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We show that a single-valued solution of nonatomic finite-type market games (or
perfectly competitive TU economies underling them) is uniquely determined as the
Mertens value by four plausible value-related axioms. Since the Mertens value is
always in the core of an economy, this result provides an axiomatization of a core-
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1. INTRODUCTION

Among the solution concepts of cooperative game theory, the core is one
of the most straightforward and widely used. However, stability conditions
defining it are too strong for some games, and too weak for others: large
classes of games possess no core, and when the core is nonempty, it is
usually multivalued.

The Shapley [14] value avoids these two shortcomings. Defined as a
mapping that assigns a single payoff vector to any game, subject to certain
plausible axioms, it exists and is unique, on finite games [14], and when
agents form a nonatomic continuum (a natural assumption in models of
perfect competition), appropriately modified axioms also lead to a unique
value on important spaces of nonatomic games (Aumann and Shapley
[2]). In computational terms, these values are based on the principle of
assigning an agent his average marginal contribution to coalitions he may
join, in certain models of random ordering of the agents.
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On general classes of nonatomic games there may be no value, and the
core may be empty. This changes, however, if we restrict our attention to
the class of market games, derived from transferable utility (TU) perfectly
competitive economies. The core of a market game is always nonempty.
Moreover, if all agents have differentiable utility functions, then the
(Aumann�Shapley) value is also well defined, and this value turns out to
be the unique element of the core.

Without the differentiability assumption, the core of a market game is
multivalued in general. But even in this scenario, all known values have the
property of being elements of the core. Indeed, all (asymptotic) measure-
based values (of Hart [8]) of a nonatomic market game are contained in
its core, and so is the value of Mertens [10] (which is, in fact, defined on
a large space of games2 that includes all nonatomic market games).3

As a mechanism that selects an element of the core for every market
game, the value has obvious merits. Arbitrary core selections can lead to
distortions, e.g., significant differences in payoffs in ``close'' economies, dis-
crimination between agents, and inconsistencies between choices. This is
not the case with values, where the choices of payoff measures in different
games are linked to each other via the value axioms, in a consistent and
economically meaningful way. The important and natural question that
arises is whether the properties of the value can, in fact, determine a unique
core selection on the domain of market games.

In this paper we show that the following four properties (axioms) can
accomplish this job on the set of nonatomic finite-type market games (i.e.,
those induced by economies with finitely many types of utility functions
and endowments):

(1) efficiency��the total payoff to the agents equals their joint payoff
in the market game, i.e., the maximal aggregate utility they can achieve by
redistributing initial endowments;

(2) anonymity��relabeling the agents does not affect their payoffs,
which are simply relabeled accordingly;

(3) separability��if a market game corresponds to an economy with
two separate parts, then any agent's payoff in it is the sum of his payoffs
in the games derived from each part;

(4) contraction��the distance between the payoffs does not exceed
the distance between the market games.
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Axioms (1) and (2) precisely correspond to the value axioms of efficiency
and symmetry. Separability (3) is a weaker version of additivity, and is
tailored to fit the context of market games (which do not form a linear
space, as is typical of the domains considered in value theory). Finally,
contraction (4) is an adapted form of continuity, satisfied by most known
values. The solution that is categorically determined by (1)�(4) is precisely
the Mertens value. Since the Mertens value is an element of the core, we
effectively obtained a core selection.

Note that, with the exception of (1), the axioms do not involve any
assumption on the range of the solution concept; in particular, inclusion in
the core is not implied by any of them individually. It is thus striking that
core selection is determined by axioms posited on entirely unrelated
grounds, and even more striking is the fact that our axioms collectively
imply not only inclusion in the core, but complete determination by the
core: if two market games have the same core, they also have the same
Mertens value.

Since a market game is only a derivative concept, it is important to note
that the value can be viewed as a solution defined per se not on the market
games, but on the set of underlying TU economies. Axioms (1)�(4) can be
restated in the new setting in a straightforward way. Our result then
implies that any solution on finite type TU economies that satisfies the
axioms is the Mertens value. (Indeed, it is immediate from the contraction
axiom that the solution of an economy is determined via the corresponding
market game, and so the result for economies becomes a simple corollary.)

In the differentiable setting, the question of axiomatic determination of
a (possibly multivalued) solution for perfectly competitive and differen-
tiable TU economies was previously investigated by Dubey and Neyman
[4]. While two of their axioms are close to our (3) and (4), the other two
are somewhat different: (1) is replaced by the inessential economy axiom,4

while in (2) all relabellings are required to preserve the distribution of
agents. These axioms lead to a unique outcome (the single-valued core) in
the differentiable setting, but not outside of it, as is pointed out in Section 6
of [4]: both the (single-valued) Mertens value and the (possibly multi-
valued) core satisfy the axioms. However, what we show is that the situa-
tion changes when a solution is assumed to be single-valued, and the
axioms are slightly modified.

Our result can also be considered from a complementary, non-
cooperative point of view. A noncooperative solution of an economy
is provided by the notion of competitive equilibrium. The competitive
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4 In an inessential economy, any coalition of agents achieves the maximal aggregate utility
by sticking to its initial endowment of resources. According to the axiom, in such an economy
each agent is getting precisely the utility derived from his initial endowment.



equilibrium is akin to Nash equilibrium in that both, despite being highly
tractable, transparent and appealing solutions, suffer from the same non-
uniqueness problem. And as Harsanyi and Selten [7] put it in the intro-
duction to their theory of Nash equilibrium selection, ``a theory that can
only predict that the outcome . . . is an equilibrium point��without specify-
ing what the equilibrium point is��is an extremely weak and uninformative
theory.''

It follows from the core equivalence principle for perfectly competitive
economies [1, 2] that the Mertens value of a market game is a competitive
payoff. Thus, we have in effect provided an axiomatically based selection
from competitive payoffs. Although this selection does not determine a
competitive equilibrium itself, it does determine a set of equilibria that lead
to the same payoff for agents.

Finally, let us mention that in the differentiable case axioms of a similar
nature can characterize the competitive payoff correspondence for perfectly
competitive economies with nontransferable utilities [5]. We hope that our
approach can be translated into the setting of NTU economies as well.

2. DEFINITIONS, AXIOMS, AND THE MAIN RESULT

Let (T, C) be a standard measurable space. T is the set of agents, and C
is the _-algebra of coalitions. The set of nonatomic probability measures
on (T, C ) is denoted by NA1. An economy E is a triple (u, a, '), where
u: T_Rk

+ � R and a: T � Rk
+ for some k, and ' # NA1. For each t # T,

at=a(t) is agent t's initial endowment of commodities 1, 2, ..., k, ut=u(t, } )
is his utility function on the space of commodity bundles Rk

+ , and ' is the
population measure.

Given ' # NA1 we denote by EF (') the set of finite type economies, i.e.,
the set of E=(u, a, ') for which there exists a finite subfield H of C with
the following properties:

(i) a is H-measurable;

(ii) u is H_B-measurable, where B denotes the Borel _-field of Rk
+ .

We further assume that for every t # T :

(iii) ut is monotonic (nondecreasing);

(iv) ut(x)=o(&x&) as &x& � �;

(v) ut is continuous;

(vi) ut(0)=0;

(vii) �T at d'(t)>0 (i.e., strictly positive in all coordinates).
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Conditions (i) and (ii) formalize the finite type assumption: there is a
finite partition of T such that agents in the same element of the partition
(type) have the same initial endowments and the same utility functions.
Condition (vii) requires a positive amount of each commodity to be pre-
sent in the market. We denote EF=�' # NA1 EF (').

A game is determined by its characteristic function v: C � R that
vanishes on the empty set. Given E=(u, a, ') # EF , the market game
corresponding to E, vE , is given by

vE (S )=max {|X
ut(xt) d' } x: T � Rn

+ , x'(S )=a'(S )= , (1)

where y'(S ) abbreviates �S y(t) d'(t). The maximum above is attained by
Proposition 36.1 of Aumann and Shapley [2]. The set of all finite-type
market games corresponding to economies in EF (') will be denoted by
MG('), and MG#�' # NA1 MG(').

A value is a mapping5 9: MG � FA+ (FA+ is the set of bounded,
finitely additive, and nonnegative measures on (T, C )), subject to the four
conditions (axioms) that we state below.

Axiom 1 (Efficiency). For any v # MG,

9(v)(T )=v(T ). (2)

Denote by 3 the set of all automorphisms of (T, C ), and, for any game
(or a measure) v define the game %v by (%v)(S )=v(%S ). Note that if v is
a market game corresponding to E=(u, a, ') # EF and % # 3, then %v is the
market game corresponding to %E=(%u, %a, %') # EF , where (%u)t (x)=
u%(t)(x) and (%a)(t)=a%(t) . This lays the ground for the following axiom:

Axiom 2 (Anonymity). For any v # MG and % # 3,

9(%v)=%9(v). (3)

Note that a sum of two market games in MG(') is itself in MG(').
Indeed, if E=(u, a, '), E$=(u$, a$, ') # EF ('), where a: T � Rk

+ , a$: T �
Rk$

+ , we define the disjoint sum of the economies, E�E$ # EF , as (u�u$,
a�a$, '), where u�u$: T_Rk+k$

+ � R, a�a$: T � Rk+k$
+ are given by

(a�a$)(t)=(a(t), a$(t)), and (u�u$)(t, (x, y))=u(t, x)+u$(t, y). Observe
that the sum vE+vE$ is precisely vE�E$ # MG(').
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operators defined on linear spaces of games. Nevertheless, because of the similarities between
axioms (1)�(4) below and the value axioms, we opted to call 9 a value.



Axiom 3 (Separability). For any ' # NA1 and v, v$ # MG('),

9(v+v$)=9(v)+9(v$). (4)

A game v is monotonic if for any S/W # C, v(S )�v(W ), and a game
representable as a difference of two monotonic games is said to be of
bounded variation. For a game v of bounded variation we define its norm,
&v&, by &v&=inf(u(T )+w(T )), where the infimum is taken over all
monotonic games u and w with v=u&w. Differences of two market game
and measures in FA+ are clearly of bounded variation.

Axiom 4 (Contraction). If v, v$ # MG then

&9(v)&9(v$)&�&v&v$&. (5)

Remark 1. The contraction axiom is related to separability and
efficiency via the following observation. If ' # NA1 and v, v$, u, w # MG(')
are such that v&v$=u&w, then 9(v)&9(v$)=9(u)&9(w) by separability.
Therefore

&9(v)&9(v$)&=&9(u)&9(w)&�9(u)(T )+9(w)(T ) (6)

=u(T )+w(T ), (7)

where the last equality follows from efficiency. Thus

&9(v)&9(v$)&�inf(u(T )+w(T )), (8)

where the infimum is taken over all u, w # MG(') such that v&v$=u&w.
The contraction axiom is therefore a strengthening of (8): it precisely
requires that (8) remain valid when the infimum is taken over the larger set
of all monotonic games u, w subject to v&v$=u&w.

Remark 2. An alternative continuity requirement that can be imposed
on 9 is the Lipschitz property: there is K>0 such that

&9(v)&9(v$)&�K &v&v$& (9)

for any two v, v$ # MG. This notion of continuity was used in [4] in the
characterization of the basic (equivalent) solution concepts on differen-
tiable perfectly competitive economies; it is obviously weaker than contrac-
tion. Our results will remain intact if the contraction axiom is replaced by
the Lipschitz property, provided the following positivity axiom is also
imposed on 9: 9(v)&9(v$) is a nonnegative measure whenever v&v$ is
monotonic.
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Positivity is crucial in our analysis, but there is no need to assume it
explicitly in the presence of contraction axiom: positivity is a simple
corollary of efficiency and contraction (Proposition 4.6 of Aumann and
Shapley [2]).

Axioms 1�4 are among the basic properties of Mertens [10] value,
defined on a large space of games that includes all market games. Thus, the
restriction of the Mertens value to MG, 9M , satisfies the axioms. Addi-
tionally, 9M is entirely determined by the core of a market game, and is
itself an element of the core (construction of 9M for markets is carried out
in details in Mertens [11]). According to our result, this selection is
uniquely determined by the axioms.

Theorem 2.1. If 9 is a value on MG, then 9=9M .

The next section is dedicated to the proof of the theorem.

3. THE PROOF

Before we begin, let us briefly describe the structure of the proof. We
start by considering the unique linear extension of the given value 9 onto
the space spanned by market games;6 this extension preserves value
axioms. Then we observe that finite type market games are concave, non-
decreasing and homogeneous functions (market functions) of finitely many
mutually singular nonatomic probability measures (Proposition 3.1). These
two facts are used to show that, for every vector +=(+1 , ..., +k) of mutually
singular nonatomic probability measures, and every market function f in k
variables,

9( f b +)= :
k

j=1

�k
j \ df

dxj
(x)+ + j , (10)

where �k
j is a positive linear functional, defined on the space of functions

spanned by the (one-sided) partial derivatives of market functions in k
variables. Each of the functional �k

j is characterized as an integral of the
function

df
dxj

(x) with respect to a measure *k
j on a subset of Rk

+ (actually,
its compactification in a certain topology), at least when

df
dxj

(x) is con-
tinuous in a certain sense. This measure is uniquely determined by 9
(Corollary 3.9). We then describe the relations between measures *k

j for
different k and j (Lemmas 3.10 and 3.11, and Corollary 3.13). By our
Lemma 3.14, simultaneous existence of these relations characterizes the
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measures *k
j in a unique way, independent of the value 9. This shows that

there is a room for at most one value on MG. Since the Mertens value
satisfies the axioms, it coincides with 9.

Denote by MG(') (MG) the linear spaces spanned by MG(') (respec-
tively, MG). Observe that the given value 9 possesses a well defined linear
extension into MG('), uniquely determined7 by

9(v1&v2)=9(v1)&9(v2). (11)

The extended 9 is efficient (by the efficiency axiom), and it is continuous
of norm 1,

&9(v)&�&v&, (12)

for any v # MG(') (by the contraction axiom). It implies that 9 is actually
a linear operator: from separability, 9(rv)=r9(v) for any rational r, and,
from (12), the statement holds for any r. By the proof of Proposition 4.6
of [2], 9 is positive, i.e., 9(v) is a nonnegative measure whenever the
game v # MG(') is monotone. To sum up, the extended 9 is an efficient,
linear, and positive operator on MG(').

Now let k�2. By M�� k
+ denote the cone of market functions on Rk

+ , i.e.,
those which are concave, continuous, nondecreasing, and homogenous of
degree 1. Also let M�� k be the vector space of differences of functions in M�� k

+ .
By M� k

+ denote the subset of Lipschitz functions in M�� k
+ , and by M� k��the

linear space spanned by M� k
+ in M�� k.

For a k-tuple +=(+i)
k
i=1 of mutually singular measures in NA1 let

(S(+i))k
i=1 be disjoint sets such that +j (S(+i))=$ ij . Also denote +� =

1
k �k

i=1 +i . Let MGk(+) be the cone [ f b + | f # M�� k
+], and MGk(+) be the

space [ f b + | f # M�� k].

Proposition 3.1. For k, + as above, MGk(+)/MG(+� ). Moreover, any
v # MG is an element of MGk(+), for some k�2 and mutually singular
+ # (NA1)k.

Proof. Let f # M�� k
+ and +, (S(+i))k

i=1 as above. Consider an economy
E=(u, a, +� ) # EF , in which ut(x)� f (x) for every t # T and such that
equality holds instead of inequality for all x # [0, k]k, at=kej (ej stands for
the j th unit vector) if t # S(+j), and +� = 1

k �k
i=1 + i . It is clear that f b +=vE .

On the other hand, given E=(u, a, ') # EF , let J=(T1 , ..., Tq) be a
measurable partition of T that induces a finite _-field H that satisfy (i) and
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(ii) in the definition of E # EF . As in the proof of Lemma 39.16 of Aumann
and Shapley [2], there is g # M�� k+q

+ (k is the number of commodities in the
economy, i.e., a: T � Rk

+) such that vE (S)= g('J (S ), a'(S )) for any S # C,
where 'J=('J

i )q
i=1 , 'J

i (S )='(S & Ti) for any S # C, and (recall) a' is the
vector measure given for each S # C by a'(S )=�S at d'. By our assumption
on a, each coordinate of a'(S ) is a positive linear combination of 'J. Thus,
after an appropriate normalization of 'J, there is an integer k$, f # M�� k$

+ , and
mutually singular + # (NA1)k$, such that vE= f b +. Note that, without loss
of generality, k$�2 (otherwise vE is a measure, which can always be
represented as a sum of two mutually singular nonvanishing measures). K

Remark 3. Since, for mutually singular + # (NA1)k, MGk(+)/MG(+� ),
9 is an efficient, linear, and positive operator on MGk(+).

Remark 4. From the anonymity axiom,

9( f b +)=%&19( f b (%+)) (13)

for all f # M� k, mutually singular + # (NA1)k, and % # 3. Reasoning as in
Proposition 6.1 and Proposition 19.7 of Aumann and Shapley [2], we have

9( f b +)= :
k

i=1

9( f b +)(S(+ i)) } +i . (14)

Moreover, 9( f b +)(S(+i)) do not depend on a particular k-tuple of
mutually singular measures +, or the sets (S(+i))k

i=1 chosen for such +.

Remark 5. If f # M� k is linear, i.e., f (x)=a } x for a # Rk, then 9( f b +)
=a } +. This follows from the efficiency and linearity of 9 on MGk(+).

Denote by Dk the ``diagonal'' [x # Rk | \i, j xi=xj]. An open cone N in
Rk

+ with Dk & Rk
++ /N will be called a conical diagonal neighborhood.

Lemma 3.2. Let N be a conical diagonal neighborhood, and let 1� j�k.
There is a conical diagonal neighborhood N$/N and a function h on Rk,
possessing continuous second order derivatives on Rk&[0], positively
homogenous of degree 1, and vanishing on N$, such that d

dxj
h is nonnegative

on Rk
+ and d

dxj
h�1 on Rk

++&N.

Proof. For any =>0 it is easy to construct a nondecreasing twice dif-
ferentiable function g= on R which vanishes on [ 1

k&=, 1
k+=] and coincides

with the function x& 1
k on R&[ 1

k&2=, 1
k+2=]. For any i{ j consider the

function h=
i on Rk, given by
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h=
i (x1 , ..., xk)={

\xi+ :
l{ j

x l+ g= \ xj

x i+� l{ j xl+ ,

(15)if x # Rk
+ and x i+ :

l{ j

xl>0;

xj&
xi+� l{ j x l

k
, otherwise.

Observe that h=
i possesses continuous second order derivatives on Rk&[0]

and that it is positively homogenous of degree 1, for = small enough. Now
define h==�i{ j h=

i , and consider

N =={x # Rk
+ } \i{ j : } x j

xi+� l{ j xl
&

1
k }<== ,

a conical diagonal neighborhood. Note that h= vanishes on N =, d
dxj

h is
nonnegative on Rk

+ and d
dxj

h(x)�1 for x # Rk
++&N 2=. Since for = small

enough N2=/N, we can take h=h= and N$=N =. K

Lemma 3.3. If h: Rk � R possesses continuous second order derivatives
on Rk&[0] and is positively homogenous of degree 1, then h |R k

+
# M� k.

Proof. Choose any g on Rk which is strictly concave on [x # Rk |
�k

i=1 xi=1], twice continuously differentiable on an open neighborhood of
this set, and such that f =g |Rk

+
# M� k

+ is strictly increasing. Then for K>0
large enough the function Kf +h is in M� k

+ (its Hessian is negatively
definite for such K, hence the concavity), and so h=(Kf +h)&Kf # M� k. K

Lemma 3.4. If + is a k-tuple of mutually singular measures in NA1 and
h # M�� k that vanishes on a conical diagonal neighborhood, then 9(h b +)=0.

Proof. By Lemma 5.5 of Dubey and Neyman [4] there is a +� -preserv-
ing % # 3 (+� = 1

k �k
i=1 +i) such that

sup " :
i�l

a i%i (h b +)"<- l ww�
l � �

0, (16)

where the supremum is taken over all sets of numbers ai , 1�i�l, with
|ai |�1. On the other hand, reasoning as in the proof of Proposition 5.12
in Dubey and Neyman [4], for every l there are K>0 and a l

i # [0, 1],
1�i�l, such that

" :
i�l

a l
i%

i9(h b +)"�K - l &9(h b +)&. (17)
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Since %i (h b +)=h b %i+ # MG(+� ), it follows from (12), Remark 4, and
linearity of 9 on MG(+� ) that (16) and (17) can be reconciled only if
9(h b +)=0. K

For a positive integer k�2, denote 1k=(1, ..., 1) # Rk. Let S k
= be the

``equator'' of the unit sphere in Rk perpendicular to 1k , i.e., [x # Rk |
&x&=1, x } 1k=0] for the Euclidean norm & &, and let 2k be the simplex
[x # Rk

+ | x } 1k=k].
Endow the set 4k=(2k&[1k]) _ S k

= with the following sequential
topology: if (xn)�

n=1 is a sequence in S k
= , or in (2k&[1k]) and it does not

converge to 1k , then xn ww�n � � x if it does so in the Euclidean topology on
the corresponding set. If (xn)�

n=1 /2k&[1k] and it converges to 1k from
some direction y # S k

= (which means
xn&1k

&xn&1k& ww�n � � y in the Euclidean
topology), then xn � y. In this topology the set 4k is homeomorphic to a
closed k&1-dimensional ring [x # Rk&1 | 1�&x&�2], and so it is
metrizable and compact.

Given a concave function f : Rk
+ � R and x # Rk

+ , y # Rk, the directional
derivative of f at x in the direction8 y is

df (x, y)=lim
= a 0

f (x+=y)& f (x)
=

. (18)

The directional derivative df (x, y) always exists and the function df (x, } ) is
concave and finite on all Rk [12, Theorem 23.1]. By concavity, all direc-
tional derivatives of df (x, } ),

df (x, y, z)=lim
= a 0

df (x, y+=z)&df (x, y)
=

. (19)

also exist and are finite.
Denote by B(4k) the Banach space of bounded and measurable func-

tions on 4k. Consider the subspace V of [B(4k)]k, of all k-tuples g( f ), for
f # M� k, defined by

g( f )(x)={(df (1k , y, ej))k
j=1 ,

(df (x, ej))k
j=1 ,

x # S k
= ;

x # 2k&1k .
(20)

Every f # M� k is uniquely determined by the knowledge of its partial its
derivatives df (x, ej), j=1, ..., k, on 2k&[1k]. Therefore a linear functional
�k

j , given by

�k
j (g( f ))=9( f b +)(S(+j)), (21)
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is well defined on V. It does not depend on a particular k-tuple of mutually
singular measures +, or the sets (S(+i))k

i=1 chosen for such +, by Remark 4.
If g( f )�0 then f b + is a monotonic game, and so the positivity of 9
implies �k

j (g( f ))�0. It follows that the functional �k
j is positive. Finally,

if a k-tuple of constant functions in V is identified in an obvious manner
with a vector in Rk, then for c=(c1 , ..., ck) # Rk

�k
j (c)=cj . (22)

To see this, apply Remark 5 to the game f (+)=c } +.
Since [B(4k)]k can be viewed as B(�k

i=1 4k) (bounded measurable
functions on the union of k disjoint copies of 4k), V can be regarded as its
subspace, and �k

j ��as a positive projection (i.e., nonnegative functions are
mapped by �k

j into R+ , and constant functions are mapped into their
values). By the Kantorovitch Theorem (e.g., [15, Theorem 83.15]), �k

j can
be extended to the entire B(�k

i=1 4k) as a positive projection. It is then a
sum of positive linear functionals (� j

k)i , each defined on the corresponding
coordinate of [B(4k)]k. Property (22) together with positivity now imply
that (�k

j ) i are zero unless i= j. Therefore �k
j is a function of j th coordinate

alone, belonging to the space B(4k).
If we restrict our attention to the subspace of continuous functions

C(4k), then by Riez representation theorem

�k
j (g)=| g(x) d*k

j (x) (23)

for some positive measure *k
j on 4k and all g # C(4k). Choosing c=ei (the

ith unit vector) in (22), for i=1, ..., k, we obtain � j
k(ei)=$ij , and so *k

j is
a probability measure. Taking g to be h as in Lemma 3.2 for any diagonal
neighborhood N, and using the fact that h # M� k (by Lemma 3.3),
Lemma 3.4 yields �k

j (g(h) j)=0. Since g(h) j # C(4k)+ and dh(x, ej)�1 for
x # Rk

+&N, *k
j (2k&N)=0. It follows that *k

j is supported on S k
= , and in

the sequel we will also view it as a measure on S k
= . Accordingly, for any

f # M� k such that g( f ) j # C(4k),

�k
j (g( f ) j)=|

S k
=

df (1k , y, ej) d*k
j ( y). (24)

Lemma 3.5. The representation (24) holds for any f # M� k such that g( f ) j

is continuous *k
j -a.e.

Proof. Given f # M� k such that g( f ) j is continuous *k
j -a.e., there is

clearly a lower semi-continuous function g1 , and an upper semi-continuous
function g2 , both of which are bounded, such that g1� g( f ) j� g2 and the
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inequalities hold as equalities at the continuity points of g( f ) j (which are
*k

j -a.e.). From [3, Theorem 12.7.8] there are bounded sequences [gn
1]n�1 ,

[gn
2]n�1 /C(4k) such that gn

1� g1 , g2� gn
2 for every n, and gn

1 � g1 ,
gn

2 � g2 pointwise. By the positivity of �k
j

�k
j (gn

1)��k
j (g( f ) j)��k

j (gn
2). (25)

Applying (23) to gn
1 , gn

2 and using the bounded convergence theorem, we
have

�k
j (g( f ) j)=| g( f ) j d*k

j (x). K (26)

Our next step is to show that the measure *k
j is determined entirely by �k

j .
For a concave function f : Rk

+ � R and x # Rk
++ , denote by �f (x) the set

of supergradients of f at x��all p # Rk that satisfy f (x)& f ( y)� p } (x& y)
for every y # Rk

+ . Then, for y, z # Rk [12, Theorem 23.4]

df (x, y)= min
p # �f (x)

y } p (27)

and

df (x, y, z)= min
p # �f (x)y

z } p, (28)

where �f (x)y=[ p # �f (x) | minp$ # �f (x) y } p$= y } p] [12, Corollary 23.5.3].

Lemma 3.6. Let f # M� k. Then:

(i) for every z # Rk the function df (1k , } , z) is constant on any
half-plane in Rk that has Dk as its boundary;

and, for almost every y # S k
= (with respect to the Haar measure on S k

=):

(ii) the functions df (1k , } , z) are continuous at y for all z;

(iii) if xn ww�n � � 1k from direction y, then df (xn , z) ww�n � � df (1k , y, z)
for all z.

Proof. It suffices to consider only f # M� k
+ . Since df (1k , 1k)=df (1k ,

&1k)= f (1k), 1k } p= f (1k) for all p # �f (1k) by (27). Therefore (i) follows
from (28).

For almost every y # Rk minp # �f (1k) y } p is attained at a unique point,
i.e., �f (1k)y contains a single point. Since 1k } p is constant on �f (1k),
minp # �f (1k) y } p is attained at a unique point for almost every y # S k

= . Fix
one such y= y0 . Then �f (1k)y0

contains only one element. By [12,
Theorem 24.5], applied to the function g( y)=df (1k , y) at the point y0 ,
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�g( y)=�f (1k)y approaches �f (1k)y0
as y tends to y0 , and so, by (28), the

functions df (1k , y, z) are continuous at y0 for all z. Since it happens for
almost every y0 , (ii) is established. Point (iii) follows similarly, using [12,
Theorem 24.6]. K

Given a convex and compact subset C of R, denote by fC the function
on Rk

+ defined by fC(x)=minc # C x } c. By the envelope theorem, C( y)#
[c # C | y } c= fC( y)] is the set of supergradients to fC at y:

C( y)=�fC( y). (29)

Let Mk be the linear space spanned by all functions fC with compact and
strictly convex9 C/2k. Observe that Mk/M� k, and that fC # Mk for all
compact and strictly convex C/[x # Rk | x } 1k=a], for any a # R.

Lemma 3.7. For all f # Mk g( f ) j # C(4k).

Proof. For a strictly convex and compact C/2k the function fC is con-
tinuously differentiable on Rk&Dk. By the strict convexity of C, for y � Dk

the set C( y) is a singleton. By (29), �fC( y) is also a singleton, and so fC

is differentiable on 2k&[1k]; being a concave function, it is continuously
differentiable there as well. This also implies that dfC(1k , } , z)=dfC( } , z)
are continuous at y � Dk. Thus g( f ) j is continuous on S k

= and on the
interior of 2k&[1k].

Now, let xn � y in the topology on 4k. Then dfC(xn , z)=dfC(1k , xn , z)
=dfC(1k ,

xn&1k
&xn&1k& , z), where the last equality holds by (i) of Lemma 3.6.

This expression converges to dfC(1k , y, z) by continuity of the function
dfC(1k , } , z) that we established above. Thus g( f ) j # C(4k). K

Proposition 3.8. The space [df (1k , y, ej) | f # Mk] is dense in C(S k
=).

Proof. Let K
�

stand for the set of all closed cones C in (1k)==[x # Rk |
x } 1k=0], based at 0, such that for any nonzero x # C xj>0. For C # K

�denote D(C)=[ y # (1k)= | \x # C : y } x�0]. For a given C # K
�

denote
C� =C & S k

= and C1=[x # C | xj�1]. The set C1 is compact and convex.
We claim that for any C # K

�
:

(i) if y # int(D(C)@) (the relative interior of D(C )@), then C1( y)=[0];

(ii) if y # S k
=&D(C )@, then xj=1 for any x # C1( y).

Before giving the proof, note that (i) and (ii) tell us that for any y #

S k
=&�D(C )@ (the relative boundary of D(C )@), all elements of C1( y) have
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the same j th coordinate, and so, C1( y) being the set of supergradients of
fC1

at y, this coordinate is dfC1
(1k , y, ej). By (28), (i), and (ii),

(i$) if y # int(D(C)@), then dfC1
(1k , y, e j)=0;

(ii$) if y # S k
=&D(C )@, then dfC1

(1k , y, e j)=1.

We now prove (i) and (ii). Suppose that y # int(D(C)@) and there is

x # C1( y) which is different from 0. Form the definition of D(C)@, y } x=0.

Then y$ } x<0 for some y$ # D(C )@ in a neighborhood of y, contradicting the

definition of D(C)@. If y # S k
=&D(C)@ then there is x # C, such that y } x<0.

Therefore, for any x # C1( y) y } x<0, and, in particular, x{0. It follows
then that xj=1, since otherwise there is t>1 such that tx # C and certainly
y } (tx)< y } x, in contradiction to the choice of x.

Suppose that [df (1k , y, e j) | f # Mk] is not dense in C(S k
=). By Hahn�

Banach theorem, there is then a nonzero measure * on S k
= such that

| df (1k , y, ej) d*( y)=0 (30)

for all f # Mk. Denote K
�

*=[C # K
�

| |*| (�(D(C )@))=0], where |*| is the
variation of the measure *. For any C # K

�
* there is a sequence (Cn, 1)�

n=1 of
strictly convex and compact sets in (1k)= such that fCn, 1

� fC1
pointwise

(e.g., [6]). By [12, Theorem 24.5]

dfCn, 1
(1k , y, ej) ww�

n � �
dfC1

(1k , y, ej) (31)

for any y in which all elements of �fC1
(1k)y=C1( y) have the same j th coor-

dinate. After noting that fCn, 1
are all in Mk, (i$), (ii$), (31), (30), and the

bounded convergence theorem yield

*(D(C )@c)= lim
n � � | dfCn, 1

(1k , y, ej) d*( y)=0. (32)

As *(S k
=)=0(df (1k , y, ej) can be a nonzero constant), * is zero on any sets

of the form D(C )@ and D(C )@c for C # K
�

*.

As [D(C )@ | C # K
�
] is closed under intersections (D(C1)@ & D(C2)@ =D(C )@,

where C is a convex hull of C1 and C2), * is actually determined on the

algebra A generated by [D(C )@ | C # K
�

*] as the zero measure. It can be
easily seen that A is countably generated and that it separates points, and
so the _-field generated by it is the Borel _-field on S k

= . Therefore * is zero
on all Borel subsets of S k

= , i.e., it is the zero measure, contrary to our
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assumption. This shows that [df (1k , } , ej) | f # Mk] is indeed dense in
C(S k

=). K

The following is a corollary of Lemma 3.7 and Proposition 3.8.

Corollary 3.9. The measure *k
j is the unique measure such that

�k
j (g( f )j)=| df (1k , y, e j) d*k

j ( y) (33)

holds for all f # Mk.

Remark 6. For a vector + # (NA1)k of mutually singular measures and
a1 , a2 # 2k let Ca1, a2

be the linear segment [a1 } +, a2 } +]. Then

fC(+)=min(a1 } +, a2 } +)= 1
2 ((a1+a2) } +&|(a1&a2) } +| ). (34)

Since (a1&a2) } +='1&'2 for two mutually singular non-atomic non-
negative measures '1 and '2 with the same total mass, 9( |(a1&a2) } +| )=
9( |'1&'2 | )=0, from Remark 4. By Remark 5 and linearity of 9,

9( fCa1 , a2
b +)= 1

2 (a1+a2) } +. (35)

Denoting w=a1&a2 , this and Lemma 3.5 imply that whenever
*k

j ([x | w } x=0])=0,

*k
j ([x | w } x�0])=*k

j ([x | w } x�0])= 1
2 . (36)

Since *k
j ([x | w } x])=0 for almost every w # S k

= , (36) also holds almost
everywhere.

Remark 7. Equality (36) in Remark 6 for almost every w is well-known
to imply that the measure *k

j is symmetric with respect to reflections, i.e.,
for any measurable S/S k

=

*k
j (S)=*k

j (&S) (37)

(e.g., [13, Lemma 2.3]).

Given x # Rk&Dk , denote by (k(x) the point of intersection of S k
= with

the half-plane that contains the point x and has Dk as its boundary. For
: # [0, 1], and 0� j�k, let 1 :

j : S k+1
= � Rk be the map given for x=

(x1 , ..., xk+1) by 1 :
j (x) l=x l if l{ j, and 1 :

j (x) j=:xk+1+(1&:) x j . Also
denote ( :

j =(k b 1 :
j , whenever it is defined.
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Remark 8. Let +=(+1 , +2 , ..., +k+1) # (NA1)k+1 be mutually singular,
f # Mk, : # [0, 1] and 1� j�k. Define f :

j # M� k+1 by

f :
j (x)= f (1 :

j (x)). (38)

By (14) of Remark 4, applied to the two representations f :
j (+1 , +2 , ...,

+k+1) and f (1 :
j (+1 , +2 , ..., +k+1)) of the same game,

9( f :
j (+))(S(+k+1)) } +k+1+9( f :

j (+))(S(+ j)) } +j (39)

=9( f (1 :
j (+)))(S(+ j) _ S(+k+1)) } (:+k+1+(1&:) +j). (40)

This equals

9( f b (+1 , ..., +k))(S(+ j)) } (:+k+1+(1&:) +j), (41)

again by Remark 4. It follows that

9( f b 1 :
j (+))(S(+k+1))=:9( f b (+1 , ..., +k))(S(+j)), (42)

and therefore

�k+1
k+1(g( f :

j )k+1)=:�k
j (g( f ) j). (43)

Lemma 3.10. For any k�2 and 1� j�k

*k
j =( :

j b *k+1
k+1 (44)

(i.e., for any Borel set K/S k
= , *k

j (K)=*k+1
k+1((( :

j )&1 (K ))) for almost every
: # [0, 1].

Proof. Observe that for almost every : # (0, 1]

*k+1
k+1([ y # S k+1

= | 1 :
j ( y) # Dk])=0, (45)

since the sets (1 :
j )&1 (Dk) are disjoint for different :. If f # M k then [ y #

S k+1
= | 1 :

j ( y) # Dk] contains the set of discontinuity points of df :
j (1k+1 , } ,

ek+1).
Given f # Mk and : that satisfies (45), Remark 8 yields

�k
j (g( f ) j)=

1
:

�k+1
k+1(g( f :

j )k+1). (46)
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By applying Lemma 3.5 to f :
j , this is equal to

1
: | df :

j (1k+1 , ( y1 , ..., yk+1), ek+1) d*k+1
k+1( y1 , ..., yk+1) (47)

=| df (1k , 1 :
j ( y1 , ..., yk+1), ej) d*k+1

k+1( y1 , ..., yk+1). (48)

By (i) of Lemma 3.6 the last integral equals

| df (1k , ( :
j ( y1 , ..., yk+1), ej) d*k+1

k+1( y1 , ..., yk+1)

=| df (1k , ( y1 , ..., yk), ej) d(( :
j b *k+1

k+1)( y1 , ..., yk). (49)

We have shown that for all f # Mk

9 k
j (g( f ) j)=| df (1k , y, ej) d(( :

j b *k+1
k+1)( y). (50)

Therefore, by Corollary 3.9,

(:
j b *k+1

k+1=*k
j . K (51)

Lemma 3.11. The assertion of Lemma 3.10 holds for :=0, provided
k�3.

Proof. There is a sequence :n>0 satisfying (45) in Lemma 3.10, such
that :n � 0. Let 1� j�k and f # Mk. As in the proof of Lemma 3.10, for
every n

�k
j (g( f ) j)=| df (1k , 1 :n

j ( y1 , ..., yk+1), ej) d*k+1
k+1( y1 , ..., yk+1). (52)

A limit as n � � of the right-hand side can be taken. By continuity of
df (1k , } , ej) in all y # Rk

+&Dk , (1) of Lemma 3.6 and the bounded con-
vergence theorem, this limit is equal to

|
( y1, ..., yk) � Dk

df (1k , ( y1 , ..., yk), ej) d*k+1
k+1( y1 , ..., yk+1)

+df (1k , ej , ej) *k+1
k+1([ak+1])+df (1k , &ej , ej) *k+1

k+1([&ak+1]), (53)
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where

ak+1 # S k+1
= , (ak+1) l={

k

- k2+k
,

&
1

- k2+k
,

l=k+1

otherwise.

By the efficiency of 9,

:
k

j=1

�k
j (g( f ) j)= f (1k). (54)

Also, as f # Mk,

:
k

j=1

df (1k , y, ej)= f (1k) (55)

for any y # Rk. Therefore, summing the right hand and the left-hand sides
of the equality (53) over j=1, ..., k, we obtain

f (1k)=f (1k) *k+1
k+1([ y | 1 0

j ( y) � Dk])+ :
k

j=1

[df (1k , ej , ej) *k+1
k+1([ak+1])

+df (1k , &ej , ej) *k+1
k+1([&ak+1])]. (56)

If k�3 one can easily find closed and strictly convex C1 , C2 /2k such
that C1(ej)=C2(ej) for j{1, C1(&e1)=C2(&e1), and C1(e1) differs from
C2(e1) in the first coordinate (e.g., take a strictly convex C1 and modify it
slightly at a small neighborhood of the singleton C1(e1), preserving strict
convexity, and use the resulting set as C2). By (29) and (28) the function f =
fC1

& fC2
violates the equality (56) if *k+1

k+1([ak+1])>0, and so *k+1
k+1([ak+1])

=0. Similarly it can be shown that *k+1
k+1([&ak+1])=0.

The last two summands in (53) are consequently equal to zero, and so
it can be rewritten as

9 k
j (g( f ) j)=| df (1k , x, ej) d( 0

j b *k+1
k+1(x). (57)

Since it holds for all f # Mk, *k
j =( 0

j b *k+1
k+1 by Corollary 3.9. K
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Corollary 3.12. The measure *k
j in Corollary 3.9 is independent of j.

Proof. Since clearly ( 0
1=( 0

j , for any j=1, ..., k

*k
1=( 0

1 b *k+1
k+1=( 0

j b *k+1
k+1=*k

j

by Lemma 3.11. K

The measure *k
j will be denoted by *k from now on.

Given a permutation % of [1, ..., k], denote %x=(x%(1) , ..., x%(k)) for any
x # Rk. The following lemma is implied by the anonymity of value.

Lemma 3.13. The measure *k is symmetric with respect to permutations
of coordinates, i.e., it satisfies d*k(x)=d*k(%x) for any permutation % of
[1, ..., k].

Proof. From (13) in Remark 4, for every f # Mk

�k
j (g( f ) j)=�k

%( j )(g(%f )%( j )), (58)

where %f (x)= f (%x). The right hand term is equal to

| g(%f )%( j ) (x) d*k(x)=| g( f ) j (x) d*k(%&1x). (59)

By Corollary 3.9, d*k(x)=d*k(%&1x). K

The following lemma uses a trick in the spirit of (B) in [10, pp. 29�30].
Let (Ui)

�
i=1 be a sequence of identically independently distributed (i.i.d.)

random variables, each with the standard Cauchy distribution, and denote
by }k the distribution of (k(U1 , ..., Uk).

Lemma 3.14. Suppose that for each k�3 *k is a probability measure on
S k

= such that:

(i) *k=( :
k b *k+1 for every k and almost every : in [0, 1];

(ii) specifically, it holds for :=0;

(iii) *k is symmetric with respect to permutations of coordinates;

(iv) *k is symmetric with respect to reflections.

Then *k=}k for all k�3.
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Proof. Take w # S 3
= be such that w } (x1 , x2 , x3){0 almost everywhere

for a *3-distributed (x1 , x2 , x3). By successive applications of property (ii),
w } (x1 , x2 , x3){0 almost everywhere for a *n-distributed (x1 , ..., xn).

Note that for any (x1 , ..., xn) # Rn&Dn such that w } (x1 , x2 , x3){0,

xi&x4

w } (x1 , x2 , x3)
=

(k(x) i&(k(x)4

w } (( k(x)1 , (k(x)2 , (k(x)3)
(60)

for every i=5, ..., n. Consider now random variables zi=
xi&x4

w } (x1 , x2 , x2) , i=
5, ..., n, for *n-distributed (x1 , ..., xn). By property (ii) and the equalities
(60), (zi)

n
i=5 have the same distribution if they are induced by *n-dis-

tributed (x1 , ..., xn) or *n+1-distributed (x1 , ..., xn+1). Thus the distribution
of a sequence (zi)

k
i=5 is independent of *n-distributed (x1 , ..., xn), for any

n�k. It also follows that the distribution of (zi)
k+1
i=5 extends that of (zi)

k
i=5 ,

and so, by Kolmogorov extension theorem, there is a unique limiting dis-
tribution of an infinite sequence (zi)

�
i=5 , which extends the distribution of

(zi)
k
i=5 for each k�5. The sequence (zi)

�
i=5 of random variables is finitely

exchangeable by property (iii), i.e., (zi)
�
i=5 and (z%(i ))

�
i=5 have the same dis-

tribution, for a permutation % on [5, 6, ...] with %(i )=i for all but finitely
many i. By de-Finetti exchangeability principle (e.g., [9]), (zi)

�
i=5 are, con-

ditionally on the _-algebra of tail events F� , independent and identically
distributed (i.i.d.). By equality (60) and property (i) the sequence (z5 , z6 , ...,
zk&1 , :zk+1+(1&:) zk) has the same distribution as (zi)

k
i=5 for almost

every (and therefore every) : # [0, 1], for any k�5. By property (iii), the
sequence (:z5+(1&:) z6 , z7 , ..., zk+1) has the same distribution as (zi)

k
i=5 .

Since it holds for every k�5, the infinite sequence (:z5+(1&:) z6 , z7 , z8 , ...)
has the same distribution as (zi)

�
i=5 . It means that for every : # [0, 1], con-

ditionally on F� , the random variables :z5+(1&:) z6 , z5 , z6 have the
same distribution, and so, z5 and z6 being i.i.d., they must have a stable of
degree 1 distribution. Therefore, conditionally on F� , (zi)

�
i=5 are dis-

tributed as (m+_Ui)
�
i=5 , where m, _ are measurable with respect to F� ,

and (Ui)
�
i=5 are i.i.d. with the standard Cauchy distribution.

Observe that _{0 with probability 1, since we would otherwise get x5=
x6= } } } =xk , for any k, with some positive probability, in contradiction
to property (ii). Conditionally on F� ,

zk&z5
z6&z5

=
(m+_Uk)&(m+_U5)
(m+_U6)&(m+_U5)=

Uk&U5
U6&U5

.

Therefore, for *n-distributed (x1 , x2 , ..., xn) (n�7) the sequence (
xk&x5
x6&x5

)n
i=7

=(
zk&z5
z6&z5

)n
i=7 is distributed as (

Uk&U5
U6&U5

)�
i=7 . By property (iii), (

xk&x1
x2&x1

)n&5
i=3 is

distributed as (
Uk&U1
U2&U1

)n&5
i=3 . Bearing in mind property (iv), the distribution

of the sequence (
xk&x1
x2&x1

) i=3 determines in a unique way the distribution of
(n&5(x1 , ..., xn&5) as (n&5(U1 , ..., Un&5). On the other hand, by successive
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applications of property (ii), (n&5(x1 , ..., xn&5) is *n&5 distributed, if n�8.
Therefore, *k=}k for k�3. K

By Lemmas 3.10, 3.11 and 3.13, and Remark 7, the sequence (*k)�
k=3 in

our proof satisfies the conditions of Lemma 3.14, and therefore *k=}k for
k�3. The measures }k are nonatomic, and so the proof of Lemma 3.11
shows that *2 is also determined uniquely, by *3=}3.

Since }k is absolutely continuous with respect to the Haar measure on
S k

= , parts (ii) and (iii) of Lemma 3.6 imply that for every f # M� k the func-
tion g( f ) is continuous *k-almost everywhere on 4k. Therefore, by
Lemma 3.5, (24) holds for every f # M� k. Since the measure *k does not
depend on a particular value satisfying the axioms in Theorem 2.1,

9( f b +)=9M ( f b +) (61)

for any f # M� k and mutually singular (+i)
k
i=1 # (NA1)k, by Remark 4.

Given f # M�� k
+ , consider homogeneous of degree 1 functions f n, given on

2k by

f n(x)=min( f (x), fCn
(x)),

where Cn is the convex set [x # Rk | x } 1k= f (1k)+1, &x&�n]. Being
concave and positively homogeneous of degree 1, the function f is Lipschitz
on any conical diagonal neighborhood whose boundary does not intersect
the boundary of Rk

+ (with the exception of zero). For large enough n, f n

coincides with f on one such neighborhood, and with a Lipschitz function
on its complement in Rk

+ . Therefore f n is Lipschitz on Rk
+ , and, being

concave as a minimum of concave functions, it is an element of M� k. Thus,
by (61),

9( f n b +)=9M ( f n b +) (62)

On the other hand, since f coincides with f n on a conical diagonal
neighborhood, by Lemma 3.4

9( f b +& f n b +)=9( f b +)&9( f n b +)=0, (63)

and the same equality holds for 9M . Hence (62) and (63) show that

9( f b +)=9M ( f b +) (64)

for any f # M�� k and mutually singular + # (NA1)k.
By Lemma 3.1 every market game is of the form f b +, for some k, f # M�� k

+

and mutually singular + # (NA1)k, and so 9 coincides with the Mertens
value on MG. This concludes our proof.

38 ORI HAIMANKO



REFERENCES

1. R. J. Aumann, Values of markets with a continuum of traders, Econometrica 32 (1964),
39�50.

2. R. J. Aumann and L. S. Shapley, ``Values of Non Atomic Games,'' Princeton Univ. Press,
Princeton, NJ, 1974.

3. J. Dieudonne, ``Treatise on Analysis,'' Vol. II, Academic Press, New York, 1976.
4. P. Dubey and A. Neyman, Payoffs in nonatomic economies: An axiomatic approach,

Econometrica 52 (1984), 1129�1150.
5. P. Dubey and A. Neyman, An equivalence principle for perfectly competitive economies,

J. Econ. Theory 75 (1997), 314�344.
6. P. M. Gruber, Approximations of convex bodies, in ``Handbook of Convex Geometry,''

North-Holland, Amsterdam, 1993.
7. J. C. Harsanyi and R. Selten, ``A General Theory of Equilibrium Selection in Games,''

MIT press, Cambridge, MA, 1988.
8. S. Hart, Measure-based values of market games, Math. Oper. Res 5 (1980), 197�228.
9. M. Loeve, ``Probability Theory,'' second ed., Van Nostrand, New York, 1960.

10. J. F. Mertens, The Shapley value in the non-differentiable case, Internat. J. Game Theory
17 (1988), 1�65.

11. J. F. Mertens, Nondifferentiable TU markets: The value, in ``The Shapley Value: Essays
in Honor of Lloyd S. Shapley'' (A. E. Roth, Ed.), Chap. 15, Cambridge Univ. Press,
Cambridge, UK, 1988.

12. R. T. Rockafellar, ``Convex Analysis,'' Princeton Univ. Press, Princeton, NJ, 1970.
13. B. Rubin, Inversion and characterization of hemispherical transform in spherical

harmonics, J. Anal. Math. 77 (1999), 105�128.
14. L. S. Shapley, A value for n-person games, in ``Contributions to the Theory of Games''

(H. W. Kuhn and A. W. Tucker, Eds.), Vol. II, Princeton Univ. Press, Princeton, NJ,
1953.

15. A. C. Zaanen, ``Riesz Spaces II,'' North-Holland Mathematical Library, North-Holland,
Amsterdam, 1983.

39PAYOFFS IN NONDIFFERENTIABLE ECONOMIES


	1. INTRODUCTION 
	2. DEFINITIONS, AXIOMS, AND THE MAIN RESULT 
	3. THE PROOF 
	REFERENCES 

