.3. The Auction in Action: A worked example

When there are three bidders and one unit, Dasgupta and Maskin’s (1998) exam-
ple of Section 3.3 demonstrates that Vickrey’s auction can fail to yield an ex-post
e¢cient allocation. It is therefore instructive to see how the auction we have de-
…ned above works in the three-bidder one-unit case in general, and in Dasgupta
and Maskin’s example in particular. Suppose then that the bidders’ vector of
signals is (x; y; z): The equilibrium is as follows:
Each bidder reports his true signal in the …rst round. If the reported (perhaps
untruthful) signals are (x0; y0; z0); then in the second round19

² 1 submits the pair of bids b̂21(x; z
0) and b̂31(x; y

0)

² 2 submits the pair of bids b̂12(y; z
0) and b̂32(y; x

0)

² 3 submits the pair of bids b̂13(z; y
0) and b̂23(z; x

0)

The auctioneer then allocates the unit to a “winner.” For example, bidder 1 is
deemed the winner if

b̂21(x; z
0) > b̂12(y; z

0) and b̂31(x; y
0) > b̂13(z; y

0):

19Because there is only one unit, the notation bj1
i1 is simpli…ed to bj

i : Thus, bj
i is interpreted

as bidder i’s bid against bidder j:
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Bidder 1 would then receive the unit and make the payment

maxfb̂12(y; z0); b̂13(z; y0)g:

In particular, when the marginal values for the three bidders are those from Das-
gupta and Maskin’s example in Section 3.3, namely

m1(x; y; z) = 3x+ y + 2z

m2(x; y; z) = 2x+ 3y + z

m3(x; y; z) = 3z;

the equilibrium second-round bids are:

Bidder 1 — b̂21(x; z
0) =

7

2
x+

5

2
z0

b̂31(x; y
0) = 9x+ 3y0

Bidder 2 — b̂12(y; z
0) = max(7y ¡ z0; 3y + z0)

b̂32(y; x
0) =

9

2
y + 3x0

Bidder 3 — b̂13(z; y
0) = b23(z; x

0) = 3z:

Consequently, when x = y = 1=2 and the equilibrium is followed, bidder 1
wins the auction when z is slightly above 1/2 and pays slightly more than 3; while
bidder 2 wins the auction when z is slightly below 1/2 and pays slightly less than
3:20

We now apply Theorem 4.1 to the FCC auction.

20The reader might have noticed that bidder 2’s bid against bidder 1, b1
2; is not monotone in

bidder 3’s signal. The intuition for this is related to the winner’s curse. As 3’s signal increases,
bidder 1’s value increases faster than 2’s. Consequently, winning against bidder 1, when 3’s
signal is high, implies that 1’s signal is lower than would be implied when winning against
bidder 1 when 3’s signal is low. Thus, while 2’s value rises with 3’s signal cetris paribus, 2’s
value falls as 3’s signal rises conditional on outbidding bidder 1. So, as 3’s signal rises 2’s bid
against 1 falls. But bidder 2 can be only so pessimisitc about 1’s signal. When 3’s signal is high
enough so that 2 can outbid 1 only when 1’s signal is zero, 2’s bid will thereafter increase with
with 3’s signal as the negative inference e¤ect from 1’s signal is no longer present. Of course,
when 3’s signal reaches this point and higher, bidder 1 is sure to outbid bidder 2 in equilibrium.

14



5. The FCC Auction

In the present section we shall use the results above to establish that in our envi-
ronment, the recently designed FCC spectral auction posesses an ex-post e¢cient
equilibrium. Formally, the auction we consider is a simpli…cation of the actual
FCC auction. In particular, we do not insist on minimum bid increments, nor do
we incorpoarate activity rules. While these features of the FCC auction are help-
ful in practice, they are unnecessary from a theoretical perspective. Nonetheless,
the equilibrium we display for the simpli…ed FCC auction below is, for any " > 0;
an " -equilibrium when either one or both of the above rules are added, so long
as the minimum bid increment is small enough relative to ". While the goods
are perfect substitutes, for bidding purposes they are distinguished by name. The
names are simply good 1, good 2, ..., good K:

The (simpli…ed) FCC auction is as follows. After each bidder receives his
private signal, the auction proceeds in rounds. In every round each bidder may
submit a bid on any number of goods. Bidders can submit whatever bids they
want, but their bid on a good is ignored if their previous round bid on it was
higher. Thus, in e¤ect, bids cannot decrease. However, bidders can withdraw
their bids. But if they do so they must pay the di¤erence between their bid and
the resulting sale price of the good. All bids are made public after each round.
Ties in high bids submitted in di¤erent rounds are broken in favor of the most
recent high bidder, while ties in high bids made in the same round are broken at
random at the end of that round. Consequently after each round there is at most
one high bidder on each good. The auction then proceeds to the next round. The
auction ends after the …rst round in which the high bidder and high bid on each
good does not change. The high bidders then pay their bids on the units they
have won.

Throughout this section we assume that mik(x) ¸ m > 0 for every i; k and x:

5.1. The Equilibrium

The equilibrium we shall construct for the FCC auction is based upon the equi-
librium provided in Section 4.1. In particular, along the equilibrium path, each
bidder bids his generalized Vickrey prices. Accordingly, let pik(x¡i) denote the
K ¡ k + 1st-highest number among fb̂ikjl (x¡i)g; where each b̂ikjl (x¡i) is de…ned by
(4.2). So de…ned, pik(x¡i) is the price that bidder i must pay for a kth unit of the
good in the equilibrium of Section 4.1, when the others’ signals are x¡i: We are
now ready to describe the FCC auction equilibrium.
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In the …rst round the signals are revealed by submitting bids below m in a
monotonic way. Speci…cally, if bidder i’s signal is xi he bids m ¢ xi on some single
good.21 These bids can then be inverted to yield the round 1 vector of revealed
signals x1. In any round r + 1 ¸ 2, de…ne the current assignment (of goods to
bidders) as one that is e¢cient given the round r vector of revealed signals, xr

(already de…ned for r = 1 and de…ned below for r > 1):22 Let gi1 < gi2 < ::: < gini
denote the goods currently assigned to bidder i: Thus, ni denotes the number of
goods currently assigned to bidder i:

We wish to emphasizie that according to our de…nition, the goods currently
assigned to bidder i need bear no relation to those goods on which bidder i is
the high bidder.23 We urge the reader to keep this in mind when digesting the
equilibrium strategies below.

The round r vector of revealed signals, xr; is determined inductively as follows:
For every bidder i who in the previous round bid more on some good than dictated
by the equilibrium,24 replace the ith component of xr¡1 by i’s highest possible
signal, 1: This then yields the vector xr:25

The equilibrium is de…ned inductively. Consider round r + 1 ¸ 2: For every i
and every k = 1; :::; ni :

I. If in all previous rounds after round 1 and for each good, no bidder bid
more on any good than dictated by the equilibrium (so xr = x1); then
(i) bidder i bids pik(xr¡i) on good gik, and
(ii) if pik(xr¡i) � bikjl (x

r
¡i) for some bidder j 6= i who is currently assigned l ¡ 1

goods, then j bids pik(xr¡i) on good gik; unless this is no higher than the previous-
round high bid on good gik:

II. Otherwise, let p¤ denote the lowest competitive price (i.e. the K + 1st-
highest marginal value among the bidders) given xr; and let pi denote the K ¡
k + 1st-highest marginal value among all bidders but i, given xr:
(iii) If b was the previous-round high bid on good gik (set b = pi if there were no
previous-round bids on good gik), then bidder i bids min(b; p¤) on good gik:

21Di¤erent bidders can choose di¤erent goods, but need not.
22When there is more than one good and because the goods are perfect substitutes, there

are many e¢cient assignments of goods (now distinguished by name) to bidders. The current
assignment selects one of these and, being part of the equilibrium, this selection is common
knowledge among the bidders.

23Although in equilibrium, bidders will ultimately win the goods assigned to them.
24This includes a bidder merely submitting a bid on a good when according to the equilibrium

the bidder is to refrain from bidding on that good.
25Of course, if xi is already equal to 1 no change results.
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(iv) If mjl(x
r) = pi for some bidder j 6= i currently assigned l ¡ 1 goods,26 then

bidder j bids pi on each good assigned to bidder i having a strictly lower previous-
round high bid.
(v) If bidder i is a high bidder on a good, say k, not currently assigned to him,
and the second-highest bid on it is at least p¤, then bidder i withdraws his bid on
good k.

This completes the description of the equilibrium strategies. The idea behind
them is as follows. Along the equilibrium path, the signals are revealed in the …rst
round of bidding. This renders the e¢cient allocations common knowledge among
the bidders and in equilibrium they coordinate on a single e¢cient allocation. In
the second round the bidders bid their generalized Vickrey prices on the goods
(e¢ciently) assigned to them, while other bidders match these bids to ensure that
these prices are minimal. The ties are broken at random. In the third round only
the e¢cient bidders again submit their previous round bids. So if all ties were
previously broken in their favor, no new high bidders result and the auction ends.
Otherwise in the next round the e¢cient bidders once again place the same bids.
Because now no new high bidders will result, the auction ends. This results in an
ex-post e¢cient allocation with the winners paying the same generalized Vickrey
prices as de…ned in Section 4. Thus the outcome and revenue in this equilibrium
of the FCC auction is the same as that in the two-round auction presented in
Section 4.

O¤ of the equilibrum path the competition becomes more severe (and severe
enough to render the equilibrium path optimal for each bidder). The severity
of the competition is expressed in two ways. First, a bidder who bids above
his equilibrium bid is assumed to have the highest possible signal (and so the
highest possible values given the signals of the others).27 Consequently, not only
is this bidder now presumed to have a higher willingness to pay, all other bidders’
willingness to pay increases as well. Second, in order to win a good, all bidders
must now pay at least its opportunity cost.28 Because both of these e¤ects increase
the price a bidder must pay for a good above its equilibrium price pik(x¡i); no
bidder can gain by deviating from the equilibrium path. Finally, because the
assignment of goods to bidders is always e¢cient (with respect to the current

26By the de…nition of pi; some such j and l must exist.
27Less severe adjustments in the bidders’ beliefs are also consistent with this equilibrium. The

present speci…cation merely keeps things simple.
28 i.e. The highest marginal value for that unit among the other bidders given the current

vector of revealed signals.
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round’s vector of revealed signals) and in each round bidders are expected to bid
up to the competitive price on each good assigned to them, it is optimal for those
not assigned goods who are high bidders on them above the competitive price to
withdraw their bids on those units when the competitive price is reached, but no
sooner. We summarize this discussion in the following result. The straightforward
proof is left to the reader.

Theorem 5.1. The FCC auction strategies described above constitute a sequen-
tially rational Nash equilibrium and result in an ex-post e¢cient allocation.29

Remark 2. Despite the fact that the goods are identical, in equilibrium their sale
prices typically will not be. Once bidders have bid their Vickrey prices, potential
competitors have no incentive to bid on units whose prices are low. They recognize
that the current winner is willing to bid up to the competitive price for each
unit. Moreover, because this is common knowledge, it would be suboptimal for the
current winner to fail to do so. Consequently, the FCC auction need not produce
uniform-price auction outcomes in the homogeneous-goods case as is sometimes
argued.

Remark 3. The strategies we have provided are more natural when it is e¢cient
for each bidder to receive a signi…cant number of goods. They can be less natural
when it is e¢cient for some bidders to receive no goods. Such bidders might have
“nothing to lose” by bidding on low-priced goods up to their value for a …rst unit.
Of course, bidders do not employ such strategies in our equilibrium, and so when
these strategies are natural our equilibrium might not be.30

Remark 4. One might wonder about the purpose of introducing the auction of
Section 4 when the FCC auction is capable of producing ex-post e¢cient outcomes.
First, it should be noted that it was the analysis of the Section 4 auction that led to
the discovery of the FCC’s e¢cient equilibrium. Second, and perhaps more to the
point, as noted in Remark 3, the e¢cient equilibrium of the FCC auction needn’t
always be reasonable. On the other hand, the e¢cient equilibrium displayed in
Section 4.1 is always reasonable. Moreover, even when the e¢cient equilibrium of
Section 4.1 is unique in undominated strategies (e.g. in the private values case),
there are ine¢cient undominated equilibria of the FCC auction. In this sense, the

29By sequentially rational, we mean that there exist beliefs that render the strategy-belief
pair sequentially rational. Moreover, because the strategies are in Nash equilibrium, the beliefs
can be chosen to conform to Bayes’ rule along the equilibrium path.

30We thank Larry Ausubel for prompting us to include this discussion.
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FCC auction might well be less likely to lead to e¢ciency in practice than the
auction provided in Section 4.

6. Revenue

Although our primary concern is e¢ciency, we now consider the revenue generated
by the auction presented in Section 4 above.31 At various points below, we will
need to strengthen assumptions A.2 and A.3 as follows: For every i; k

A.20 mik(x) is continuously di¤erentiable and weakly increasing in x:

A.30 For i 6= j; if mik(x) ¸ mjl(x) then the inequality is strict when xi rises or xj
falls and all other components of x remain unchanged.

A (direct) selling mechanism is a pair (q; c); where q(x) = (q1(x); :::; qN(x))
and c(x) = (c1(x); :::; cN(x)) for every vector of bidder signals x 2 [0; 1]N . Each
qi(x) is a vector of probablities, with qik(x) denoting the probability that bidder
i receives at least k units of the good if the vector of reported signals is x: Each
ci(x) is the payment that bidder i must make given the report x: We shall refer
to q as the probability assignment function. A selling mechanism is ex-post in-
centive compatibale if truth-telling is an ex-post equilibrium,32 and it is ex-post
individually rational if truth-telling implies that every bidder’s ex-post utility is
non negative.

The result to follow is an ex-post revenue-equivalence theorem. The essentials
of the proof follow Myerson (1981) quite directly.33

Theorem 6.1. Suppose that A.1, A.20 and A.3 hold. Consider any two ex-post
incentive-compatible and ex-post individually rational selling mechanisms with
the same probability assignment functions. If whenever a bidder receives the

31Krishna and Perry (1998) provides a general analysis of revenue-maximization subject to
e¢ciency when the bidders’ signals are independent. The present analysis follows similar lines.
However, we are able to drop the independence assumption because of our focus on ex-post
revenue and ex-post equilibria.

32As with Bayesian equilibrium, there is a revelation principle for ex–post equilibrium. Con-
sequently, it is without loss that we restrict attention to direct selling mechanisms.

33A small technical caveat however is that unlike Myerson’s (1981) treatment, the bidders’
utilities here are not linear in their signals. Consequently, a bidder’s indirect utility need not be
a convex function of his signal. It is, however, Lipschitz in his signal and this is enough to push
the proof through.
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lowest possible signal he is, ex-post, indi¤erent between the two mechanisms,
then the two mechanisms yield the seller the same ex-post revenue; while if he
strictly prefers one mechanism over the other, the one yields the seller strictly less
ex-post revenue than does the other.

Because under A.30 the criterion of ex-post e¢ciency almost everywhere deter-
mines the probability assignment function, the above ex-post revenue-equivalence
theorem immediately yields the following corollary.

Corollary 6.2. Under A.1, A.20 and A.30, the ex-post e¢cient auction of Section
4 yields maximal ex-post revenue among ex-post incentive-compatible ex-post in-
dividually rational and ex-post e¢cient selling mechanisms so long as each bidder
receives zero ex-post utility when his signal is zero.

This leads to the following constrained optimal revenue result.

Theorem 6.3. Suppose that A.1, A.20 and A.30 hold. Also, suppose that for
all distinct pairs of bidders i; j and all numbers of units k; l; mik(0; 0; x¡ij) =
mjl(0; 0; x¡ij) for all x¡ij: Then the Section 4.1 equilibrium of the auction of
Section 4 raises at least as much ex-post revenue as is raised in any ex-post e¢cient
ex-post individually rational ex-post equilibrium of any other selling mechanism.

Remark 5. The additional condition on marginal values is satis…ed in both of
the following particular instances with the second being more general than the
…rst:
(i) There are two bidders and mik(0; 0) = 0 for i = 1; 2 and all k:
(ii) There are N bidders and mik(0; 0; x¡ij) = 0 for all i 6= j; all k and all x¡ij:

Remark 6. Because the equilibrium of the FCC auction provided in the previous
section yields the same revenue as the auction of Section 4, the FCC auction is
revenue dominant in the same sense and under the same conditions as the auction
of Section 4.

The following example shows that when the conditions of Theorem 6.3 fail,
some bidder might receive positive utiltiy when his signal is zero and so the Section
4.1 equilibrium need not generate maximal ex-post revenue.

Example 6.4. There are two bidders, 1 and 2, with signals x and y respectively,
both in [0; 1]; and a single unit. Bidder 1’s value is m1(x; y) = 2 + 3x + y and
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2’s is m2(x; y) = 2x + 2y: Because there are just two bidders, according to the
equilibrium of Section 4.1 the bids submitted in the second round are independent
of the …rst-round announcements. Bidder 1 bids b̂1(x) = 3+3x; and bidder 2 bids
b̂2(y) = 2y. Consequently, the outcome is ex-post e¢cient since bidder 1 always
wins the auction and the seller’s ex-post revenue is 2y: But note that even when
x = 0 bidder 1 wins the unit and pays strictly less than his value for it, thereby
earning strictly positive utility. To see that the seller can then earn even more ex-
post revenue, note that if bidder 2 instead bids ~b2(y) = 1+y; the strategies remain
in ex-post equilibrium and the outcome remains ex-post e¢cient. Consequently,
the seller earns strictly more ex-post revenue whenever y < 1:

The example evidently indicates that the equilibrium strategies provided in
Section 4.1 above are not unique. This is related to the well known issue of
non uniqueness of equilibrium in Vickrey’s auction in the private values case. Of
course, in that setting each bidder has a unique undominated strategy and so
the multiplicity problem is rendered moot through a simple dominance argument.
But when values are interdependent bidders do not know their own values and
so dominance arguments lose much of their power. So, in contrast to the private
values setting, multiple equilibria in undominated strategies cannot in general be
ruled out here. On the other hand, the particular strategies displayed in Section
4.1 do possess some noteworthy features. They are always undominated while
strategies that yield the seller more revenue need not be.34 Consequently, the
strategies provided in Section 4.1 reduce to Vickrey’s bid-your-value strategies in
the private values case while those yielding more revenue need not. But perhaps
their most important feature is that they remain ex-post best replies regardless
of which ex-post e¢cient ex-post equilibrium strategies the other bidders use. For
instance, in the above example bidder 1’s strategy, b̂1(x); remains an ex-post
best-reply and the outcome remains ex-post e¢cient no matter which of the two
equilibrium strategies bidder 2 chooses to employ. Consequently, the strategies
provided in Section 4.1 are focal in a natural sense.

34To see the latter, one need only consider a private value setting with two bidders and one
unit. The unit is worth 1 + x to bidder 1 when his signal is x; and it is always worth zero to
bidder 2. The unique undominated equilibrium has both bidders bidding their value so that the
seller earns no revenue. A more favorable equilibrium for the seller has bidder 2 bidding just
below unity (a dominated strategy) and bidder 1 again bidding his value.
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7. Proofs

The following lemma is central to proving Theorem 4.1. It shows that the bid
functions proposed above in (4.2) can be employed to allocate the units e¢ciently,
in e¤ect, by conducting a collection of single-unit second-price auctions between
pairs of bidders. The proof is contained in the appendix.

Lemma 7.1. The functions, b̂jlik(¢); de…ned in (4.2) satisfy the following condition:

If b̂jlik(x¡j) ¸ b̂ikjl (x¡i); then b̂jlik(x¡j) ¸ mik(x) ¸ mjl(x) ¸ b̂ikjl (x¡i):

Proof of Theorem 4.1. Suppose that the true vector of signals is x; and that
each bidder behaves as in the statement of the theorem. We …rst show that the
allocation is ex-post e¢cient.

Because the auction rules always result in the allocation of all K units, e¢-
ciency will obtain so long as when bidder i is allocated a kth unitmik(x) is greater
than or equal to all but perhaps K ¡ k of the others’ marginal values. Now, in
equilibrium each bidder reports his true signal in the …rst round. Hence, the equi-
librium second-round bids are fb̂jlik(x¡j)gi;j;k;l: Therefore, if bidder i is allocated a
kth unit, then according to the auction rules

b̂jlik(x¡j) ¸ b̂ikjl (x¡i) (7.1)

for all bidders j 6= i who are allocated fewer than l units. Consequently, (7.1)
holds for all but possibly K ¡ k elements of f(j; l)gj 6=i;l=1;:::;K : Lemma 7.1 then
implies that

b̂jlik(x¡j) ¸ mik(x) ¸ mjl(x) ¸ b̂ikjl (x¡i) (7.2)

for all but possiblyK¡k elements of f(j; l)gj 6=i;l=1;:::;K : But this means thatmik(x)
is greater than or equal to all but perhaps K ¡ k marginal values of the other
bidders, as desired. So, if the proposed strategies are followed, the allocation will
be ex-post e¢cient. We now demonstrate that the proposed strategies constitute
an ex-post equilibrium.

Let p̂ik denote the K¡k+1st largest bid in the set fb̂ikjl (x¡i)gj 6=i; l=1;:::;K : If the
others employ the proposed strategies, then winning a kth unit requires bidder i
to pay an additional p̂ik; an amount that is independent of his strategy. We’d like
to show that in the proposed equilibrium, mik(x) ¸ p̂ik for every kth unit won
by bidder i; and mik(x) � p̂ik for every kth unit not won by bidder i: This being
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so, bidder i can do no better, ex-post, than to follow his proposed equilibrium
strategy. The proposed strategies would then constitute an ex-post equilibrium.

Because the former inequality follows immediately from (7.2), it remains only
to show that mik(x) � p̂ik if bidder i does not receive a kth unit. Now, if i does
not receive a kth unit, at least K¡ k+1 units are allocated to other bidders, and
so according to the auction rules,

b̂ikjl (x¡i) ¸ b̂jlik(x¡j) (7.3)

for every bidder j 6= i who receives at least l units. Consequently, (7.3) holds for
at least K ¡ k + 1 elements of f(j; l)gj 6=i;l=1;:::;K : Lemma 7.1 then implies that

b̂ikjl (x¡i) ¸ mjl(x) ¸ mik(x) ¸ b̂jlik(x¡j)

for at least K¡ k+1 elements of f(j; l)gj 6=i;l=1;:::;K : But this means that mik(x) is
less than or equal to at least K ¡ k+1 members of fb̂ikjl (x¡i)gj 6=i; l=1;:::;K ; i.e. that
mik(x) � p̂ik(x):

Proof of Theorem 6.1. Fix an ex-post incentive-compatible selling mecha-
nism (q; c). Given a vector of reported signals, x; recall that qij(x) denotes the
probability that bidder i receives at least j units and ci(x) denotes i’s payment.

De…ne
Ui(x) = qi(x) ¢mi(x)¡ ci(x); (7.4)

where qi(x) = (qi1(x); :::; qiK(x)) and mi(x) = (mi1(x); :::;miK(x)): So de…ned,
Ui(x) is bidder i’s ex-post utility in equilibrium when the vector of signals is x:

Because truth-telling is an ex-post equilibrium, the following ex-post incentive-
compatibility constraint must be satis…ed for every x¡i 2 [0; 1]N¡1 :

Ui(x) ¸ qi(ri; x¡i) ¢mi(x)¡ ci(ri; x¡i) (7.5)

for every ri 2 [0; 1]. A straightforward adaptation of standard arguments (see
e.g. Myerson (1981)), (7.5) and the continuity (by A.20) of the derivative of each
mik(x) imply that (i) Ui(xi; x¡i) is Lipschitz in xi on [0; 1] and (ii) whenever
@Ui(xi; x¡i)=@xi exists,

@Ui(xi; x¡i)

@xi
= qi(xi; x¡i) ¢Dimi(xi; x¡i); (7.6)

whereDimi(xi; x¡i) denotes theK-vector whose jth component is @mij(xi; x¡i)=@xi:

23



Being Lipschitz in xi, Ui(¢; x¡i) can be recovered from its derivative for each
…xed x¡i. And because Lipschitz functions are di¤erentiable almost everywhere
we may use (7.6) to conclude that

Ui(xi; x¡i) = Ui(0; x¡i) +
Z xi

0
qi(s; x¡i) ¢Dimi(s; x¡i)ds (7.7)

for every x = (xi; x¡i): Combining (7.4) and (7.7) the seller’s ex-post revenue can
be written as

X

i

ci(x) =
X

i;j

qij(x)mij(x)¡
X

i

Z xi

0
qi(s; x¡i) ¢Dimi(s; x¡i)ds¡

X

i

Ui(0; x¡i):

(7.8)
Thus the seller’s ex-post revenue depends only upon the probability assignment

function q and the utility of each bidder when his signal is as low as possible, and
it is strictly decreasing in the latter.

Proof of Theorem 6.3. If a selling mechanism’s truth-telling (without loss
by the revelation principle) ex-post equilibrium is ex-post e¢cient, then for every
vector of signals x; its probability assignment function fqij(x)gij must solve

max
X

i;j

qij(x)mij(x) (7.9)

subject to
P
i;j qij(x) � K and 0 � qij(x) � 1 for all i; j: Moreover for every x¡i,

A.1 and A.30 imply that qij(¢; x¡i) is, for all but perhaps one xi 2 [0; 1]; uniquely
determined, taking on the value 0 or 1: Consequently, the values of the …rst two
terms in (7.8) are unique among ex-post e¢cient ex-post incentive-compatible
selling mechanisms. Because ex-post individual rationality requires Ui(0; x¡i) ¸ 0
for every i and every x¡i; it su¢ces to show that in the Section 4.1 ex-post e¢cient
ex-post equilibrium of the auction of Section 4 each bidder obtains zero ex-post
utility whenever his signal is zero (i.e. Ui(0; x¡i) = 0 for every x¡i).

So, suppose that xi = 0 and that the others’ signals are x¡i: If bidder i
wins a kth unit in equilibrium, then according to the proof of Theorem 4.1 he
pays no more than his value, mik(0; x¡i); for that unit. Moreover, according
to the auction rules he must pay b̂ikjl (x¡i) = mjl(®; x¡i) for it for some j and
l; and some ® 2 [0; 1]: But because mjl(0; 0; x¡ij) = mik(0; 0; x¡ij); the single
crossing property A.30 implies that mjl(0; x¡i) ¸ mik(0; x¡i) and so b̂ikjl (x¡i) =
mjl(®; x¡i) ¸ mjl(0; x¡i) ¸ mik(0; x¡i): But this means that bidder i pays exactly
mik(0; x¡i) for the unit and hence obtains exactly zero (ex-post) surplus on every
unit won.
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Appendix

Proof of Lemma 7.1. It su¢ces to show that,
(i) mik(x) > mjl(x) implies b̂jlik(x¡j) ¸ mik(x) > mjl(x) ¸ b̂ikjl (x¡i); and
(ii) mik(x) = mjl(x) implies that both mik(x) and mjl(x) lie between b̂jlik(x¡j) and
b̂ikjl (x¡i):

The proofs of (i) and (ii) are considered separately, each consisting of a number
of cases.
Proof of (i). Suppose that

mik(x) > mjl(x): (a:1)

There are 3 cases to consider.
Case I. mik(xi; x¡j) < mjl(xi; x¡j): In this case,

b̂jlik(x¡j) = inf
®
mik(®; x¡j) s.t. mik(®; x¡j) < mjl(®; x¡j)

= mik(®
¤; x¡j)

where xj < ®¤ � xi; by (a.1), A.3 and the continuity of mik(¢). Consequently,
because mik(¢) is weakly increasing, b̂jlik(x¡j) ¸ mik(x):
Case II. mik(xi; x¡j) > mjl(xi; x¡j): In this case,

b̂jlik(x¡j) = sup
®
mik(®; x¡j) s.t. mik(®; x¡j) > mjl(®; x¡j)

¸ mik(x); since by (a.1) ® = xj is feasible.

Case III. mik(xi; x¡j) = mjl(xi; x¡j): In this case,

b̂jlik(x¡j) = mik(xi; x¡j) = mjl(xi; x¡j):

Consequently, A.3 and (a.1) imply that xi > xj ; so that the monotonicity ofmik(¢)
yields b̂jlik(x¡j) ¸ mik(x):

Thus we have shown that (a.1) implies b̂jlik(x¡j) ¸ mik(x): A similar argument
establishes that mjl(x) ¸ b̂ikjl (x¡i):

Proof of (ii). Suppose that

mik(x) = mjl(x) and xi ¸ xj (a:2)

Then by A.3, mik(xi; x¡j) � mjl(xi; x¡j): Hence there are just two cases to con-
sider.
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Case I. mik(xi; x¡j) < mjl(xi; x¡j): In this case,

b̂jlik(x¡j) = inf
®
mik(®; x¡j) s.t. mik(®; x¡j) < mjl(®; x¡j)

= mik(®
¤; x¡j)

where xj � ®¤ < xi; by (a.2), A.3 and the continuity of mik(¢): Consequently, by
monotonicity, b̂jlik(x¡j) ¸ mik(x):
Case II. mik(xi; x¡j) = mjl(xi; x¡j): In this case, monotonicity and (a:2) yield

b̂jlik(x¡j) = mik(xi; x¡j) ¸ mik(x):

Thus we have shown that (a.2) implies b̂jlik(x¡j) ¸ mik(x): A similar argument
establishes that mjl(x) ¸ b̂ikjl (x¡i); completing the proof.
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