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THE GAME FOR THE SPEED OF CONVERGENCE
IN REPEATED GAMES OF INCOMPLETE INFORMATION

IRIT NOWIK AND SHMUEL ZAMIR

ABSTRACT., We cousider an infinitely repeated zero-sum two-person game with in-
complete information on one side, in which the maximizer is the {more) informed
player. Such games have value v..(p) for all 0 < p < 1. The informed player can
guarantee that all along the game, the average payoff per stage will be greater or
equal to vee(p), (and will converge from above to v.(p) if the minimizer plays
optimally). Thus there is a conflict of interests between the two players regarding
the speed of convergence of the average payoffs, to the value va(p). Tn the context
of such repeated games, we define a Game, denoted as S(7..(p), for the speed of
convergence, and & value for this game. We prove that the value exists for games
with the highest error fertn, namely pames in which wn(p) — vao(p) is of the or-
der of magnitude of ﬁ In that case the value of S(e.(p) i3 also of the order of
magnitude of 71; Then we show that in another class of games, the value does not
exist.

For our first result we define for any infinite martingale X* = {X,}._, , the
variation of it: Vo(%®) := EYp_; |Xet1 — X/, and prove that the variation of a
uniformly bounded, infinite martingale ¥ , can be of the order of magnitude of
n%'e, for arbitrarily small ¢ > 0.

1. INTRODUQTION

In this paper we treat a two-person 0-sum repeated game, with incomplete in-
formation on one side (see e.g p.116 of [10]): Let A;, Az be 2 x 2 matrices, each
corresponding to the payoff of a two person zero-sum pame, with elements: afj,
where & € {1,2} represents the number of the matrix and ¢ € I = {7, B} and
j & J={L R} are the pure strategies of PI (the Maximizer) and PII (the mini-
mizer) respectively. For each p, 0 < p < 1, we consider the n-stage repeated game
Gn(p) defined as follows:

e At stage 0, chance chooses k = 1 with probability p, and & = 2 with probability
p' = 1—p. Both players know p, but (only) PI is informed also about the chosen
value of 4.

o At stage 1, PI chooses 4; € I, PII chooses j1 € J, and (41,J;) is publicly an-
nounced.

* At stage m, m = 2,3.. knowing (31, /1) ... (¢m—1,Jm-1) , PI ( resp.PII) chooses
im € I (resp. jm € J,) and then (im, ) is announced.

Date: October 22, 1098,
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2 IRIT NOWIK AND SHMUEL ZAMIR

» After stage n, Pl receives from PII the following amount:
L3
;1; O, e
m=1
(We divide by » in order to compare payoffs in G.(p) for different values of n.)
When 7 is finite, Gy (p) is a finite game and therefore has a (minmax) value (in mixed
strategies.), which we denote by w,(p).

The strategies in G (p) :

Denote by fi, the r.v that represents the history of announcements up to stage m:
(i1,71) + o+ (bmpet, Jme1) and by Hp, = (I x J)™ 1, the set of all m—stage histories.
(Hi=2.)

A (behavioral) strategy for PI is: o, = (03, 02) where for each k € {1,2}: of =
(¢5,... 68}, and for all m, 1 < m < m, 55 is & function from H,, into the set of
probability distributions on I. The interpretation of o, is as follows: If & was chosen,
then at stage m, given h,,, PI will choose T with probability &%, (h,,).

A (behavioral) strategy for PIl is: 7, = (f;...%,) where for allm, 1 < m < n, %,

is a function from H,, into the set of probability distributions on J.

Remark 1.1. The difference in the structure of the strategies of the two players is
due to the fact that only PI knows the chosen value of k, and therefore can play
differently in each of the two matrices.

We define now the infinitely repeated game G (p), as follows:

A strategy for Pl in G (p) is: 0 = (o!,0?), where for all k € {1,2}, o 1is
an infinite sequence {.9,’; 'n > 1}, and each 8% ig a function from H, into the set
of probability distributions on I. A strategy for PII in Gu(p), is: 7, where 7 =
{tn :n > 1}, and t, is a function from H, into the set of probability distributions
on J.

Goo(p) is a model for a game with a very large number of stages, in which the
players do not know the exact number of stages that are going to be played.

In G (p) the natural definition of payoff would be:

N O N
Hx (; Zaemjm)

n=1
but this limit may fail to exist for any pair of strategies. (see e.g Aumann and
Maschler p.188 of [1].) Nevertheless the value ve(p), can be defined without defining
the payoff: (see e.g p.187in [1]. )
For any pair of strategies, 0,7, let v,(o,7) be the average expected payoff for the
n first stages in Goo(p) (or in any Gi(p) [ > n,) when o and 7 are played. that is:

1 n
Ya(0,7) = By or (; mz-l afmjm) '
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THE SPEED OF CONVERGENCE IN REFEATED GAMES 3

(Eyper 15 the expectation with respect to the probability measure on Hp.; induced
by p, o, 7). From now on, we use ¢ and 7 to denote strategies of P1 and PII respectively,
in the game G (p).

Definition 1.2,

e We say that PI can guarantee f(p) in Gu(p), if for any € > 0 there is o,
and N, such that:

Yu(Oe, ) — f(p) 2 —& VT, vn > N;.

» We say that PII can guarantee g{p) in Gu(p), if for any € > 0 there is .
and N,, such that:

Tn(‘j':’rs)_g(p) <& VCT, Y o= N
o We say that Goo(p) has a value voo(p) if both players can guarantee Ve (p).

Remark 1.3. An alternative definition for the value of an infinitely repeated game
would be the limit of the volues of the n-stage games Gn(p). namely: To(p) =
imy, o0 Un(p) (4f this limit exists.) (see Zamir [9]).

Denote: D(p) as the game with payoff-matrix of pA! + 'A% ( see e.g definition
3.10 p.123 of [10]). D(p) can be interpreted as the 1-stage game, in which both players
are not informed of the matrix chosen. Let wu(p) = valD(p), and Cavu(p) be the
smallest concave function , that is greater or equal to u(p) on [0,1].

Theorem( Aumann and Maschler): veo(p) and lim,—.es va(p) both exist, and:

Uos(p) = lim v, (p) = Cavu(p).

(see e.g proposition A, p.187 and Theorem C, p.191 of [1].)

In other words; In this model as long as we are interested only in the value of
(oo (®), both coneepts: ‘the value of the limit-game’, and the ‘limit of the values’ ( of
the finite games), lead to the same result.

Aumann and Maschler constructed a strategy ¢* in Ge(p) (namely the splitting
strategy. see e.g p.126 of [10],) such that:

infy,(c*,7) = Cavulp), V¥n.

This implies: v,(p) 2 Cavu(p), Vn,
The difference: e,(p) = va(p) — Cavu(p) is called the error-term of the game.
The error-term is the extra gain that PI can guarantee (ovet Clavu(p) ) in Gn(p).
In analogy with the error-term, given ¢ in G, (p), let us look at:

ix?}f (g, 7) — Cavu(p).

This is the extra gain that PI can guarantee by using o, if the game ends after n
stages. (and similarly for PII: sup, ya(o,7) — Cav u(p).)
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4 IRIT NOWIK AND SHMUEL ZAMIR

Because ag said before PI can guarantee to get at least Cavu(p) for all n, then PI
and PII have contradicting interests ( as PI gets the payoff, and PII is the Payer):
PI is interested in a slow speed of convergence of v,(o,7) to Cavu(p), and PII is
interested in a quick speed of convergence of v,(o,7) to Cavu(p). It is therefore
natural to define a new 0-sum game denoted as SGoo(p): The Game for the speed of
convergence of v.{o,T) — Cavu(p) to zero. This is the topic of this note. We will
now define formally the game SGn(p) and its value:

¢ The payoff matrices and the strategy-spaces for each player, are the same as in

Goo(D).
o Asin Goo(p) defining the payoff for every o, 7 is problematic and we will define
a value for this game without it.

This value would have to represent the sequence of ~,(o,7) — Cavu(p), In order to
do that, we need to use zamir's following definition (see definition 2 of [11]):

Definition 1.4.

o Two sequences of non-negative numbers f(n) and g(n) ere said to be of the
same order of magnitude, if there are constants ¢, ca > 0, and N, such thaot:

cag(n) < f(n) < erg(n),

Vn = N.
This will be denoted by f(n) =0*(g9(n)), or g(n) = C* (f(n)).
o Ifthere is a ¢ > 0, and N, such that: cg(n) < f(n), ¥n > N, we write that:
g(n) < 0" (f(n)}.

Definition 1.5.

o We say that PI can guarantee f(n,p) > 0 in SGu(p), if for any £ > 0, there
exists a sequence fi(n,p) s.t:
°fe(n,p) 2 fln,p),  Vn
« There is o strategy os(¢,p) and a const ¢;(p) > 0 (independent of ), such
that for all 7:

(va(os(e,p),7) = Cavu(p)) 2 cp(p)fe(n,p).

o We say that PII can guarantee g(n,p) = 0 in SGoo{p), if for any £ > 0, there
emists a sequence g.(n,p) 8.t
' 9e(n,p) < g(n,p)r®,  Vn.
. There is a strategy T,(c,p) and o const c,(p) > 0 (independent of ), such
that for all o:

(Va(e, To(e, P)) — Cavulp)) < ¢;(p)gs(n, p).
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THE SPEED OF CONVERGENCE IN REPEATED GAMES 5

o We say that the game SGu(p) has o value, if there are sequences such that
PI and PII can guarantee f(n,p) and g(n,p) respectively in SG{p) and
f(n) =0 (g(n)) .

We then define; v,(p) :i= O* (f(n)) = O* (g(n)).
Note that for SGu(0) (or SG,(1) ), there is always a value, and this value is

0*(0), ( where 0 is the constant zero sequence,) since this is a game with complete
information.

2. DEFINITIONS AND PRELIMINARY RESULTS
Proposition 2.1. For all o, 7, strategies in Gy(p):
inf 7 (0,7) < va(p) < sUP(0, 7).
F

This proposition expresses the intuition that both, PI and PII, have more freedom
in their choices of strategies in G,(p) than in G (p), since a strategy in G,(p) can
depend on n, and a strategy in Ge(p) (where the end of the game is not known to
the players) can not depend on n. In other words, any strategy available to any of the
players in G (p), is available to them also in G,(p) (as its n -truncation ), hence
they can not ‘do better' in Gy (p), than in Gyp(p).

Proof. Let: o, 7, be respectively, optimal strategies of PI and PII in G.(p), and
for any pair of strategies ¢ and 7 of PI and PII in G (p), we denote by &y, Tn,
the n -truncation of o, T respectively.

if}f Tnlo,7) = i%f’)’n(ga Tn) < (o7} < Ya(on ) = va(p).
For the first inequality, note that: 7 can not do better than be the best reply to
o. Similarly: sup, (o, 7) = va(p). O
Proposition 2.2, If there is a value v,(p) for SGe(p), then it satisfies:

vs{p) = O (en(p)).
Proof. from proposition 2.1 we get that for any o, ™

ir;ffyﬂ(cr,'r) = Cavu(p) < ea(p) < supya(o, 7) — Cavu(p), vn.

Now if there is a value vs(p) for SGu(p), then by definition 1.5, there are se-
quences f{n,p), g(n,p), such that:
1 v(p) = O (F(n,p)) .
and for all € > 0, there are strategies: o4(¢,p), 7,(¢, p), and sequences: f:(n,p), g:(n,p)
such that:
2. nEfE(n!p) 2 f(n7p)7 Vﬂ,.
3. 9&(”:19) S g(”’:p)nev vn.
and there are consts cs(p) > 0, ¢ (p) > 0 such that:
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& IRIT NOWIK AND SHMUEL ZAMIR

¢r(p) felmip) < il;Lf'Yn(Uf(E,P),T) — Cavu(p) < eq,(p)

< supa(0,7o(6,)) - Cavulp) < ey(plge(r )

Letting & go to 0, we get that: ¢;(p)f(n,p) < en(p) < cp(p)g(n, p). Hence: en(p) =
O* (f(n)) = O*{g(n)), and therefore: v,(p) = O* (en(p)) . O

The main result of this note is that although vs(p) (unlike e,(p)), does not always
exist, it does exist for the special class of games, in which: en(p) = O* (ﬁ) vp € (0,1),

and hence equals to O* (ﬁ) by proposition 2.2.

The games for which e,(p) = O* (715) vp € (0,1), were characterized by

Mertens and Zamir as the games for which: +/n{v,(p) — Cavu(p)) — ®(p), where
®(p) is an appropriately scaled Normal density function ( see Mertens and Zamir [6]
). We shall refer to this class as the class of “Normal Games”.

For any strategy o of Plin Go(p), (orin Gn(p)) let us define a sequence of r.v
(see e.g p.189 of [4] and p.122 of {10] ):

P=p

nx1 Foi=Fo(K=1|hy).

That is F, is the conditional probability, given h, and given ¢ , 7, that at stage 0
chance chose k£ = 1. Although P, is not known to PII since he does not necessarily
know o, it plays a central role in the analysis. Basically this is because, by the
minmax theorem any optimal (minmax) strategy o of PI, guarantees the value even
when it is known to PII, who can then compute F,.

It is easily seen that the distribution P,, is conditionally independent of 7 (since
7 is independent of K.) and using Bayes’ law we get that:

’?i(%}-)l 0, iy =T

P =
1/ o
Gimlp  ifi =B

50, (Fun
where 3,(hn) = Pas(hn) + Pisi(h,)
and 83’ (An) =1 — sL(Ay). (see in the Introduction.)
It is easy to see that P* = {PF,},- |, is a Martingale.
Hence any o, a strategy of PI in G (p), yields an infinite Martingale P*° of
probabilities, namely of random variables satisfying: 0 < P, <1, vn.
For all n and all m > n let:

Va(P™ =EY |Piy — Byl

k=1

4°d T89ETS9 2 246 ALTIONOTI1IEY &31K3ED FRiFT  BE. ddl B2
8| Jo / :obed WO HRIFE "33y *||ews A saxey) 1an /9S61/8G¢y 01 189€199¢C/6 ‘Wold NV ¥S:90 00'JelN'8T :PaAledsy



THE SPEED OF CONVERGENCE IN REPEATED GAMES 7

be the variation of P™ = {F;}, - The variation is a measure for the expected
amount of information revealed by PI up to (and including) stage n, when using the
strategy o. Note that the definition for V,(P™) holds also for m = co.

The variation V,,(P™) serves as a key role in the analysis, since the extra gain of
PI (beyond Cavu(p)) is constrained by the amount of information he reveals. More
precisely: it is proven (see p.224 of [3]), that there is ¢ > 0, such that:

1« ¢ m ¢ m
. 1 [ < ¢
(1) llgf’}’n(d',ﬁ') < = ;Eu(ﬂ) + nT/Z,,('P ) < Cavulp) + nV,,,('P )
for all n and all ¢ ( astrategy in Gn(p), m=n.)
Using Cauchy-Schwarts inequality, and the fact that P* is a uniformly bounded
Martingale, it is shown (see e.g proposition 3.8 p.122 of [10],) that:

(2) foralln, m>n Vo(P™) <a(p)y/n  for some a(p) >0

Remark 2.3. It follows from (1) and (2), that: e,(p) < O* (717-1) .

It was shown (see Zamir [§] ,) that O* (-—‘}ﬁ) is the least upper bound for the order

of magnitude of e,(p). Namely there exists a game in which: e,(p) > %, ¥n
Vp € (0,1).

Hence from (1) it follows, that for each n, there is a uniformly bounded martingale
P st

Va(P™) = epp'v/n. for some ¢ > 0.

Mertens and Zamir also showed (see Theorem 2.4 p. 255 of [5]) that for the infinite
uniformly bounded martingale P*, limg e {V“ F:D)} = 0

From this peint we proceed as follows:

o Although there isn't any infinite uniformly bounded martingale X%, satisfying:
Vau(X®) 2 av/n, Vn  for some a > o, we prove in part 3 that 4/m can be
reached asymptotically, that is: For every £ > 0, we will construct an infinite
martingale X3°, satisfying:

Va(X2) 2 eni™,  ¥n

for some ¢ > 0.

o In Part 4 we construct for any € > 0, a strategy ¢ in Ge(p), for PL, that
yields an infinite P2, that coincides with X% in some interval ({,w) in [0, 1].

o In Part 5 : We prove that in the Normal Games, there is a value wv,{p) for
SGe(p) V¥p€(0,1), and that: v,(p) = OF (—‘}ﬁ)

» We conclude by showing in Part 6 a class of games that for all p, do not have
a value for 9G..(p).
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8 IRIT NOWIK AND SEMUEL ZAMIR
3. THE VARIATION OF UNIFORMLY BOUNDED INFINITE MARTINGALES

Qur first result states that although the n-stage variation of a uniformly bounded
infinite martingale is smaller than O* (\/n), it can be of O (n%‘s) , for arbitrarily
small & = 0.

Theorem 3.1. Forany ¢ >0, n >0 and 0=l <p<u <1, thereis ¢> 0 and
o Martingale %° = {XnYor,, with; EX; = p Vn, that satisfies:

(a) P(l < Xp < u, Vn)>1-—1n

(b) For alin:  Vu(X®) 2 eni—.

Furthermore, we will prove that:

F {Z |Xk;+1 - XH = cn%_e, Vﬂ-} =1.

k=1

Proof. We construct a Martingale that satisfies (a) and (b).
Foragiven 0 < 8 < 1, let Yy, k=1,2..., be 1.id. random variables, defined by:

P(Y,=0)=¢ and P¥;=6)=90

(where # =1-—18.)
The required martingale X2° is now defined as follows:
Xi= p and for all n > 1t
Yo
Xn y— Xn—l + P~
where ng = n(e,p,l,u) is a constant that we choose so that X% satisfies (a) and
(b).

To choose ny so that X% satisfies (a), we proceed as follows:

ng-+n Yrk; ngn go'
Var (X,) = Var Z el Z WEME!

k=no+2 k=no+2

where M, = 33, 2%, Note that E|X,| < Var (X,) +1< M, + 1.
By the Martingale Convergence Theorem (see e.g p.244 of [7]), we get that (since
ElX,| € M. +1, Vn) X, =lim, X, exists and is finite, and: EX,, = p.
Using Egoroff’s theorem (see e.g p.88 of [2]), we get that the convergence of X, to

X i even stronger, namely almost uniformly. that is; For all n,¢é = 0, there is an
N, such that:

Lemma 3.2, For any 6,7 > 0, there is an N= N(8,n), such that for any ng > N,
the process X7 defined with ng, will satisfy:

P(Xn— Xul <6, Vn)21-n.
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THE SPEED OF CONVERGENCE IN REPEATED GAMES 8

Proof. Consider the above defined process with ng = 0, that is for each n > 1:

N "y,
3) Xn=p+ Z PEE
k=2
o
= Y
(4) Xo=p+ ﬁ%.

By Egoroff’s theorem we have, that for any 4 > 0 and » > 0, thereisan N =
N(4,n), such that:

5) P (1% =Kol <8, vn>N)21-n

Now for any ng: X — Xy = Xoo ~ ernn 50 we have:
P(|Xo— Xn| <6, Wn)=P (\X’W — Roina| <5, \m) - P (|JZ:,o - %, <6 Vn» m) .
and so for any such process defined with ng > N, where N satisfies (5), we get:

P (| Xoo — Xn| <4, vn)=P(3?m—5Eu|<5, vn>n0)ap(|)?w—)?n|<5, Vn}N)

z1l-—mn
and with that we proved lemma 3.2. o

To complete the definition of the martingale X2 , we now define ny as follows:

Given ¢,p, 1 and w, st 0 <! <p < u <1, define §* = min{&2 222},
For fixed 5 = 0, let my be the minimal N(d*,7n), that satisfies the inequality of
lemma (3.2) for § = é*.

s We now prove that the martingale %%, satisfies (a):

Pl<X,<wu, Vn)> P(|X,—p|<2 Vn)

= P (1Xn — Xool +

X —p| < 20%, VYn)
> P(|Xy — Xoo| <8 and |Xee—Xi| <4*, Vn)

=P(|X, - Xe| <8, Vn)>1-n

o To prove that XPsatisfies (b):
Denote: a = min(6,0").

Sonni ¥ F
IXR!+1 = Xkl = = 1.
+5 — Ly
k=1 k=ng42 kz k=np+2 kate
1
= enitt
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10 IRIT NOWIX AND SHMUEL ZAMIR

for some ¢ > 0, hence;

P {Z | Xis1 — Xi| > ens—, Vn} -1

k=1
In particular, V(%) > cni=%, Vn, concluding the proof of Theorem 3.1.
O

4. CONSTRUCTING FOR PI A STRATEGY WITH MAXIMAL VARIATION
As mentioned earlier:
. [
infv,(o,7) < Cavu(p) + EW,,('P?), V.
T

Therefore a strategy for PI, that will give him highest O* (inf, v,(c, 7)), must have
maximal O* (V,(P2)), where P> is the Martingale of the conditional probabilities
derived from o,

We shall use the Martingale X% constructed in the proof of Theorem 3.1, in the
following way:

For any ¢ > 0, we will construct a strategy o, for PI, such that inside an interval
(l,u), the sequence of conditional probabilities will be the same as X¥2° for that ¢.
The only information about the history that PI will use at stage n, is the condi-
tional probability Py, and so we can denote: s2(F,) as the probability that PI will
choose T at stage n, given K = k, and given F,. In part 3, we defined the constant
ng = n (¢,p!,u). Since £ and p are fixed, we abbreviate this by ng(l,%). We now
define the following sequence: @(n) = (no(l',w) + )5+, where U=

1
no(0.1)
Definition of a.: given 0 < # < 1, for any stage n=1,2--.:

¢ If ' < P, < v/, then:

-

—— and
na{0,1)

w=1-

66’ 06’
salPe) = 0+ ———  Si(P)=0-———

(B (n) P, () w(n)F,
o Otherwise: %(P,) = s(F,) for k = 1,2. where s(P,) is an optimal strategy

of PI in D(P,) = Pod; + (1 — Fy)4s.

Remark 4.1. The reason for choosing I',u' as above is for s&(P,) to be well defined.
that is, for k=1,2 aond n, the P, will satisfy: 0<s8(F,) < 1.

Remark 4.2. Note that for any twe intervals s.t. (a,b) C (e, d), we have: ng (a,b) >
no (¢, d), since by the definition of 8%, we get that: 6*(a,b) < §*(¢,d), (where 6*(z,y)
is 0* that correspond to the case of intervel (2,y).) Hence any N that satisfies (5)
for 6*(a,b), satisfies (5) for §*(c,d). Since we defined ny(c,d) to be the minimal N
that satisfies (5) for d*(c,d), we get that: nola,b) = ngle, d).

Lemma 4.3. The o, defined above satisfies:
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THE SPEED OF CONVERGENCE IN REPEATED GAMES 11

1. For all k,n, the P, satisfies: 0 < s5(P,) < 1.
2. The strategy o yields a Mortingale P> = {P,}:°,, which coincides with
X (defined in part 3) ingide (I',u"), and is absorbed outside (I',u).

Proof.
1. oIfl'< P, <o then:
fe
1 P =
lFa) = 0+ ¢(n) Py’
We have to prove that: 8 + 7%% < 1. this is equivalent to: (9‘3}, <¢

which is equivalent to: 8 £ @(n)P,. Now ¢(n) = (no(l',2) 4+ n)z+ so:

@(n)P, = (no(l', ) +n)3+e]' > (%;0_((%:7;_'))) i‘

By Remark 4.2; %{T) > 1, so we get:
en)P, =2 1>0,

In the same way we prove that 0 < s2(B,) < 1.
o If P, ¢ (I',v), so by definition: for k =1,2, s%(E,) = s(F,) which is an
optimal strategy of PI in D(P,), and then clearly: 0 < s(B,) < 1.
2. {P,}>, is a Martingale that satisfies:

2P, i, =T
(6) Foy1 =

1
SlBp, fiy=B

(recall 5.(F.) = Pusl(P.) + B'si(Py),) 500 Plin, = T) = 5,(P,) and
P(i, = B) = 5,(F,) and hence:
e If P, € (,%) then by definition:

| , |
5u(Py) = P, (9+—‘99~—) + P (9— 59 ):a.
T

o(n) P,
And so by (6), if P, € ('), them:

((0+5E85) P _
(o4 8 ~, Ki,=T

P-n+1 = 4
i sl n
L (9 Pt;?ﬁﬂ o , If in — B
Thatis: P (Pn+l =P+ HEFF) =P(i,=T)=0 and: P (P,H_l =P - L ) -
P(i,=B)=4¢.
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12 IRIT NOWIK AND SHMUEL ZAMIR

In other words, if P, € (I',4'), them:
Yo
(no(¥', w) +m)3
o If P, ¢ (I''t) then s%(P,) = 5(F,), k = 1,2, that is ¢, is then non-
revealing, and therefore: F,y1 = F, with probability 1, i.e. F, is absorbed
outside (I',u'), coneluding the proof of lemrma 4.3.

Pn+1=Pn+

O
Lemma 4.4. For the Martingale P& derived from op: Vo(PP) 2 eni™,  Vn.

Proof. Because in (I',w) P® = {F,} 7, coincides with X = {X,}]° defined in
part 3, then:

P(l<PF,<v, V=Pl <X,<u, Vn)=1l-n.

In particular, for all n: P(l' < Py, < o/, Ym<n)=>1-—n.
And so;
Va(PR)=E ) |Poy1 — By| >
k=1
n
E{Z|PF~=+1—PI¢| | '« B, <, Vmi_in}P(l'f-:Pm{u’, Ym < n)
k=1
no+n RO+
> E Y NEDERS ol=n) =z eni”,
k=gt (Mo (l', u') + k)§+5 kemotz (Mo (') + k)ﬁﬁ
for some ¢ = 0. : O

5. THE SPEED OF CONVERGENCE IN THE NORMAL (3AMES

We will now use o, that we constructed in section 4, for the Normal Games. We
will show that by using it, PI guarantees maximal speed of convergence. That is there
is a ¢ > 0, such that for all 1y, (0e,7) — Cavu(p) > _§£+'§’ V.

T

Theorem 5.1. In the Normal Games there is a value vy(p) for SGuw(p), for all 0 <
p<1, and v(p) = O (ﬁ)

The Normal games were characterized by Mertens and Zamir who showed that a
Normal game has a presentation of (see p.289 of [3] ):

&a -#4d s —8'v
A —_— A =
' (—Ga fa’ ) ’ (—eb g%’ )
0 < @#.ab< 1 and without loss of generality a > b.
We will prove the Theorem by proving two Lemmas:
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THE SPEED OF CONVERGENCE IN REPEATED GAMES 13

Lemma 5.2. In the Normal (ornes: PI can guaraniee OF (715) in 8Guw(p), for ol
0<p<i.

Proof. For £ > 0, use ¢, which was defined in part 4.
At stage n:

¢ if P, = pn, such that I' < p, < ¢/, and PII is using (¢,?), then the payoff for
this stage is:

[n(s;(pn), 4 (0) ( oo ) +2, (20pa), (o )( o ﬁyﬂ (f)
[l o) (2 ) b e (5 )] ()
e,
o (G W) (% 10

!

= % [(B’a +6a, —0'al = 0d') + ( —6'b~ G, O + Bb’ (t)

tf
=5 (o= b =) (f)

66’ 08’ (e — b)
——(a—-b)(t+t)= ——
o PO =

This is true for all ¢, and for all I’ < p, < «/, so when . is used by PI, the
payoff ¢, for stage n satisfies:

(7) Blgn il <« Py <v) = -99';‘?—”')”), Vi,

e Now, if P, ¢ (I',u') then s£(P,) =s(F,) =8, so:
Elgn | Png (',¥))=0 VL
Hence for all n, and all 7

Tn(CeyT) = %iE(gk(o’E,T)) = %E {i(gk(ag,ﬂ)‘ V< Py, Ym &£ n} (1=

k=1 k=1
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14 IRIT NOWIK AND SHMUEL ZAMIR

and so by equation (7):

%(UG’T)}[EiW](l—ﬂ)=(l_n)eg'(a—b) o1 .
IR A= > —_,

for some ¢ > 0.

Hence by definition 1.5, this concludes the proof of lemma 5.2.

Lemma 5.8. PII can guarantee O* (L] in SGu(p)for all 0 < p < 1.
v

Proof, PII has a strategy 75, based on Blackwell’s approachability theorem, (see e.g
Aymann and Maschler p.225 of [3]) , which guarantees him in any G..(p), (not just
in the Normal-Games,) not to pay more than: Cav u(p)+ “(’; ) forall0 < p < 1,
for some 0 < a(p) < co. ]

Proof of Theorem §.1: By the definition of v,(p), Lemmas 5.2 and 5.3 imply that
there is a value v,(p) for SG(p) in the Normal Games, and that: wv,(p) = O* (ﬁ)
Vp € (0,1). ]

6. 4 CASE IN WHICH THE GAME SGu(p), DOES NOT HAVE A VALUE

Sinee for all p, v,(p) is a non-decreasing function in n, (see proposition 3.19
in [10]) and w.(p) 2 Cavu(p) Yn, then v(p) = Cavu(p), implies v, (p) =
Cavu(p) Vn, and thus e,(p) =0, Vn. Hence in this special case PI cannot gain
any benifit from his extra knowledge and therefore we consider this game to be trivial;

Definition 6.1. If vi(p) = Cavu(p), then we say that G..(p)is a trivial Gamae.

Note that (Ges(0) and Go(1) are alwayes trivial. It is easy to see that if Guo(p)is
trivial, then v (p} exists and w,(p) = O*(0).

Theorem 6.2. If u(p) is sirictly concave on [0,1] and G (p)is not trivial, then the
game SGo(p) does not have o velue.

This Theorem expresses the following intuition: Games with strictly Concave u(p)
represent cases in which PI prefers the situation that none of players PI and PII knows
which is the game played, rather than the situation that both of them do know. To
gee that, note that when none of the players know which game is being played then
they play D(p) and the value is wu(p). If both players know which game is played,
then both can play optimal in that game, so the value is:

puy + p'ua,

sT°d TE9ETSS 2 246 ALTTENOILIHY H31H3D AF:FT B8, odl) 82
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THE SPEED OF CONVERGENCE IN REPEATED GAMES 15
where vy, vz are the values of A;, As respectively. (Note that: w(l) = v; and
u(0) = va.) By the strict concavity of u(p), we have:

u(p) = pu(l) + p'u(0) = pvi +p'vs, forall0 < p < 1.

So in such games we would expect PI to be conservative in his use of information,
in order not to reveal it to PIL It turns out that in G (p), PI should never use his
information:

Lemma 6.3. If u(p) is strictly conceve on [0,1], then if PI guarantees f(n,p) in
8Gec(p), then f(n,p)=0"((0)).

Proof. Since u(p) is strictly concave, then for all p:

Cavulp) = u(p)

1. If ¢ is a non-revealing (NR) strategy, that is for all ni &(hn) = s2(hs) and
then for all n:

inf ya(0,7) < u(p) = Cavulp).

Thus the NR optimal strategy in Goo(p), consisting of playing repeatedly an
optimal strategy in D(p), guarantees O*()) in $Gu(p).
2. We claim that any other strategy o, s not (even) optimalin G (p). We do that
by proving that there is an N, such that: inf, v,(c,7) < Cavu(p). ¥n > N,
Let # be the first stage such that: si(h,) Z 82(h,)-
For all n:

e
qurn a,T) —;Eu(ﬁ _\/"ﬁ
(see (1) and (2) in part 2).
sforalln<a: F=p
eforn=d: Fa#F;.
So by the strict concavity of u(p), given Fy:

E (w(Pat1 | Pa)) < u(B (Pass | Pa)) = u(Py) = u(p)

o denote: =6 = Bu(Fsy1) —ulp).
{u(Py)} is a Super-Martingale, since using Jensen’s inequality:

E (u(P) | w(Pa-1)) £ u((BFy | Pact)) = u(Pus).
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18 IRIT NOWIK AND SHMUEL ZAMIR

So: For all n > A Fu(P,) — u(p) < —4. Hence:

ir;f Yalo,T) < % [Zn: Bu(F;) + i Eu(F)
i=1

fit+l

+

BE

> ulp)+ > (up) -8)| +
i=1 fitl
= i " <

n T Um
: f [
Thus: inf 4, (o, 7) — u(p) € -6 (1 - E) +—_

For n large enough, the left side of the last inequality is strictly negative, g0
@ is not an optimal strategy in Goo(p), concluding the proof of Lemma 6.3.

O

, 1
@%Mﬂiﬁ

Sle

inf (e, 7) £ ulp) — ¢

Lemma 6.4. If v(p) is concave on [0,1] and Gu(p) is not trivial, then if PIT guar-
antees g(n,p) in SG(p), then g(n,p) = OF (%)

Proof. If the game is not trivial, then PI can play o} in G,(p) defined as follows:

For first n — 1 stages play for every realization of Ay, m < n, optimal in D(p).
So up to stage (n — 1):

i:;f'yn_l(d';, ) = u(p).

At stage n, play optimal in Gy(p), to guarantee in this stage: vi(p) > u(p). denote:
e(p) = v1(p) — u(p), then PI can guarantee:

. . N c(p)
1x1;ffyn(crm'r) = u(p) + gt

So then for any strategy 7, of PII in G, (p):

(1) = u(p) + S,

Since u(p) is concave, then for all p: u(p) = Covu(p), and so:

e(p)

Yu(on, ™) = Covu(p) + —

Now PII cannot play better in G, (p) than in any G,{(p) (see proposition 2.1 in
part 2), which implies that if PIT guarantees g(n,p) in SGe(p) then:

ot 2 [7].

T
d
Proof of Theorem 6.2: By Lemmas 6.3 and 6.4 and by the definition of v,(p), we get
that the game SG . (p) does not have a value. |
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THE SPEED OF CONVERGENCE IN REPEATED GAMES 17

We conclude with an example of a game in which for all 0 < p < 1, ve(p) does
not exist and the gap between any f(n,p),g(n,p) that PI and PII can guarantee
respectively in SGeo(p), is bounded away from zero by lon,

Let:
10 00
Ay = -
! (o 0) and A (o 1)

This game was presented by Aumnann and Maschler and it was proved by Zamir, (see
Theorem 4 of [8]) that eq(p) = O* (22), ¥p € (0,1). For thisgame u(p) = p(1—p),
which is a strict concave function and hence by lemma 6.3, if PI can gnarantee f(n,p)
in SGx(p), then: f(n,p) = 0*()).

On the other hand PII can not do better in G (p) than in any G,.(p), hence: if
PII can guarantee g(n,p) in SGo(p)then: g(n,p) > O* (22),
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