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For excludable public goods, we propose simple mechanisms to uniquely
implement a (core) stable and efficient production and cost-sharing outcome:
consumers are asked to announce sequentially their minimal requested level of
public good and a subscription towards its production. In one mechanism the sub-
scriptions depend on the order of moves. In a second mechanism, the subscriptions
are order-independent and thus symmetric. The equilibrium outcomes induced by
our mechanisms are immune to strategic deviations by coalitions. Journal of
Economic Literature Classification Numbers: H41, C72, D78. � 1999 Academic Press

1. INTRODUCTION

Three key issues in the literature on public good provision are stability,
efficiency, and equity� fairness: what level of production is economically
best for the society is an efficiency question; whether a public good produc-
tion and cost-sharing rule agreed to be obeyed by noncooperative game
playing agents will result in a socially just outcome is the important issue
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of equity; finally, the equilibrium outcome(s) of the public good provision
game must be core stable, i.e., immune to deviations by coalitions. To align
all three objectives simultaneously is a difficult task.1, 2 In this paper we
propose simple mechanisms that achieve these three objectives in the case
of excludable public goods.3

Designing mechanisms�games to ensure a desirable public good produc-
tion outcome has been a popular research theme. Earlier Bagnoli and
Lipman [4] studied the core implementation problem in a discrete but
non-excludable (i.e., pure) public good economy using undominated perfect
equilibrium as the solution concept. More recently Moldovanu [11] has
analyzed an infinite horizon bargaining game to show that negotiations via
proposals and counter proposals can implement the core outcomes in
stationary subgame perfect equilibria for excludable public goods. Moore
and Repullo [13] even constructed mechanisms for general economic
environments that under certain conditions allow implementation (in sub-
game perfect equilibrium) of a general social choice function for a public
good provision problem. Our objective here departs from the above
literature both in the choice of the implemented solution as well as in the
nature of the implementing mechanism. Concerning the first, we are not
interested in core implementation per se. In fact, core has been shown to
be rather large in the case of public good production (see Moulin [14,
p. 283]). Alternatively we aim at a unique outcome for the public good
production problem, that in addition to being in the core also satisfies a
symmetry property known in the literature as horizontal equity. Regarding
the mechanism, our main concern is with simplicity. This turn on the issue
of what constitutes a ``good'' mechanism. We believe a dominant criterion
in this respect should be the prospects of actually applying the mechanism
to real life problems that fall within the boundaries of the underlying
model. This would rule out various abstract and complex mechanisms. In
the mechanisms we propose, players act sequentially and each player gets
to play not more than twice. Also, players' actions (i.e., messages) are very
simple. They are requested to announce their desirable level of public good
and a subscription towards the cost of its production. Thus our
mechanisms do not deviate much from the way real life decisions about
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1 As discussed in Moulin [14, pp. 278�279], though the equal cost-sharing rule satisfies
no-envy, an important criterion of fairness, it violates agent participation constraint and hence
cannot induce a core outcome.

2 Jackson and Moulin [9] address two of the issues��efficiency and equity; however, they
consider only the indivisible public good case and thus the issue of provision of the efficient
level is not fully explored.

3 An excludable public good's consumption, though non-rival in nature, can be restricted to
specific agents while excluding others at zero cost. Brito and Oakland [6] and Dreze [8]
were some of the initial papers to study excludable public goods.



public good production are made, and therefore are more likely to be
adopted than the abstract mechanisms available in the general implementation
literature.4

We present two sequential mechanisms. Both mechanisms are based on
sequential bids in which consumers announce their request for a minimal
level of the public good and a subscription towards its production. This is
related to the idea of demand commitment discussed by Selten [20] and
later by Winter [23, 24] in the context of bargaining. Given the consumers'
bids, the planner determines the level of public good by referring to the
maximal coalition for which the maximal demand and the total subscrip-
tion are compatible with constraints imposed by the production technol-
ogy. In the first mechanism, the bids are announced with respect to a
pre-specified order. The mechanism implements a unique, core (and thus
efficient) outcome but one which is lopsided as agents moving earlier have
a clear advantage. The second mechanism, which is somewhat like a
twofold repetition of the first mechanism, corrects for the asymmetry by
having the order of moves in the second period chosen randomly according
to a uniform distribution. Thus the second mechanism not only achieves
the efficient level of public good and yields a unique and core outcome, but
also implements a symmetric outcome. Finally, our mechanisms have an
additional desirable property: the induced equilibria are immune to
strategic deviations by coalitions, i.e., they are (perfect) strong equilibria
a� la Aumann [3].

In view of the much familiar difficulties of free-riding�inefficiency
(Bergstrom et al. [5], Andreoni [2], Admati and Perry [1], among
others) and�or multiplicity of equilibria (Palfrey and Rosenthal [18],
Bagnoli and Lipman [4], Varian [22]) even in simple public good
environments with complete information, it is worth reviewing how the
mechanisms suggested in this paper resolve the issues.5 While we maintain
the complete information assumption, our main departure from traditional
models is in the excludable nature of the public good, because of which the
agents promising to subscribe to the good's production can credibly
threaten to exclude fellow potential users from its consumption unless all
agents coordinate on cost-sharing, thus reducing the free-riding tendencies
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4 The complexity of most mechanisms in the general implementation literature is due to the
large domain of their applications; for example, the mechanism in Moore and Repullo [13]
applies to a wide class of social choice rules.

5 A recent paper by Marx and Matthews [10] examines cumulative voluntary contribution
decisions by agents to develop a public project, when some intermediate benefits can be
derived even before the project's final completion. Under complete but imperfect information,
free-riding is shown to vanish in the ``limiting'' equilibria (i.e., if the number of periods is large,
discounting is low, and period length are small), although other inefficient equilibria do exist.



at individual as well as group levels. However, the dual objectives of
efficiency and uniqueness, plus a third objective of immunity to coalitional
deviations, cannot be achieved without the sequential structure of the
demand-subscription postings. In voluntary contributions, sequentiality, by
way of sunk contributions, creates more free-riding opportunities relative
to simultaneous contributions; in contrast, the conditional commitment
power conferred by our demand-subscription mechanisms, distinct from
direct contribution games, is enhanced if the announcements are sequential
rather than simultaneous, thus ruling out potential inefficient outcomes
possible under simultaneous play;6 finally, because simultaneous play leads
to inefficient outcomes which are outside the core, there always remains the
possibility that a group of players will all benefit by deviating from, and
thus destabilizing, the equilibrium play, which is avoided in sequential
mechanisms.

The rest of the paper is organized as follows. In Section 2, we describe
the excludable public good model and define the stand alone core. The
demand-subscription mechanisms and related results are presented in
Section 3. Section 4 concludes. The proofs of two lemmas and one of the
examples are included in the Appendix.

2. THE EXCLUDABLE PUBLIC GOOD MODEL

A public good (or facility) benefiting a group of agents, N=[1, 2..., n],
is called excludable if any agent's consumption can be restricted at zero
cost to any level below the total quantity produced. Examples range from
highways, airports, zoos, museums, cable TVs, etc.��as long as the facilities
remain uncongested (see Brito and Oakland [6] on this)��to satel-
lites serving multiple long distance telephone companies�TV channels,
database shared by a network of college libraries, different community
clubs�organisations with a varying range of services, etc. As Moulin [14,
chap. 5, pp. 277�278] discusses, some public goods (see the first set of
examples above) can be produced using only a single copy of the technol-
ogy, and others (viz. the second category of examples) with a free access
technology.7, 8 If it is a single copy technology, exclusion of an agent from
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6 It is the conditional aspect of commitment, not just commitment, that tackles the
free-rider problems.

7 Strictly speaking, Moulin's classification of technologies was for (pure) public goods,
though the same classification also applies to excludable public goods.

8 To be precise, Moulin uses the term common property technology to describe what we call
single copy technology. The terminology we use is perhaps more appropriate in an excludable
public good setting because an agent may after all be denied the use of the technology by a
central authority with vested power.



the use of the overall supply of an (excludable) public good by some cen-
tral authority�planner leaves the agent with ``zero'' reservation utility. On
the other hand, if it is a free access technology, different agents can produce
different levels of output y1 , ..., yn , though, by non-rivalry, everyone can
enjoy y+=max[ y1 , ..., yn] should exclusion not occur; again the planner
can monitor consumption by the method of exclusion, but because an
agent may now choose to produce and consume on his own, his or her
stand alone payoff (i.e., reservation utility level) can be positive. For either
technology the feasible allocations in a one input�one output economy are
given by

( y; x1 , ..., xn) such that y= f \ :
n

i=1

xi+ , f (0)=0

and

0�xi�ai for all i, (1)

where y is the level of public good produced using technology f ( } ) and ai

is agent i 's endowment of input.
For any level y of the public good, the benefit to agent i is denoted by

ui ( y) and the overall cost of production is denoted by c( y), i.e., c( } ) is the
inverse of the production function f ( } ). To formally define core, we make
the following specific assumption on the type of technology.

Assumption 1. Agents have a free access to the production technology
f ( } ).

Let y* be the efficient level of public good, i.e., y* maximizes
[�n

i=1 ui ( y)&c( y)]. The following assumptions ensure that the efficient
level y* is positive, bounded and unique.

Assumption 2. (a) The production technology f ( } ) is differentiable,
increasing, and f (0)=0. Equivalently, the cost function c( } ) is differentiable
and increasing in y, and c(0)=0.

(b) The net utility to agent i, who subscribes xi in input and con-
sumes public good level y, is denoted by ui ( y, xi), which is differentiable
and increasing in y and quasi-linear in xi , i.e., ui ( y, xi)=ui ( y)&x i , and by
normalization ui (0)=0.9

(c) �i ui$( y) is decreasing in y, �i ui$( y) � 0 as y � �, and �i ui$(0)
>c$(0).
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9 The assumption of quasi-linearity is standard in the related literature on public goods. It
allows us to represent the public good game as a transferable utility game.



(d) The downward sloping aggregate marginal benefit function,
�i ui$( y), cuts the marginal cost function, c$( y), that may be increasing,
constant or even decreasing, from above only once.10

Given our free access technology assumption, an appropriate concept of
core is that of stand alone core defined by Moulin [14, p. 280] as follows:11

Definition 1. Given is a public good provision problem (u1 , ..., un ; c).
If ( y; x1 , ..., xn) is a feasible allocation given by (1), we say that coalition
S/N has a stand alone objection against it if there exists an S-allocation
( y$; xj$ , j # S) such that

(i) �S x j$=c( y$), 0�xj$�a j , all j # S;

(ii) uj ( y$, xj$)�uj ( y, xj) for all j # S, with at least one strict
inequality.

The stand alone core is the set of feasible allocations against which no
stand alone objection exists.

Under fairly mild assumptions on technology and preferences, stand
alone core of the public good provision problem (u1 , ..., un ; c) is nonempty
and quite large (see Moulin [14, Theorem 5.2(a)]); in particular, our
assumptions 1 and 2 satisfy Moulin's requirements.12 So any attempt to
guarantee a (unique) core outcome by designing a game to be played by
the agents noncooperatively is not a vacuous exercise.

3. DEMAND-SUBSCRIPTION MECHANISMS AND RESULTS

As in the general implementation literature we assume that the planner
does not know anything about agents' preferences or endowment, but
knows the production technology. The agents have complete information
about each others' preferences and endowments plus the technology. We
need a definition before we describe the mechanisms.
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10 Thus the production technology is quite general and accommodates all three
types��decreasing, increasing, and constant returns to scale.

11 With free access to the technology stand alone core has a positive interpretation, and in
the single copy technology case the interpretation is normative. So we adopt the positive inter-
pretation. Thus our framework differs from Moldovanu's [11] where all agents outside the
final coalition receive the same payoff (i.e., zero utility) instead of different agents receiving
different stand alone utilities: Moldovanu studied the single copy technology case.

12 From here onwards the word, core, should always imply stand alone core.



Definition 2. A (nontrivial13) coalition S is said to be compatible with
respect to the announcements ( yi , xi) i # N if f (� j # S xj)�maxj # S yj . Coali-
tion S is said to be a maximal compatible coalition if there is no strict
superset of S which is compatible.

Note that because the union of every two compatible coalitions is itself
compatible, the maximal compatible coalition, if it exists, is unique. We
slightly abuse the notation S also to denote the maximal compatible
coalition. We start with the following auxiliary mechanism.

The Mechanism 11 . At the beginning of the game the planner chooses
an (exogenous) order of moves for the agents. Each agent i takes his turn
to submit publicly a pair ( yi , xi), which should be understood as a demand
for at least yi level of public good and a commitment to subscribe xi

towards the production. This concludes the agents' part in the mechanism.
Given the announcements ( yi , xi) i # N , the planner determines the maxi-

mal compatible coalition S. Then he sets the level of public good at
f (�j # S xj) and excludes all agents outside S. The excluded agents enjoy
their respective stand alone utilities. This completes the description of the
mechanism 11 .

An implication of the extensive form mechanism 11 is the following
Proposition.

Proposition 1. Let E=(N, u, a; c( } )) be an (excludable) public good
economy satisfying assumptions 1 and 2. For any chosen order w, the unique
(subgame perfect) equilibrium outcome of the game, 11 , leads to no exclu-
sion. The implemented level of public good is the efficient level y* and the
resulting allocation of subscriptions is stable (in the sense of the core).

Since the proof of Proposition 1 is based on an intermediate result
(Proposition 2), we postpone the proof temporarily.

Although stable and efficient, the (unique) equilibrium outcome of
the mechanism 11 depends on the exogenous order of moves chosen by
the planner, and thus does not treat agents equally. So we now turn to a
second mechanism, 12 , whose (unique) equilibrium outcome possesses
a symmetry property in addition to the core stability.

Definition 3. A public good production and cost-sharing outcome is
said to be symmetric if it induces the same (net) utility for any two agents
with identical preferences. This implies in particular that agents with the
same preferences must make equal subscriptions.

The symmetry property��``equal treatment of equals''��is also known as
horizontal equity (Musgrave [17, p. 160], Pazner and Schmeidler [19]).
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13 A nontrivial coalition must contain at least two agents. By coalition in this paper, we
mean nontrivial coalition.



The Mechanism 12 . The mechanism 12 is somewhat like a two-stage
version of 11 . Specifically, the game starts by playing 11 with respect to a
predetermined order. After all agents make their announcements, they are
asked sequentially whether they would like to replay the game. If all say
NO, then the game ends with the planner determining the outcome accord-
ing to the rule specified in 11 . If at least one player veto the outcome, then
the planner samples a new order with a probability of 1�(n !) for each order
and 11 is played again with respect to the realized order. The resulting
outcome from this round stands as the final outcome.

The intuition for the mechanism 12 is as follows. That an agent can veto
the first-round play in the game 12 , works as the disciplining device
preventing early movers from taking ``unfair'' advantage. The use of
uniform distribution to determine the order of the second-round play deter-
mines the agents' expected payoffs, which, in particular, implies same
expectation for equals. Then the outcome in the first round must be
individually rational with respect to the continuation payoffs.

We are now ready to state our main result.

Theorem 1. Let E=(N, u, a; c( } )) be an (excludable) public good
economy satisfying assumptions 1 and 2. Then irrespective of any order w
chosen in period 1, the unique (subgame perfect) equilibrium outcome of the
demand-subscription game, 12 , leads to no exclusion. The implemented
level of public good is the efficient level y* and the resulting allocation of
subscriptions is symmetric and stable (in the sense of the core).

The following example illustrates why we need sequential mechanisms to
establish the unique, efficient outcome(s) in Proposition 1 and Theorem 1.
In the first two examples we discuss, whenever the agents move in sequence
their names will also denote the order of moves, e.g., agent 1 moves first,
agent 2 second etc.

Two-Agent Example. Consider two agents, each with utility function
ui ( y)= y1�2 and each having an access to a linear technology c( y)= y. The
efficient level of production is y*=1. The question is, whether this efficient
level can be induced in a unique equilibrium. It is easy to check that if
agents are asked to announce their demand-subscription pairs simul-
taneously once-for-all (as opposed to sequential announcements in the one-
shot game 11) and the planner implements the maximal compatible
coalition, then agent 1 bidding ( y1 , x1)=(0, 0) and agent 2 bidding
( y2 , x2)=(1�4, 1�4) is a Nash equilibrium that is also compatible and will
be implemented by the planner. Clearly the outcome, y=1�4, is inefficient.
If, however, the agents announce sequentially according to 11 , bidding
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( y1 , x1)=(0, 0) by agent 1 and bidding ( y2 , x2)=(1�4, 1�4) by agent 2,
though a Nash equilibrium, is not an SPE.14 As we argue below, the only
SPE will have agent 1 bid ( y1 , x1)=(1, 1�4) and agent 2 bid ( y2 , x2)=
(1, 3�4).

Because agent 2's stand alone utility is 1�4, he will comply with any bid
by agent 1 as long as it yields agent 2 a (net) utility of at least 1�4. Given
this, agent 1 would target the production level y to maximize the overall
social surplus u1( y)+u2( y)&c( y), i.e., announce the efficient level of out-
put y1=1, and then choose as his share of the overall cost c(1)=1 the
minimal amount necessary to leave agent 2 a (net) utility exactly equal to
1�4. This implies x2=3�4, x1=1�4, so ( y1 , x1)=(1, 1�4), ( y2 , x2)=(1, 3�4)
is an SPE. Finally, since no other combination of bids by agents 1 and
2 can yield agent 1 a (net) utility of 3�4 or more while guaranteeing agent
2 a (net) utility of 1�4, the above SPE is also unique.15 K

The superiority of sequential-move demand-subscription games in this
paper contrasts with Varian's [22] findings, in pure public good case, that
a sequential-move direct contribution game will involve greater free-rider
problem compared to a simultaneous-move direct contribution game. The
intuition for this difference goes as follows: demand-subscriptions in our
sequential mechanisms provide the agents moving early with an oppor-
tunity to make conditional commitments so that agents moving later
cannot free ride which is not possible in simultaneous versions of the
mechanisms; in Varian [22], sequential contributions, once sunk, deprive
the early movers of the conditional commitment power, whereas for
simultaneous contributions agents have one less opportunity to free ride
because contributions are no longer sunk. The distinction between ``sub-
scription'' and ``contribution'' in the context of free-riding in public goods
has been previously emphasized by Admati and Perry [1].

To prove Theorem 1, we need to analyze the equilibrium behavior of
the agents for the mechanism 12 . But then we need to analyze first the
mechanism 11 which is a proper subgame of 12 . So our approach in
the rest of this section would be as follows: develop the necessary back-
ground for an analysis of our mechanisms, provide the formal proofs of
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14 Why? Agent 2's strategy of bidding ( y2 , x2)=(1�4, 1�4) is not a Nash best response along
all subgames including the ones not reached. In particular, along the subgame induced by
agent 1 bidding ( y$1 , x$1)=(1, 1�4+=), agent 2 would do better to bid ( y$2 , x$2)=(1, 3�4&=)
where =>0.

15 If the game 12 is played, the only SPE will have agent 1 bid ( y1 , x1)=(1, 1�2) and agent
2 bid ( y2 , x2)=(1, 1�2) in period 1 resulting in an overall agreement that is also efficient and
the game does not proceed to period 2 (see the proof of Theorem 1). However, it is not
difficult to see that if the agents announce simultaneously (as opposed to announcing sequen-
tially) in the two periods of a game that is otherwise identical with the game 12 , there will
be inefficiency.



Propositions 2, 1 and Theorem 1 in this specific order, and finally establish
in Proposition 3 a desirable property of the mechanisms.

The analysis of demand-subscription games 11 and 12 will make use of
the notion of the ``greedy algorithm,'' previously used by Moulin [17] and
Winter [23] in the context of Natural monopoly and by Moulin [14] in
the context of public goods.

The Greedy Algorithm. Fix an arbitrary ordering of agents, denoted
1, ..., n. Then

v un* is agent n's stand alone utility: un*=maxy�0 un( y, c( y));

v u*n&1 is agent n&1's best utility such that (u*n&1 , un*) is feasible for
coalition [n&1, n] standing alone;

v

v

v

v u1* is agent 1's best utility such that (u1* , ..., un*) is feasible for the
grand coalition.

Thus for a predetermined order of agents, greedy algorithm gives agent
i a net utility equal to his marginal contribution in the coalition
[i, i&1, ..., n] as it expands from the smaller coalition [i&1, ..., n]; an
agent fares better coming early than late in the order w.

Definition 4. The stand alone utility of a coalition S/[1, 2, ..., n] is
given by

sa(S)= max
( y$, x$j)

:
S

uj ( y$, xj$) such that :
S

x j$=c( y$), 0�xj$�aj , j # S.

For the analysis to follow define

dn=sa([n]) (=un*),
(2)

dk=sa([k, k+1, ..., n])&sa([k+1, ..., n]), k=1, 2, ..., (n&1).

In fact, since the public good game is a transferable utility game by
assumption 2(b),

di=ui* for all i.

Also,

di�sa([i]) for all i.

The following result is due to Moulin [14, Theorem 5.2(a), pp. 281�283].
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Lemma 0. The greedy algorithm utility vector (di) belongs to the core.

Later on in the proof of Proposition 1 we will show that the mechanism
11 induces the allocation defined by the greedy algorithm as its unique
subgame perfect equilibrium. But before that we need a number of lemmas.

Since y*>0 and any core outcome is necessarily efficient, it must be that
for at least one agent i in the order w, di>0.

Lemma 1. Let di>0 for some i in the order w. Then for all j<i, dj>0
and moreover dj>sa([ j]).

Fix an order w. Let h(w) be the highest i<n in the order w with di>0.
Define P=[h(w)+1, ..., n], and PC=N"P.16 Consider any set S/N :=
[1, 2, ..., n], where S & PC{<.

Lemma 2. If P/3 S, then sa(S)<�i # S di .

We note the following corollary to Lemma 2 for future reference.

Corollary 1. Fix an order w. Then for agent h(w), sa([h(w)])<dh(w) .

Lemma 2 highlights the pivotal role of each of the ``last few agents'' (i.e.,
the members of P) in inducing the grand coalition in the game 11 : Even
if an agent j in P may not necessarily have a strictly positive marginal
contribution in the greedy algorithm for the order w,17 will, however, have
an important contribution towards the overall utility of any group S
(where S & PC{<) in the game 11��if any agent j in P is missing from
a coalition S in the game 11 , the coalition S will fail to achieve its greedy
algorithm utility level �i # S di . Lemma 1 shows that any agent i (other than
agent n) who has a positive utility in the greedy algorithm (di>0) will get
strictly less by standing alone in the game 11 . Thus the combined message
of Lemmas 1 and 2 is simple: The agents heavily rely on each other, par-
ticularly on the last few agents,18 for the realization of their mutual
benefits; this acts as a bonding device making the task of coalition forma-
tion in the game 11 relatively less difficult. Similar incentives for coopera-
tion have been previously noted in different contexts by Winter [24] and
Moldovanu and Winter [12].

Next we discuss a three-agent example to illustrate the workings of
the sequential mechanisms in the coalition formation process. The
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16 Agent n always belongs to P, while some others may or may not belong to P.
17 If dn>0 then di>0 for all i<n (by Lemma 1) in which case agent n is the only agent

among the last few agents.
18 The pivotal role of the last few agents will be crucial in the coalition formation process,

as the proof of Proposition 1 will show.



insights gained from this example are further formalized and presented in
Proposition 2.

Three-Agent Example. Instead of two agents in the previous example,
we now have three agents, each with utility function ui ( y)= y1�2 and each
having access to the technology c( y)= y, play the game 11 . Demand-sub-
scription announcement ( y1 , x1) by agent 1 induces a subgame along
which agent 2 responds by announcing ( y2 , x2), and this is followed in the
final subgame by agent 3 announcing ( y3 , x3). Start from the final sub-
game: agent 3, because of his stand alone (net) utility 1�4, will submit a bid
compatible with previous bids as long as he gets 1�4 (net) utility out of it.

Agent 2's reasoning now goes as follows. Given an announced bid of
( y1 , x1) by agent 1, agent 2 will target the production level y that maxi-
mizes u2( y)+u3( y)&c( y) and then decide on a subscription that will leave
agent 3 a (net) utility 1�4. This means that if y1�1 then agent 2 will
propose (1, x2) such that x2=1&x1&3�4. However, if y1>1 then agent 2
reasons as follows: If there exist x2 and x3 such that x1+x2+x3� y1 and
y1�2

1 &x2�3�4, y1�2
1 &x3�1�4, then agent 2 bids the smallest x2 , satisfying

these (inequality) restrictions, as his subscription towards y1 (recall, 3�4 is
the maximal net utility agent 2 can attain by cooperating with agent 3
alone); if, on the other hand, there exist no such x2 , x3 then agent 2 bids
(1, 1�4) and relies on agent 3's subscription of 3�4, in which case agent 1
will be excluded.

Finally, consider the decision process of agent 1 at the beginning of
the game. Agent 1 will target the production level maximizing the total
(net) utility of all three agents, 3y1�2& y, which gives y1= y*=9�4. Now
to determine his own cost-share, agent 1 will leave a (net) utility of 3�4 to
agent 2 and 1�4 to agent 3. So agent 1 can rely on a subscription of 3�4 by
agent 2 and 5�4 by agent 3, and his remaining cost-share is only 1�4 and
(net) utility 5�4, i.e., the equilibrium bids for the overall game 11 are
( y3 , x3)=(9�4, 1�4), ( y2 , x2)=(9�4, 3�4), ( y1 , x2)=(9�4, 5�4).

Thus, the coalition formation process unfolds from the final subgame
backwards, the grand coalition forms and the final (net) utility vector is
(5�4, 3�4, 1�4). K

Proposition 2 is an intermediate step to Proposition 1.

Proposition 2. Let E=(N, u, a; c( } )) be an (excludable) public good
economy satisfying assumptions 1 and 2. Fix an order w on N and the agents
are re-named according to their positions in the order w. Now let
1<k�h(w) and consider the subgame 1 k

1 (of the demand-subscription game
11) starting with k's demand-subscription announcement after 1, 2, ..., k&1
already announced their demand-subscription pairs ( y1 , x1), ( y2 , x2), ...,
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( yk&1 , xk&1). Suppose ( y i , xi) are such that u i ( yi)&xi�di for 1�i�k&1.
Then all equilibria in the subgame 1 k

1 will have demand-subscription announ-
cements pj=( yj , xj) such that uj ( yj)&xj=d j for j=k, ..., n; also the pj 's are
compatible, and the maximal compatible coalition in equilibrium along the
subgame 1 k

1 must include the agents [n, n&1, ..., k].

Proof. We will use an induction argument. The original game 11 is an
extensive form game with a finite number of subgames, and the equilibrium
result to be established is for the subgame 1 k

1 . There are two possibilities
to consider: h(w)=n&1 and h(w)<n&1. Initially assume that
h(w)=n&1 and use induction argument on k. First consider k=n&1.

Suppose pn&1=( yn&1 , xn&1) is such that un&1( yn&1)&xn&1>dn&1 .
Since (di) belongs to core (Lemma 0), for pn&1 to be compatible with
some other demand-subscription pair(s) it must be that pn=( yn , xn)
satisfies un( yn)&xn<dn . But this is not possible as agent n can guarantee
himself dn by standing alone.

Suppose pn&1=( yn&1 , xn&1) is such that un&1( yn&1)&xn&1=dn&1 .
For such a claim by agent n&1 to be fulfilled, both agent n and agent n&1
must necessarily be included in the maximal compatible coalition to be
chosen by the planner��this follows directly from Lemma 2.19, 20 The rele-
vant question is whether agent n&1 can indeed expect to be included, and
thus his claim fulfilled, in the maximal compatible coalition to be finally
chosen by the planner. In the following we answer this to be in the positive.

Claim 1. Along all equilibria in the subgame starting with agent n&1's
move, agent n&1 will announce a suitable pn&1=( yn&1 , xn&1) with the net
payoff dn&1 , and agent n will announce a suitable pn=( yn , xn) satisfying
un( yn)&xn=dn so that both pn&1 and pn are part of the maximal
compatible coalition to be chosen by the planner.

Proof of Claim 1. To establish Claim 1, a number of subtle aspects
need to be examined. Suppose agent n&1 announces a pn&1=( yn&1 ,
xn&1) such that un&1( yn&1)&xn&1=dn&1 . Since (di) belongs to core,
given the announcements of the rest of the agents agent n can receive at
most dn ; so, agent n may not (credibly) claim more than dn .21 Thus the
possible (credible) strategies of agent n are:
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19 It is possible that this maximal compatible coalition consists of only agent n and agent
n&1, if, say, agent n&2 claims strictly more than dn&2 ; it is also possible that the maximal
compatible coalition consists of some of the other agents as well.

20 If not included in the maximal compatible coalition, agent n&1 receives his stand alone
utility sa([n&1]) which is less than dn&1 (see Corollary 1).

21 So claiming more than dn cannot be used as a strategic threat by agent n; however, agent
n may very well use the claim of dn as a credible threat strategy, as it will be clear from the
arguments to follow.



(a) Agent n chooses to stand alone22 and receive only dn , in which
case the planner will not be able to recommend a compatible coalition
and all the agents will receive only their respective stand alone utilities��
a direct implication of Lemma 2;

(b) Agent n announces a demand-subscription pair so that the induced
maximal compatible coalition will exclude agent n&1, but at the same time
will include some (or all) agent(s) preceding agent n&1;

(c) Agent n announces a demand-subscription pair so that the
induced maximal compatible coalition will include agent n&1 and agent n
himself, and agent n receives only dn .

The question is why should agent n choose (c), i.e., announce a demand-
subscription pair inducing a maximal compatible coalition that includes
agent n&1 with agent n&1 getting a payoff of dn&1 and agent n himself
getting only dn . Why not agent n instead choose to stand alone and get a
payoff dn as in (a), or alternatively induce a maximal compatible coalition
that will exclude agent n&1 as in (b)? By choosing (b) (when such an
alternative is available to agent n), agent n can never obtain strictly more
than dn (because (di) belongs to core).23 On the other hand by choosing
(a) (or sometimes (b), when alternative (b) gives agent n a (net) utility dn),
agent n can threaten agent n&1 to push him to his stand alone utility
sa([n&1]) which is less than dn&1 (by Corollary 1) and thus induce agent
n&1 to concede agent n strictly more than dn along the subgame starting
with agent n&1's move. Faced with this possibility agent n&1 would
always prefer to concede agent n slightly more than dn , say =>0, to get
agent n to announce a demand-subscription pair that would induce a maxi-
mal compatible coalition including agent n&1 (Why? Agent n&1 himself
will not be able to induce a maximal compatible coalition that would
exclude agent n and receive a payoff close to dn&1 , as Lemma 2 shows; but
he can achieve arbitrarily close to dn&1 by conceding agent n only small
=>0.). But then agent n&1 will have no best response as he would like to
concede agent n as little as possible. Thus strategy (a) or strategy (b) can-
not be part of a subgame perfect equilibrium; agent n will choose strategy
(c). So, along the subgame starting with agent n&1's move, the maximal
compatible coalition induced in equilibrium must contain [n, n&1]. (It is
possible that announcement by agent n is such that the induced maximal
compatible coalition will include some or all of the other agents preceding
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ing his demand-subscription pair in the mechanism 11 (or in the mechanism 12), the agent
can always announce an infeasible demand-subscription pair which is equivalent to standing
alone.

23 It is possible that agent n in fact gets less than dn in which case strategy (b) is dominated
by strategy (a).



agent n&1, as well.) The only other point to be clarified is how yn&1 and
yn compare. Since bidding is for public goods, agents [n, n&1] will
necessarily agree on a common level of the public good (existence guaran-
teed by the definitions dn=sa([n]), dn&1=sa([n&1, n])&sa([n]); see
also in this context Moulin's [14, p. 282] construction of the subscription
vector (x1* , ..., xn*)) so that yn&1= yn . This completes the proof of Claim 1.

Now assume that the Proposition is true for all j, k< j<n. Consider k's
decision. If k announces pk=( yk , xk) such that uk( yk)&xk=dk , then by
the induction assumption pj=( yj , x j) is such that uj ( yj)&xj=d j for all
j>k, and the coalitions [n], [n, n&1], ..., [n, n&1, ..., k] are all com-
patible since the agents in a coalition will choose suitably the same public
good level. Now apply the lack-of-best-response argument as follows.
Coalition-payoff combination [n; dn] cannot be part of a subgame perfect
equilibrium (see the argument in the previous paragraph used to establish
Claim 1). Similarly, coalition-payoff combination [n, n&1; dn , dn&1] can-
not be part of a subgame perfect equilibrium. Why? Agent n&2 would
rather accept dn&2&= and concede =>0 to the last two agents to induce
them to announce demand-subscription pairs leading to a maximal com-
patible coalition that includes agent n&2;24 by Lemma 2, agent n&2 by
standing alone will not be able to get a payoff close enough to dn&2 . But
then agent n&2 prefers conceding as little = as possible. Apply similar
reasoning to conclude that the maximal compatible coalition in equilibrium
along the subgame 1k

1 must include the agents [n, n&1, ..., k]. (It is
possible that the planner will be able to include, in the maximal compatible
coalition, some or all of the other agents preceding agent k, as well.) Also,
these agents will necessarily agree on a common level of public good so
that yk= } } } = yn&1= yn . So announcing pk=( yk , xk) such that uk( yk)&
xk<dk is ruled out. Ruling out an announcement pk=( yk , xk) such that
uk( yk)&xk>dk is easy: by the induction assumption, pj=( y j , x j) is such
that uj ( yj)&x j=dj for all j>k; since (di) belongs to core, pk will not be
compatible with any other demand-subscription announcement(s) nor can
it be achieved by agent k standing alone.

Finally, relax the assumption that h(w)=n&1. Suppose h(w)<n&1.
Now go back to our argument for the case when h(w)=n&1. There the
assumption h(w)=n&1 has been used in two instances: first (refer foot-
note 20), to ensure that agent n&1 will not be able to realize dn&1>0 by
standing alone because sa([n&1])<dn&1 , so agent n&1 must announce
suitably such that both agent n&1 and agent n are included in the maxi-
mal compatible coalition chosen by the planner; second (refer the
argument establishing Claim 1), to argue that agent n&1 (resp. similar
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subscription pairs and induce a maximal compatible coalition that leave out agent n&2.



other agents j<n&1 in the backwards-induction chain) would rather con-
cede agent n (resp. the group of later agents j+1, ..., n to follow) some =.
Now in both the instances described above what is important is that agent
n&1 (resp. similar other agents in the backwards-induction chain) be con-
fronted with some strictly positive gain, like dn&1 , that he cares about, but
which cannot be realized unless the maximal compatible coalition induced
includes also agent n (resp. all the agents to follow including agent n). Now
when h(w)<n&1, dj=0 for j=h(w)+1, ..., n. But then, as Lemma 2
shows, agent h(w)'s strictly positive marginal gain, dh(w) (>sa([h(w)])),
cannot be arbitrarily closely realized unless agent h(w) can also induce a
maximal compatible coalition that will include each single agent following
him all the way to agent n (i.e., the agents h(w)+1, h(w)+2, .., n). This can
be done if agent h(w) concedes in the form of an incentive a strictly positive
=1 to the agents to follow: once =1>0 trickles down to agent h(w)+1, he
will pass a fraction of =1 , say =2=#=1>0, to agent h(w)+2, etc. So the
arguments used to establish the Proposition for h(w)=n&1, continue to
hold for the case when h(w)<n&1. Q.E.D.

We now provide the formal proofs of Proposition 1 and Theorem 1.

Proof of Proposition 1. Consider agent 1's announcement decision.
If agent 1 announces p1=( y*, x1) such that u1( y*)&x1=d1 , then by
Proposition 2 agent j will announce pj=( y*, xj) satisfying u j ( y*)&xj=dj ,
2� j�n and the (only) maximal compatible coalition induced in equi-
librium is the grand coalition (by the lack-of-best-response argument).
So announcing p1=( y1 , x1) such that u1( y1)&x1<d1 is not optimal for
agent 1. Announcing p1=( y1 , x1) such that u1( y1)&x1>d1 is not optimal
for agent 1 either, because then by Proposition 2 the maximal compatible
coalition induced in equilibrium along the subgame 1 2

1 and implemented
by the planner will exclude agent 1.

In particular, announcement of any y{ y* by agent 1 will fail to yield
d1 for agent 1. Why? Such an y is inefficient and not in the core. So for
agent 1 to receive d1 , some other agent must accept less than his greedy
algorithm utility. Let j be the first such agent to receive less than dj .
But by Proposition 2, agent j can always guarantee dj by announcing a
suitable y$ that achieves sa([ j, j+1, ..., n]) and inducing the agents fol-
lowing j to coordinate on y$��thus contradicting that agent 1 can obtain
d1 by announcing y{ y*. So agent 1 will announce the efficient level,
y*. Similarly agents 2, ..., n will announce y*��incentives for inefficient
y-announcements by the ``last few agents'' are ruled out in subgame perfect
equilibrium by an argument very similar to the one in Proposition 2 ruling
out the stand alone alternative for agent n.

So the sequential announcements of pj=( y*, xj) satisfying uj ( y*)&x j=
dj , 1� j�n and the implementation by the planner of the grand coalition
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as the maximal compatible coalition is a subgame perfect equilibrium of
the game 11 . It can be verified that xj=xj* , 1� j�n, where xj*'s are the
greedy algorithm subscriptions corresponding to y*��see the construction
of the xj*'s in Moulin's [14, pp. 281�283] proof of Theorem 5.2. The
uniqueness of the equilibrium follows from the uniqueness of the efficient
level y* and the assumption that uj ( y, xj) is increasing in y and decreasing
in xj for all j (Assumption 2(b)). To summarize: The game 11 uniquely
implements the efficient level y*, results in an allocation of subscriptions
that gives rise to the core utility vector (di) , and no agent is excluded in
equilibrium. Q.E.D.

Proof of Theorem 1. Suppose the game 12 proceeded to period 2 and
consider this second-period-play subgame from an agent's point of view.

For each order w and agent j in N, let w( j) be j's place in the order w.
Define 0j, i=[w : w( j)=i], i.e., the set of all orders with agent j in the i th
place (the cardinality of 0j, i equals (n&1)!, as there are (n&1)! ways of
having agent j in the i th place). Now, for a specific realized order w in
period 2, calculate agent j's payoff who is in place w( j)=i. Since period 2
is the final period, payoffs are calculated exactly as in Proposition 1: Agent
j receives exactly equal to his marginal contribution dj, i in the order w (see
the definitions of di 's in (2)).25 In fact, dj, i should further have the order w as
an argument because the marginal contribution of an agent depends on the
specific order: dj, i (w). Now step back to just when an order w is to be drawn
and calculate j's (ex-ante) expected payoff in period 2 play as follows:

* j=
[Dj, 1+D j, 2+ } } } +Dj, n]

n
, where Dj, i=

1
(n&1)!

:
w # 0j, i

dj, i (w).

(Dj, i is the expected payoff of agent j conditional on appearing i th in the
order.) Agent j is just a metaphor for any agent, and because the (net)
utility vector (di) belongs to core and the core is convex (due to trans-
ferable utility assumption), the (ex-ante) expected payoff vector for period
2 play, denoted by (* j) , corresponds to a unique (interior) name-specific
core outcome ( y*; (x̂j)j # N) of public good level and individual subscrip-
tions irrespective of the order w.26 Moreover, since all agents get an equal
chance of being selected in each specific slot�rank in the random draw
for the second-period play of the game 12 , the agents with identical
preferences will receive exactly the same (net) expected utility in the
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25 To be precise, (2) defines only di which is the greedy algorithm utility of an agent in place
i for a given order w; dj, i is same as d i , with the additional subscript j now explicitly denoting
the agent's real name.

26 The uniqueness follows from the uniqueness of the efficient level y* and the assumption
that uj ( y, xj) is increasing in y and decreasing in xj for all j.



second-period-play subgame. This in turn implies that the agents with iden-
tical preferences will have exactly the same payoff in the core outcome
( y*; (x̂ j) j # N) , which further implies that they will make the same
individual subscriptions. Thus the specific core outcome, ( y*; (x̂j) j # N) , is
symmetric (refer Definition 3).

Now go back to period 1 play with any predetermined order w$. An
agent (or player) in the order w$, while deciding his optimal strategy in
period 1, must account for the likely outcomes for each of the players in
the game (including himself) if the game were to proceed to period 2. The
first-period play (of the overall game 12) is now very much like the one-
shot play of the game 11 as in Proposition 1, except that now the players'
stand alone payoffs are determined by the vector (* j). [Why? If any
player j receives less than * j, he will veto the outcome in period 1 play and
the game would proceed to period 2 that will give him an expected utility
of * j.] Now apply Proposition 2 and Proposition 1 with (* j) replacing
the corresponding elements of (di): Agent 1 (whose real name is Leo, say)
in the order w will announce p1=( y*, x̂1) satisfying u1( y*)&x̂1=*L;
agent 2 (whose real name is Brian, say) will announce p2=( y*, x̂2) satisfy-
ing u2( y*)&x̂2=*B; etc. Thus the net utility vector (* j) is realized in
period 1 itself which is a subgame perfect equilibrium of the game 12 , and
our claims are almost established. Why almost? Still we need to explain
why an agent may simply be content getting ex-post in period 1 a payoff
equal to the (ex-ante) expected payoff from period 2 play, and not prefer
to proceed to period 2. Here we assume that all agents (even when they are
risk-neutral, as we have assumed) have a lexicographic preference for
period 1 settlement over the option of going to period 2 and realizing the
same utility ex-ante. (Alternatively one may assume that the agents dis-
count the future mildly.) Thus the subgame perfect equilibrium
( y*; x̂1 , ..., x̂n) ,27 with the implementation by the planner of the grand
coalition in period 1 as the maximal compatible coalition, is unique: since
the game does not proceed to period 2, invoke the same uniqueness argu-
ment as in Proposition 1. Implementation of the grand coalition implies
no-exclusion. Already we have shown that the ex-post outcome
( y*; x̂1 , ..., x̂n) is symmetric. Also, the equilibrium output y* is efficient.

Q.E.D.

The following corollary is a direct implication of Theorem 1.

Corollary 2. The symmetric outcome implemented in Theorem 1 is
same as the Shapley value solution (Shapley [21]) of the underlying
characteristic function game defined by (2).
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In the Appendix we demonstrate, in a non-symmetric and extended
version of our previous two-agent example, how the Shapley value arises
from our mechanism.

Remark. First, Shapley value solution is considered to be a standard
equity criterion in the fair-division literature [14, p. 403], hence the
mechanism 12 achieves something more than horizontal equity. Second,
although in the mechanism 12 we use a random device in determining the
order of play in the second-stage to eliminate the early-mover-advantage in
the first-stage play, the random order selection rule is never used ex-post
because the grand coalition forms in stage 1 itself.28 Third, the importance
of excludability to implement the efficient public good level and thus overcome
the free-rider problem is worth emphasizing. Minus this characteristic, our
demand-subscription game is ineffective. Some of the other works in
excludable public good setting (e.g., Moulin [15], Deb and Razzolini [7])
sacrifice efficiency to explore a different but equally interesting and more
demanding aspect of the demand-revelation issue, that of strategy-proofness.

Another desirable property of the mechanisms 11 and 12 is the fact that
the equilibria implementing the public good outcome are also ``strong" in
the sense of Aumann [3].

Definition 5 (Aumann [3]). A strong equilibrium in an n-player game is
an n-tuple of strategies for which no coalition of players can simultaneously
all do better for themselves by moving to different strategies, while the players
outside of the coalition maintain their original strategies.

Proposition 3. The subgame perfect equilibria of 11 and 12 and of all
the subgames, 1 k

1 , starting with agent k's announcement in the game 11 , are
strong equilibria.

Proof. First consider the equilibria along the subgame 1 k
1 . For k=n,

the only coalition possible is the single-agent coalition [n]. By Proposition
2 agent n cannot improve his payoff over dn by switching from his equi-
librium strategy to another strategy, hence the (strong-equilibrium)
hypothesis holds for the final subgame 1 n

1 . Now assume that the hypothesis

90 BAG AND WINTER

28 Instead of using the random device as in our mechanism 12 , the order of moves can
possibly be endogenized as follows: conduct a sealed-bid conditional all-pay auction for each
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of bids proviso the sum is nonnegative (individual bids can be negative or positive) and ask
the players to pay their bids for this particular order (a player making a negative bid in fact
receives a transfer), and play the game 11 only once with respect to this order. However,
whether such an auction mechanism or some variation of it can induce a desirable core out-
come is an open question. In contrast to the simple mechanisms in this paper, auctioning the
order-of-play would enhance strategic complexity.



is true for k= j, j<n, and consider k= j&1, i.e., the subgame 1 j&1
1 .

Agents i=1, ..., j&2 already announced demand-subscription pairs ( yi , x i)
such that ui ( yi)&xi�di . If any coalition C/[ j&1, j, ..., n] improves,
contrary to Proposition 3, by switching to some non-equilibrium strategies,
then j&1 must have chosen a strategy different from his equilib-
rium strategy and hence is part of the coalition C. (If j&1 stayed with his
equilibrium strategy which meant announcing ( yj&1 , xj&1) such that
uj&1( yj&1)&xj&1=d j&1 , then the profitable coalitional deviation by C

would contradict the assumption that the hypothesis is true for k= j.) In
particular, j&1 must have announced some ( ŷj&1 , x̂j&1) such that
uj&1( ŷj&1)&x̂j&1>d j&1 . Also C must contain at least one member from
the set [ j, ..., n]. Because if all members in [ j, ..., n] stayed with their
original equilibrium strategies specified in Proposition 2 and j&1 received
more than dj&1 by announcing ( ŷj&1 , x̂ j&1), then the equilibrium strategy
of j&1 in Proposition 2 is contradicted. Let l # [ j, ..., n] be one such agent
who is a member of the deviating coalition C and so receives more than dl .
But this then would contradict that the (subgame perfect) equilibria of the
subgame 1 j

1 are strong equilibria. So it must be that the hypothesis is true
for k= j&1 as well. Already we have shown that the hypothesis is true for
k=n. So, by induction, our proposition is established for the subgame
perfect equilibria of all the subgames 1 k

1 .
By a similar argument, the respective (unique) subgame perfect equilibrium

outcomes of the games 11 and 12 are also strong equilibrium. Q.E.D.

4. CONCLUSION

In this paper we have proposed two sequential mechanisms that induce two
very different core outcomes��one extreme outcome, another non-extreme (i.e.,
interior) outcome. We do not suggest that a planner should use the first
mechanism for actual policy purposes as it involves discrimination between
agents ex-post; this mechanism is only an intermediate step to a second
mechanism that is more equitable. The second mechanism is very much like a
twofold repetition of the first mechanism, is simple enough to apply, is finite,
and treats agents symmetrically ex-post. Finally, although the public good is
excludable and the mechanisms in this paper recommend exclusion under some
circumstances, in equilibrium exclusion does not occur and only the grand
coalition forms.

APPENDIX

Proof of Lemma 1. Let ŷ>0 achieve sa([i, i+1, ..., n]). Consider
j=i&1. Since ui&1( y, xi&1) is increasing in y and ui&1(0)=0, hence
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ui&1( ŷ, 0)>0. Let y i&1�0 be agent i&1's stand alone choice of the public
good level and sa([i&1])�0. Now expand the coalition [i, i+1, ..., n] by
including agent i&1. The expanded coalition can always produce and
consume y~ =max[ ŷ, yi&1] with a cost c( y~ )=max[c( ŷ), c( yi&1)]�c( ŷ)
+c( yi&1) so that di&1=sa([i&1, i, i+1, ..., n])&sa([i, i+1, ..., n])>
sa([i&1])�0. The same argument extends to all j<i&1. Q.E.D.

Proof of Lemma 2. Suppose P/3 S. Since (di) belongs to core,
sa(S)>�i # S di is not possible. Alternatively assume that sa(S)=�i # S di .
This, we will argue, is also impossible.

First consider dn>0. By Lemma 1 d j>0 for all j, hence P=[n]. Thus
agent n does not belong to the set S. By definition sa([n])=dn . Let yn>0
be agent n's stand alone choice of the public good level and x~ n=c( yn).
Since �i # S di>0, stand alone choice of the public good level by the coalition
S must be positive: yS>0. Choose the (input) subscriptions x~ i , i # S, with
�i # S x~ i producing yS, such that each i receives exactly his greedy algorithm
utility di . Now expand the coalition S to S$ by including agent n, produce
y+=max[ yS, yn], and allocate the cost c( y+)=max[c( yS), c( yn)]<
c( yS)+c( yn) in such a way that the subscriptions of the members of S remain
unchanged at their original levels, xi=x~ i , and agent n subscribes only
xn=c( y+)&c( yS)<x~ n . Thus each member in the expanded coalition S$
receives at least as much utility as his share in the core utility vector (di) and
agent n receives more than dn , contradicting that (di) belongs to core.

Now consider dn=0. Suppose some agent k in P does not belong to S.
By definition, sa([k])=dk=0. yS>0 because � i # S di>0 (recall, S & PC

{<). So choose the subscriptions x~ i , i # S, with �i # S x~ i producing yS,
such that each i receives exactly his greedy algorithm utility di . Now
expand the coalition S to S E by merely including agent k and allowing him
to consume yS without having to subscribe anything. This coalition S E

thus blocks the core allocation (di) , a contradiction.
So it must be that sa(S)<�i # S di . Q.E.D.

Example: Shapley Value Outcome. Consider a three-agent example:
agents i=1, 2 have utility function ui ( y)= y1�2, agent 3's utility function is
u3( y)=2y1�2, and the technology is c( y)= y. In the following, first we
calculate the agents' equilibrium bids for each order of play in the second
stage of the game 12 .

Consider the order w1=3, 2, 1 and analyze the moves in the reverse
order. Agent 1 calculates his stand alone payoff by maximizing u1( y)&
c( y)= y1�2& y, which gives ysa

1 =1�4 and sa([1])=1�4. So agent 1 would
cooperate with any bid by agent 2 and agent 3 that gives him a payoff at
least 1�4. Next agent 2 calculates his marginal contribution sa([2, 1])&
sa([1]) first by maximizing u1( y)+u2( y)&c( y)=2y1�2& y and then leaving
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a (net) utility 1�4 to agent 1. This produces a payoff of 3�4 to agent 2, so
now agent 2 would cooperate with agent 3's bid as long he gets at least 3�4.
Finally agent 3 calculates his marginal contribution sa([3, 2, 1])&
sa([2, 1]) by maximizing u1( y)+u2( y)+u3( y)&c( y)=4y1�2& y (thus
selecting the unique, efficient output y*=4) and then leaving (net) utilities
1�4 to agent 1 and 3�4 to agent 2. This produces compatible bids ( y3 , x3)=
(4, 1), ( y2 , x2)=(4, 5�4) and ( y1 , x1)=(4, 7�4), resulting in net payoffs
(v1 , v2 , v3)=(1�4, 3�4, 3). By symmetry between agents 1 and 2,
equilibrium bids for the order w2=3, 1, 2 are ( y3 , x3)=(4, 1), ( y1 , x1)=
(4, 5�4) and ( y2 , x2)=(4, 7�4), and the net payoffs are (v1 , v2 , v3)=
(3�4, 1�4, 3).

By a similar exercise, equilibrium bids for the order w3=2, 3, 1 are
( y2 , x2)=(4, 1�4), ( y3 , x3)=(4, 2) and ( y1 , x1)=(4, 7�4) resulting in net
payoffs (v1 , v2 , v3)=(1�4, 7�4, 2). By symmetry between agents 1 and 2,
equilibrium bids for the order w4=1, 3, 2 are ( y1 , x1)=(4, 1�4), ( y3 , x3)=
(4, 2) and ( y2 , x2)=(4, 7�4), and the net payoffs are (v1 , v2 , v3)=
(7�4, 1�4, 2).

Similarly, equilibrium bids for the order w5=2, 1, 3 are ( y2 , x2)=
(4, 1�4), ( y1 , x1)=(4, 3�4) and ( y3 , x3)=(4, 3) resulting in net payoffs
(v1 , v2 , v3)=(7�4, 5�4, 1). By symmetry between agents 1 and 2,
equilibrium bids for the order w6=1, 2, 3 are ( y1 , x1)=(4, 1�4), ( y2 , x2)=
(4, 3�4) and ( y3 , x3)=(4, 3), and the net payoffs are (v1 , v2 , v3)=
(5�4, 7�4, 1).

All orders are equally likely. Now calculate agent 1's expected payoff
from stage 2 play of 12 : (1�6)[v1(w1)+v1(w2)+v1(w3)+v1(w4)+v1(w5)+
v1(w6)]=(1�6)[(1�4)+(3�4)+(1�4)+(7�4)+(7�4)+(5�4)]=1. By sym-
metry, agent 2's expected payoff is also 1. Agent 3's expected payoff
is (1�6)[v3(w1)+v3(w2)+v3(w3)+v3(w4)+v3(w5)+v3(w6)]=(1�6)[3+3+
2+2+1+1]=2.

Now going back to stage 1 of 11 , for any order of play the equilibrium
bids are always ( y1*, x1*)=(4, 1), ( y2*, x2*)=(4, 1), ( y3*, x3*)=(4, 2) so
that the resulting payoff vector is (v1*, v2* , v3*)=(1, 1, 2). Next we show
that this payoff vector corresponds to the Shapley value.

The characteristic function of the three-agent cooperative game, defined
by the technology and the preferences, is given by

sa([1])=sa([2])=1�4, sa([3])=1,

sa([1, 2])=1, sa([1, 3])=sa([2, 3])=9�4,

sa([1, 2, 3])=4.

It is straightforward to check that the Shapley value is (1, 1, 2).
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