
EXTENSIVE-FORM CORRELATED EQUILIBRIA

By Eilon Solan

The paper studies extensive-form correlated equilibria in stochastic games.
An extensive-form correlated equilibrium is an equilibrium in an extended
game, where a correlation device chooses at every stage, as a function of past
signals (but independently of the actions of the players) a private signal for
each player.

We define the notion of individually rational payoffs for stochastic games,
and characterize the set of extensive-form correlated equilibrium payoffs using
feasible and individually rational payoffs. Our result implies that extensive-
form correlated equilibria and communication equilibria are payoff equivalent
in stochastic games.
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1. INTRODUCTION

Correlated equilibria were introduced by Aumann (1974, 1987) for one-shot
games. A correlated equilibrium is a probability distribution over the set of
action combinations, such that if (i) a mediator chooses an action combina-
tion according to this distribution and reveals to each player his action in
the combination and (ii) each player assumes that all other players follow the
recommendation of the mediator, then no player can profit by disobeying the
recommendation of the mediator and choosing another action.

Correlated equilibria are an appropriate solution concept as soon as pre-
play communication between the players is possible, or whenever players have
different information or beliefs. In the words of Aumann (1987), “if it is com-
mon knowledge that the players in a game are Bayesian utility maximizers
who treat uncertainty about other players’ actions like any other uncertainty,
then the outcome is necessarily a correlated equilibrium.”

An equivalent formulation of correlated equilibria is by introducing cor-
relation devices. A correlation device chooses before the start of play a signal
to each player according to some known joint distribution. Any Nash equi-
librium in an extended game that includes a correlation device, where the
players can base their choice of action on the signal they receive from the
device, is a correlated equilibrium.

Aumann (1974) provided several examples in which all players profit by
using a correlation device, i.e., games where the unique Nash equilibrium
gives all the players strictly less than some of the correlated equilibria.

In the present paper we are interested in dynamic games; games that are
played in stages, and the payoff for the players depends on the whole history.

Consider for example a multi-stage game with observable actions (see,
e.g., Fudenberg and Levine (1983) or Fudenberg and Tirole (1991)). The
game is played for some fixed number of stages. At every stage the players
observe the actions that were played by all the players in all previous stages,
and choose simultaneously actions for that stage. The payoff, that is given
to each player at the end of the game, depends on the whole play.

When defining the notion of correlation devices in such a model, several
generalizations come to mind. First, the device can choose one private signal
for each player before the start of play, as in one-shot games, and reveal to
each player his chosen signal (correlation device, Forges (1986, 1988)).

However, one can conceive of a device that chooses a private signal for
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each player before every stage, and reveals to each player his chosen signal
before this player can choose an action. In this case, the data on which the
device bases its choice may vary. In the most general case, the device may
base its choice on daily messages that it receives from the players (communi-
cation device, Forges (1986, 1988), Myerson (1986) or Mertens (1994)). One
can restrict oneself to devices that base their choice only on previous signals
that they chose, and not on any other data (autonomous communication
device, Forges (1986, 1988)).

In the present paper we are interested in autonomous correlated devices:
devices that choose a signal for each player at every stage, and the signals
depend only on previous signals, and not on the actions of the players. Thus,
there is no communication between the players, and correlation is achieved
by the lotteries of the device.

Example 1 (Myerson 1986)

Consider the following 2-player two-stage game (in all the examples that we
give player 1 is the row player and player 2 is the column player):

stage 1

B

T

2, 2

2

stage 2

L R

B

T

5, 1 0, 0

0, 0 1, 5

Figure 1

At the first stage player 1 chooses either Top or Bottom. If he chose Top,
then at the second stage player 1 chooses either Top or Bottom and player 2
chooses either Left or Right. The payoff for the players is indicated in Figure
1.

The Nash equilibrium payoffs are (2, 2) and (5, 1). The payoff (2, 2) can
be attained by the following equilibrium profile: (i) at stage 1, player 1 plays
Bottom and (ii) at stage 2, player 1 plays Top and player 2 plays Right. The
payoff (5, 1) can be attained by the following equilibrium profile: (i) at stage
1, player 1 plays Top and (ii) at stage 2, player 1 plays Bottom and player 2
plays Left. By using a suitable correlation device the players can implement
(3, 3) as an equilibrium payoff:
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• Player 1 chooses Top at the first stage.

• A device chooses with probability 1/2 the pair (Bottom,Left) and with
probability 1/2 the pair (Top,Right), and reveals his choice to the play-
ers.

• The players follow the recommendation of the device at the second
stage.

Note that in order to have this mechanism an equilibrium, it is necessary
that player 1 knows that a lottery will be performed before stage 2, but he
must not know the outcome of this lottery before he chooses his action at
stage 1.

A Nash equilibrium payoff in an extended game that includes an autonomous
correlation device is an extensive-form correlated equilibrium payoff. Thus,
the set of extensive-form correlated equilibrium payoffs is generally larger
than the set of Nash equilibrium payoffs.

If the players have the same finite recall, that is, at stage n the players
are told the actions that were played only at stages n − 1, n − 2, . . . , n −
k, or more generally, in a situation of symmetric incomplete information,
the game includes information sets — there are different histories that are
indistinguishable by the players. Thus, the behavior of the players must be
the same after such indistinguishable histories. Nevertheless, the payoff for
the players depends on the whole history, regardless of the information of the
players.

In addition, various moves in the game can be made by nature, and the
results of these moves be announced to the players (or, the players may
receive some information on those moves).

A natural model that includes these two extensions of multi-stage games,
as well as other models (like repeated games with incomplete information on
one side (see, e.g., Aumann and Maschler (1995))), is the model of stochastic
games, presented by Shapley (1953).

A stochastic game is played in stages. At every stage each player chooses
an action, and a new state of the world is chosen according to a probability
distribution that depends on the current state of the world and the actions
chosen by the players. In contrast to standard stochastic games, the payoff
is not an aggregation of some daily payoffs, but it is a function of the play.
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Stochastic games were applied in many contexts: resource extraction
(Levhari and Mirman (1980), Amir (1987), Sundaram (1989) and Majumdar
and Sundaram (1991)), Altruistic growth (Bernheim and Ray (1983) and
Leininger (1986)), racing models (Winston (1978) and Harris and Vickers
(1987)) and dynamic duopoly (Cyert and DeGroot (1970) and Maskin and
Tirole (1988a,b)).

In the present paper we study stochastic games in a most general set-up.
The state space, action spaces of the players and the payoff function may be
arbitrary. Since the set-up is general, we are concerned with ε-Nash equilibria
of the extended game that includes a correlation device, whereby players will
be able to profit at most ε by deviating from the equilibrium path

Our main result concerns a characterization of the set of extensive-form
equilibrium payoffs using feasible and individually rational payoffs.

The first question that one asks in such a characterization is, what is an
individually rational payoff ? In a dynamic game, a payoff that is individually
rational today may be irrational tomorrow.

For example, consider the following game, where the payoffs are those of
player 2.

stage 1

B

T

−2

2

stage 2

L R

0 −1

Figure 2

It is clear that −1 is an individually rational payoff for player 2, but, if
player 1 plays T , then, unless there is some binding agreement, player 2 will
never agree to play R.

Thus, we are led to define individually rational strategy profiles instead
of individually rational payoffs. Intuitively, a strategy profile is individually
rational if, after any history, no player prefers to play some action and then
be punished forever, than to play any action that has a positive probability
according to his strategy, knowing that in the future everyone will continue
to follow that profile.

We then prove that for any individually rational strategy profile corre-
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sponds an autonomous correlation device and an equilibrium strategy pro-
file in the extended game, which are payoff-equivalent, and vice-versa. By
defining the set of feasible and individually rational payoffs as the set of all
payoffs of individually rational strategy profiles, we conclude that the set of
extensive-form correlated equilibrium payoffs coincides with the set of feasi-
ble and individually rational payoffs.

If the state space and action spaces are countable, the device can base its
choice only on previous signals, and not on any other data. If they are not
countable, we must assume that the device knows the moves done by nature.
Alternatively, the device may base its choice on previous states of the world
as well as previous signals. However, the device never bases its choice of new
signal on the actions taken by the players.

Though the result may remind one of the Folk Theorem, there is a signif-
icant difference: whereas the Folk Theorem characterizes the set of equilib-
rium payoffs in a repeated game by means of the one-shot game, in a general
stochastic game the payoff depends on the whole play.

Our result implies that communication between the players is not needed
in order to achieve any feasible and individually rational payoff as an extensive-
form correlated equilibrium payoff.

In addition, we provide an example of a multi-stage game where all the
players profit by using an autonomous correlation device. The main ideas of
our proofs appear in the context of the autonomous correlation device that is
constructed for this game. In this example, the unique correlated equilibrium
is also the unique Nash equilibrium of the game, thus, using a device that
sends messages only before the start of play cannot help the players.

Our work is related to that of Myerson (1986), who studies multi-stage
games, and characterizes the set of sequential communication equilibria using
codominated actions. Nevertheless, there are some important differences.
First, Myerson’s equilibria are sequential, while in our equilibria players may
be required to punish a deviator, which may be irrational for some of the
players (though punishment never occurs on the equilibrium path). Second,
Myerson is concerned with finite multi-stage games, the players in his set-
up have asymmetric information, and they send messages to the correlation
device, whereas we study general stochastic games (which means that the
information is symmetric) and players cannot send messages to the device.

One can obtain similar results if one uses the notion of correlation as
defined by Moulin and Vial (1978) instead of the notion defined by Aumann

6



(1974, 1987).
The paper does not address the question of whether the set of feasible and

individually rational payoffs is empty or not. When the game lasts for finitely
many stages the existence of an equilibrium (and therefore, of a feasible and
individually rational payoff) is clear. In the general case, non-emptiness of
this set was proved for the discounted payoff by Nowak (1991), Mertens and
Parthasarathy (1987) and Solan (1998), and for the undiscounted payoff only
when the state and action spaces are finite (Solan and Vieille (1998)).

The paper is arranged as follows. In Section 2 we illustrate the basic
ideas underlying the correlation device that we shall use by an example, in
Section 3 we present the model, various types of correlation devices, and the
main results, and in Section 4 we prove the main results of the paper.

2. EXAMPLE

Consider the following two-player multi-stage game:

stage 2

L R

3,−1 0,−2

stage 1

L C R

B

T

2 0, 0 1,−4

1, 1 1, 0 0, 2

Figure 3

At stage 1, player 1 chooses a row, and player 2 independently chooses a
column. If the players chose (B,L) then the game continues to stage 2,
where player 2 chooses a cell. If the players chose another pair of actions at
the first stage, or after the choice of player 2 at the second stage, the players
receive a payoff as indicated in Figure 3.

Clearly, if the game reaches stage 2, and player 2 is rational, he will choose
L, and the players will receive the payoff (3,−1).

We shall now verify that the game has a unique correlated equilibrium,
and therefore a unique Nash equilibrium. Assume that at the first stage the
correlation device chooses the cells according to the following distribution:
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L C R

B

T

β δ ν

α γ ε

Figure 4

where α + β + γ + δ + ε + ν = 1 and α, β, γ, δ, ε, ν ≥ 0. If this distribu-
tion is a correlated equilibrium, then the following inequalities must hold:

α− β ≥ 0, 2α− 4β

0 ≥ γ − δ, 2γ − 4δ

2ε− 4ν ≥ 0, ε− ν
α + γ ≥ 3α + ε

3β + ν ≥ β + δ.

It follows that

2β + ν ≥ δ ≥ γ ≥ 2α + ε ≥ 2β + ε ≥ 2β + 3ν,

which implies that ε = ν = 0 and γ = δ = 2α = 2β. Thus, the unique
Nash equilibrium is for player 1 to play at the first stage (1/2, 1/2) and for
player 2 to play at the first stage (1/3, 2/3, 0), whereby the players receive
an expected payoff of (1, 0). Moreover, the unique correlated equilibrium
coincides with the distribution over the entries of the matrix induced by this
Nash equilibrium.

We claim that any point on the interval (3/2, 1/2)-(2, 0) is an equilib-
rium payoff when the players use an appropriate mechanism. Consider the
following mechanism:

(i) Before the start of play, a mediator chooses randomly either T with
probability x or B with probability 1− x, where 1/2 ≤ x ≤ 3/4.

(ii) The mediator tells player 1 his choice.

(iii) At stage 1, player 1 follows the choice of the mediator, and player 2
plays L.
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(iv) After stage 1, but before stage 2, the mediator reveals his choice to
player 2 (and thus, his recommendation to player 1 at the first stage).

(v) At the second stage, player 2 plays L or R, according to whether the
choice of the mediator was B or T . Thus, if player 1 did not follow the
recommendation of the mediator, he is “punished”.

If the players follow this mechanism then the expected payoff is (3−2x, 2x−
1). Moreover, no player has any profitable deviation.

In order for this mechanism to be an equilibrium, it is necessary that
player 2 not know the choice of the mediator before stage 1 (otherwise, he
has a profitable deviation), and it is necessary that player 1 knows that the
choice will be revealed to player 2 before stage 2 (so that not following the
recommendation of the mediator is not profitable).

3. THE MODEL AND THE MAIN RESULTS

For every measurable space Y we denote by P(Y ) the space of probabil-
ity measures over Y . If µ ∈ P(Y ) and C ⊂ Y is a measurable set, then µ[C]
is the measure of C according to µ. A function f : X → P(Y ) is measurable
if for every measurable subset C ⊂ Y the function g : X → [0, 1] defined by
g(x) = fx[C] is measurable. A product (resp. union) of measurable spaces
is always endowed with the product (resp. union) σ-algebra. Finally, a cor-
respondence is a set-valued function, and a correspondence φ : X → Y is
measurable if the set {x ∈ X | φ(x) ∩ C 6= ∅} is X-measurable for every
Y -measurable set C.

A stochastic game G is given by:

(i) A finite set of players N .

(ii) A measurable space of states S.

(iii) An initial state s? ∈ S.

(iv) For every player i ∈ N , a σ-compact metric space of pure actions Ai0.
We denote A0 = ×i∈NAi0.

(v) For every player i ∈ N , a measurable correspondence Ai : S → Ai0
with closed values. Ai(s) is the set of actions available for player i in
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state s. We denote A(s) = ×i∈NAi(s). The space of infinite histories
is denoted by H∞:

H∞ = {(s1, a1, s2, a2, . . .) | s1 = s?, an ∈ A(sn), sn ∈ S ∀n ∈ N}.

We endow H∞ with the σ-algebra generated by all the finite cylinders.

(vi) A measurable transition rule q that assigns for each (s, a) ∈ Gr(A) a
probability measure in P(S).

(vii) For every player i ∈ N , a measurable bounded utility function ui :
H∞ → [−R,R], where R ∈ R.

The game is played in stages. The initial state of the game is s1 = s?. At
stage n each player is informed of the whole history (including the current
state sn), and chooses an action ain ∈ Ai(sn), independently of the other
players. The action combination an = (ain) that was chosen and the current
state sn determine a new state sn+1 according to the probability measure
q(sn, an).

The payoff for each player i is determined by the infinite path that has
occurred, and is equal to ui(s1, a1, s2, a2, . . .).

Note that our definition of a utility function is more general than the
standard approach of using daily payoffs. The utility function can be the
discounted sum, the lim sup, lim inf or any Banach limit of some daily pay-
offs.

3.1 ON STRATEGIES

A history of length n is a sequence h = (s1, a1, . . . , an, sn) where s1 = s?,
sk ∈ S and ak ∈ A(sk) for k = 1, . . . , n. The last state of a history h is
denoted by sL(h). The history (s?) is denoted by s?. The space of all finite
histories is denoted by H.

Definition 3.1: A strategy of player i is a measurable function σi : H →
P(Ai0) such that σi(h) ∈ P(Ai(sL(h))). A profile is a vector of strategies
σ = (σi)i∈N . A correlated profile is a measurable function σ : H → P(A0)
such that σ(h) ∈ P(A(sL(h))).
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Note that every profile is a correlated profile. We denote by Σi the space
of profiles of player i, by Σ? the space of correlated profiles, and by Σ−i? the
space of correlated profiles of players N \ {i}; that is, the space of measur-
able functions σ−i : H → P(A−i0 ) such that σ−i(h) ∈ P(A−i(sL(h))) for every
h ∈ H, where A−i(sL(h)) = ×j 6=iAj(sL(h)).

By Ionescu-Tuclea Theorem (see, e.g., Neveu (1965), Proposition V.1.1),
every finite history h ∈ H and every correlated profile σ induce a probability
measure Ph,σ over H∞; that is, the probability measure induced by σ in the
subgame beginning with h. We denote expectation w.r.t. this probability
measure by Eh,σ.

3.2 ON PAYOFFS

For every correlated profile σ and every finite history h we denote

γi(h, σ) = Eh,σu
i(s1, a1, . . .).

The payoff of a correlated profile σ is defined by γ(σ) = (γi(s?, σ))i∈N .
For every finite history h ∈ H we define the punishment level by:

vih = inf
σ−i∈Σ−i

?

sup
σi∈Σi

γi(h, σ).

vih is the punishment level that players N \i can inflict on player i when using
a correlation device.

We assume that for every ε > 0 and every player i ∈ N there exists a
correlated profile σ̃−iε ∈ Σ−i? such that

|vih − sup
σi∈Σi

γi(h, (σ̃−iε , σ
i))| < ε.

That is, there exists a measurable ε-punishment profile. In general, such a
correlated profile need not exist. However, in various special cases such a
correlated profile is known to exist: (i) if the state and action spaces are
countable, then there are no measurability issues, and (ii) if the utility func-
tion is the discounted sum or the limsup of daily payoffs, then existence was
proved in general set-ups (see, e.g., Mertens, Sorin and Zamir (1994) for the
discounted sum, and Maitra and Sudderth (1993) for the limsup).
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3.3 THE MEASURE OF IRRATIONALITY OF STRATEGIES

In this section we assign to each correlated profile σ and every player i a
non-negative number U i(σ), that measures how much player i can profit by
deviating from σi, provided his deviation is followed by an indefinite punish-
ment. In other words, U i(σ) is the measure of irrationality of following σ for
player i.

Let h ∈ H be a finite history of length n and σ be a correlated profile.
For every player i we define

V i
h(σ) = sup

bi∈Ai(sL(h))

Eσ−i(h)v
i
h,(a−i

n ,bi),sn+1
.

Given that the history h has occurred, today players N \ {i} follow σ, but
tomorrow they start to punish player i, V i

h(σ) is the maximal payoff that
player i can guarantee.

For every action bi of player i we define

U i(h, σ, bi) = max{0, V i
h(σ)− Eσ−i(h),biγ

i((h, (a−in , b
i), sn+1), σ)}.

That is, given that player i should play the action bi, U i(h, σ, bi) is his loss
compared to deviating and being punished from the next stage on. Denote

U i(h, σ) = Eσi(h)U
i(h, σ, bi),

the expected loss of player i if he follows σ, given that the history h has
occurred.

Any measurable stopping time t : H∞ → N and every correlated profile σ
induce, by Ionescu-Tuclea Theorem, a probability measure over H. Denote
expectation w.r.t. this measure by Et,σ. Define the measure of irrationality
of σ for player i by

U i(σ) = sup
t

Et,σU
i(h, σ)

where the supremum is over all measurable stopping times. In other words,
given that the players should follow σ, player i may stop following σ whenever
he chooses. However, one stage afterwards, he is being punished with his pun-
ishment level. U i(σ) measures the maximal amount that player i can profit
by such a process, where the profit is measured w.r.t. following σ indefinitely.
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Definition 3.2: The set of all feasible and individually rational payoffs
is the set E1 of all vectors v ∈ RN such that for every ε > 0 there exists a
correlated profile σ that satisfies:

(i) |γi(σ)− vi| < ε for every player i ∈ N .

(ii) U i(σ) < ε for every player i ∈ N .

3.4 ON CORRELATION

Definition 3.3: An autonomous correlation device is a pair E = ((M i)i∈N , (En)n∈N)
where

• M i is a measurable space of signals for player i. We denote M =
M(E) = ×i∈NM i.

• En : (S ×M)n−1 × S → P(M) is a measurable function.

An autonomous correlation device is a correlation device if En(m1, s1, . . . ,mn−1, sn−1)
is an atom for every n > 1 (i.e. the players can receive an “informative” sig-
nal only before the beginning of the game).

Given an autonomous correlation device E = ((M i)i∈N , (En)n∈N) we define
a new game G(E) which is played like the game G, but at every stage n,
before the players choose actions, the device chooses a signal mn = (mi

n)i∈N
according to the probability measure En(s1,m1, . . . ,mn−1, sn), and sends to
each player i the signal mi

n. Each player can base his choice of an action on
all the signal that he has received from the device.

Let H i(M) be the space of all finite histories that player i can observe in
G(E); that is, the space of all sequences (s1,m

i
1, a1, . . . , sn−1,m

i
n−1, an−1, sn,m

i
n)

such that s1 = s?, ak ∈ A(sk) and mi
k ∈M i. Note that, since the signals are

private, each player observes a different history. Let H(M) be the space of
all finite histories that an outside observer, who observes both the actions of
the players and the signals sent to all the players, can observe. Let H∞(M)
be the space of all infinite histories that this outside observer can observe.
We endow H∞(M) with the σ-algebra generated by all the finite cylinders.
Note that the spaces (H i(M))i∈N , H(M) and H∞(M) are independent of
(En)n∈N.
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A strategy for player i in G(E) is a measurable function τ i : H i(M) →
P(Ai) such that τ i(h) ∈ P(Ai(sL(h))) for every h ∈ H(M). A profile τ =
(τ i)i∈N is a vector of strategies, one for each player.

In the sequel, σ always refer to correlated profiles in the game G, and τ
refers to profiles in the extended game G(E).

For every history (s1,m1, a1, . . . , sn,mn) ∈ H(M) we denote

τ(s1,m1, a1, . . . , sn,mn) = (τ i(s1,m
i
1, a1, . . . , sn,m

i
n))i∈N .

By Ionescu-Tuclea Theorem, every autonomous correlation device E , every
profile τ in G(E) and every finite history h ∈ H induce a probability measure
over H∞(M). We denote expectation w.r.t. this measure by Eh,E,τ . Define
for every finite history h ∈ H(M), the expected payoff w.r.t. τ by

uiE(h, τ) = Eh,E,τu
i(s1, a1, . . .).

Define RN
++ = {r ∈ RN | ri > 0 ∀i ∈ N}. Addition in RN is defined

coordinate-wise.

Definition 3.4: Let ε ∈ RN
++. A profile τ in G(E) is an ε-equilibrium if

for every player i ∈ N and every strategy τ ′i of player i in G(E)

uiE(s?, τ) > uiE(s?, (τ
−i, τ ′i))− εi.

Definition 3.5: The set of extensive-form correlated equilibrium payoffs is
the set E2 of all vectors v ∈ RN such that for every ε ∈ RN

++ there exists an
autonomous correlation device E and an ε-equilibrium profile τ in G(E) such
that |uiE(s?, τ)− vi| < εi for every player i ∈ N .

3.5 THE MAIN RESULTS

The main result of the paper is that the set of feasible and individually
rational payoffs coincides with the set of extensive-form correlated equilib-
rium payoffs.

Theorem 3.6: E1 = E2

This result follows from two propositions. Proposition 3.7 claims that for

14



every correlated profile and every ε > 0, there exists an autonomous correla-
tion device and a strategy profile in the extended game, such that if all the
players follow this strategy profile in the extended game, then each player i
can profit by deviating at most his measure of irrationality plus ε. Moreover,
the two strategy profiles are payoff-equivalent.

Proposition 3.8 claims that for every ε-equilibrium strategy profile in an
extended game there exists a correlated profile in the original game, such
that its measure of irrationality is smaller than ε.

Proposition 3.7: For every correlated profile σ and every ε ∈ RN
++ there

exists an autonomous correlation device E and a U(σ) + ε-equilibrium profile
τ in G(E) such that uE(s?, τ) = u(s?, σ). If (i) the profile σ in not correlated,
or (ii) the state and action spaces are countable, then the autonomous corre-
lation device can depend only on previous signals, and not on previous states.

Proposition 3.8: Let ε ∈ RN
++. For every autonomous correlation de-

vice E and ε-equilibrium profile τ in G(E) there exists a correlated profile σ
such that uE(s?, τ) = u(s?, σ) and U i(σ) ≤ εi for every i ∈ N .

When the max-min level of each player is constant over the space of finite
histories, a stronger result holds. In such a case, no correlation is needed
along the play in order to sustain any feasible and individually rational pay-
off as a correlated equilibrium payoff.

Theorem 3.9: If vih is independent of h for every fixed player i ∈ N , then
the set of feasible and individually rational payoffs coincides with the set of
correlated equilibrium payoffs.

Remark: Though uniform equilibrium payoffs (see, e.g., Mertens, Sorin
and Zamir (1994)) are not in the scope of our model (since the uniform equi-
librium payoff cannot be defined as a limit of ε-equilibrium payoffs using
some utility function) similar results can be obtained, with analogous proofs.

4. THE PROOFS

Whenever we refer to the unit interval, we mean the interval [0, 1), equipped

15



with the σ-algebra of Borel sets and with the Lebesgue measure λ.
First of all we prove that for every correlated profile σ there exists a cor-

relation device E and a profile τ in G(E) that mimic σ — they both induce
the same probability measure over H∞ (and therefore yield the same payoff).

Lemma 4.1: For every correlated profile σ there exists a correlation device
E and a profile τ in G(E) such that Ps?,σ is equal to the marginal probability
measure induced by Ps?,E,τ over H∞.

Proof: We define a correlation device that (i) chooses before the game a
sequence of numbers (z1, z2, . . .) in the unit interval such that each number is
chosen independently from the others with the uniform distribution, and (ii)
reveals the whole sequence to all the players. The players, who observe the
history, should choose after each history h, an action combination according
to σ(h). They use the nth number in the sequence (where n is the length of
the history) in order to choose this action.

Since the set-up is general, the only point that should be verified is
whether this choice can be made using a single number, and can it be made
in a measurable way.

First we shall assume that Ai0 is finite for each player i ∈ N . In this case,
A(s) is finite for every state s. Let h be the finite history up to stage n.
Then at stage n, the players should perform the correlated lottery σ(h) over
A(sL(h)), using the number zn.

Denote
supp(σ(h)) = {a1, . . . , aR}

and µr = σ(h)[ar] for every r = 1, . . . , R. Each player i will play at stage n
the action air, where r ∈ {1, . . . , R} is the unique integer that satisfies∑

r′<r

µr′ < zn ≤
∑
r′≤r

µr′ .

For the general case, we need the following lemma, which is proved in the
Appendix.

Lemma 4.2: Let H be a measurable space and A0 a σ-compact metric space.
Let f : H → P(A0) be a measurable function. There exists a measurable
correspondence g : H × A0 → [0, 1) that satisfies:
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(i) (gh(a))a∈A0 is a partition of [0, 1) for every fixed h ∈ H.

(ii) λ[gh(C)] = fh[C] for every h ∈ H and every measurable subset C ⊂ A0,
where gh(C) = ∪a∈Cgh(a) (recall that λ is the Lebesgue measure).

Apply Lemma 4.2 for f = σ to get a measurable correspondence g :
H × A0 → [0, 1). At stage n, given that history h has occurred, the players
play the action combination g−1

h (zn).
The measurability of the profile follows from the measurability of g and

σ.

By applying Lemma 4.1 to the punishment profile σ̃iε we have: Corol-

lary 4.3: For every player i and every ε > 0 there exists a correlation device
E and a profile τ−i for players N \ {i} in G(E) such that for every strategy
τ i of player i in G(E) we have

uiE(h, τ) < vih + ε ∀h ∈ H(M).

Any profile τ in G(E) defines a natural correlated profile στ — the be-
havior observed by an outside observer that does not notice the signals:

στ (h) = Eh,Eτ(s1,m1, a1, . . . , sn,mn),

where h = (s1, a1, . . . , sn). It follows that τ and στ both induce the same
probability measure over H∞. Therefore we have the following result.

Lemma 4.4 For every player i and every finite history h = (s1, a1, . . . , sn) ∈
H

Eh,E,τu
i
E((s1,m1, a1, . . . , sn,mn), τ) = ui(h, στ ).

Proof of Proposition 3.8:
Let E = ((M i)i∈N , (En)n∈N) be an autonomous correlation device, τ be an
ε-equilibrium profile in G(E) and ε ∈ RN

++.
Fix a player i ∈ N . Since τ is an ε-equilibrium profile, it follows that for

every strategy τ ′i of player i in G(E)

ui(s?, στ ) = uiE(s?, τ) > uiE(s?, (τ
−i, τ ′i))− εi. (1)
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Every stopping time t and every strategy τ̃ i of player i in G(E) define a
strategy τ ′i for player i as follows: follow τ i as long as the stopping time does
not call the process to a halt, and afterwards follow τ̃ i.

Since (1) holds for every strategy τ ′i of player i, it follows that U i(στ ) ≤ εi,
as desired.

Proof of Proposition 3.7:
Let σ be any profile in G, and ε ∈ RN

++. Choose δ = 1
2

mini∈N ε
i.

We shall define an autonomous correlation device that mimics the be-
havior of σ. At every stage the device chooses a recommended action for
each player i according to σ, and sends to each player two signals: (i) the
recommended action for him to play at the current stage and (ii) the ac-
tions that were recommended for all the players at the previous stage. Thus,
each player observes whether all the players followed the recommendation of
the device at the previous stage. If any player has deviated, he is punished
with his punishment level (if several players deviate at the same stage, then
the deviator with the minimal index is punished). To punish effectively, the
device chooses for every player i, before the start of play, a sequence of num-
bers in the unit interval, and sends these numbers to all the players except
player i. This sequence is used by players N \ {i} in order to execute the
δ-punishment profile σ̃−iδ against player i if the need arises.

Formally, define an autonomous correlation device E as follows:

• Before the beginning of play, the device chooses for each player i a
sequence (zi1, z

i
2, . . .) of independent uniformly distributed numbers in

the unit interval, and sends each player i the sequences {(zj1, z
j
2, . . .)}j 6=i.

In addition, the device chooses a sequence (z1, z2, . . .) of independent
uniformly distributed numbers in the unit interval.

• At stage 1 the device sends to each player the signal ai1, where a1 =
(ai1)i = g−1

s1
(z1), and g is the function defined by Lemma 4.2 w.r.t. σ.

• At every stage n (n > 1) the device sends to each player i the signal
(ain, an−1), where an = (ain)i = g−1

(s1,a1,s2,a2,...,sn)(zn).

We now define a profile τ in G(E). The definition is divided into two
parts: for histories where no deviation was detected (players then follow
the recommendation of the device), and for histories where a deviation was
detected (players then punish the deviator forever).
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Formally, each player remembers if a deviation was ever detected, and if
so, who the deviator was.

If no deviation was detected before stage n, denote by (bin, bn−1) the signal
that player i receives at stage n. If bn−1 6= an−1, let j be the minimal index
such that bjn−1 6= ajn−1, and mark player j as the deviator. Note that all the
players observe such a deviation, and, in particular, mark the same player as
the deviator (except maybe the deviator himself).

If bn−1 = an−1, play ain.
If a deviation of player j was ever detected, then players N \ {j} play

σ̃−jε (h), where h is the history of the game up to stage n, using the number
zjn, as described in Lemma 4.1.

It is clear that no player i can deviate from τ in G(E) and profit more
than U i(σ) + ε.

The measurability of the device follows from the measurability of σ,
(σ̃jε )j∈N and g.

Remark: If σ is not correlated, then the device may be independent of pre-
vious states. Indeed, the device can choose at each stage n for every player
i a uniformly distributed number yin in the unit interval, and send to each
player i the pair (yin, (y

j
n−1)j∈N). Player i then calculates the actions that

each player should have played in the previous stage using g, and observes if
anyone deviated. He then calculates the action he should play at the current
stage, provided no deviation has been detected, and plays it.

Remark: If the state and action spaces are countable, then the space of
all histories of length n is countable. Thus, at stage n, the device may calcu-
late a recommended device for every possible history of length n, and send
each player a vector of signals, one for each such history. The players, who
know the realized history, know which signal should be taken into account,
and which should be ignored.

Remark: If the transition is deterministic, then the device need not base its
choice on previous states, since by knowing the previous state and the rec-
ommended actions, it can calculate the new state. If any player deviates (the
device then no longer knows the correct state of nature), then this player is
punished, and the players ignore the recommendations of the device anyway.
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Proof of Theorem 3.9:
Assume now that for every fixed player i ∈ N , vih is independent of h, and
denote this value by vi.

Fix ε > 0. We denote by P i the space of pure strategies of player i, and
P = ×i∈NP i. Every correlated profile σ induces a probability measure over
P . This probability measure is also denoted by σ.

Let σ be a correlated profile such that U i(σ) < ε for each player i ∈ N .
Denote by Hδ

∞ the set of all histories h∞ ∈ H∞ such that ui(h, σ) < vih − δ
for some beginning h of h∞.

Since U i(σ) < ε it follows that Ps?,σH
√
ε
∞ ≤

√
ε.

Define a correlation device E with a signal space M i = P for each player
i. The device chooses a pure profile according to σ, and reveals to all the
players the profile that was chosen. The players are then requested to follow
the pure profile that was chosen by the device. A deviator, who will be
noticed immediately, will be punished with his punishment level, which is
independent of the history.

With probability greater than 1−
√
ε no player can profit more than

√
ε;

hence this profile is a (1+R)
√
ε-equilibrium in G(E) (recall that R is a bound

of u).

MEDS Department, Kellogg Graduate School of Management, North-
western University, 2001 Sheridan Rd., Evanston, IL 60208, U.S.A.; e-
solan@nwu.edu
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APPENDIX

Proof of Lemma 4.2:
The proof follows similar lines as the proof of Theorem C, p. 172 in Halmos
(1950). We are going to define g as a partition of the unit interval into
subsets, which are either single points or sub-intervals.

For every n ∈ N, let {Bn
i }i be a finite partition of A0 such that {Bn

i }n,i
generates the σ-algebra of A0. Moreover, these sets are chosen such that each
set Bn

i is a proper subset of Bn−1
j(n,i) for some j(n, i), and that if i1 ≤ i2 then

j(n, i1) ≤ j(n, i2).
For every n ∈ N and i ∈ {1, . . . , ni} define the measurable function

αni : H → [0, 1] by:
αni (h) =

∑
j<i

fh[B
n
i ].

For every a ∈ A, let i(a, n) be the unique index such that a ∈ Bn
i(n,a). Define

now the measurable functions

G(h, a) = lim
n→∞

αni(n,a)(h)

and
K(h, a) = sup

b | G(h,b)<G(h,a)

G(h, b).

Finally we define gh(a) to be equal to the interval [G(h, a), G(h, a)] if
G(h, a) = K(h, a), to the interval (K(h, a), G(h, a)] if G(h, a) > K(h, a) and
K(h, b) = maxb | G(h,b)<G(h,a), and to the closed interval [K(h, a), G(h, a)]
otherwise.

It is easy to verify that g is measurable. Moreover

λ[gh(B
n
i )] = αni (h)− αni−1(h) = fh[B

n
i ].

It follows that requirement (ii) is satisfied for every measurable subset C.
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