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Gradual Nash Bargaining

Zvi Wiener

Eyal Winter

Abstract

We propose amodel of gradual bargaining in the spirit of the Nash axiomatic theory. In
this model the underlying set of payoff opportunities expands continuously with time.
Unlike Nash's solution, that predicts a single agreement for each bargaining problem, our
solution yields a continuous path of agreements — one for each point in time. It emerges
from asimple and intuitive differential equation. We discuss the relationship between the
gradual solution and the Nash solution, and characterize it axiomaticaly by using
essentially one property, which is Invariance with Respect to Increasing Transformations.
We interpret this property as an incentive compatibility requirement. By using the richer
framework of gradual bargaining, our approach avoids some of the shortcomings of
Nash’s axiomatization. In particular we do not need the controversial axiom of 11A and
the sets of payoff opportunities need not be convex. In the spirit of the Nash Programwe
propose severa non-cooperative bargaining models that sustain our solution. Finally, we
apply our model to discuss the allocation of physical (or monetary) assets when
individuals' risk aversion changes over time.



1. Introduction

Almost 50 years after the first appearance of Nash's bargaining model, his theory remains
one of the most important tools in economic analysis. The evolution of this theory over
the last several decades has taken different directions. A significant corpus of the literature
that stemmed form Nash’s 1950 paper deals with reinterpreting the Nash solution,
establishing aternative axiomatizations and devel oping non-cooperative games that sustain
it. This latter objective has been particularly popular since the relationship between the
Nash Solution and Rubinstein’s (1982) pure non-cooperative bargaining model has
become apparent (see Binmore, Rubinstein, Wolinsky (1986)). Another route was taken
by works that have attempted to construct different solutions to the same problem
addressed by Nash. The axiomatic approach that characterizes the Nash theory has
allowed for a prolific discussion about the validity of the axioms and their interpretation.
This has led to the emergence of aternative axioms and with them the construction of
competing solution concepts. Excellent surveys of this vast literature can be found in Kalai
(1985), Peters (1992) and Thomson (1996). It isfair to say, however, that much less has
been done in the direction of expanding the domain of what constitutes a bargaining
problem. It is precisely this route that we have chosen to embark on in this paper.

We view bargaining here as a gradual process in which consecutive agreements
take place while players’ underlying opportunities constantly change. Hence, in contrast to
the conventional framework, which assumes the presence of a single and constant set of
payoffs (i.e., the pie) and predicts a single agreement, in our setup the players set of
opportunities expands gradually and continuously and the solution specifies the whole path
of agreements — one for each point in time. Our motivation in looking at this domain is
twofold. Firstly, we believe that real life bargaining situations often involve a gradual
process in which agreements are temporal and are subject to revision as the pie expands.
Negotiations between management and workers concerning wages' or between managers
and shareholders concerning the allocation of profits between bonuses and dividends have

precisaly this property: these amounts are not fixed and agreements are constantly revised.

! on which the Nash theory has been often applied.



Political negotiations have this feature as well. Seidmann and Winter (1997) present a non-
cooperative model of gradual coalition formation and discuss a variety of such examplesin
amultilateral context.

Our modd is relevant even in cases where the pie is acquired fully formed.
Bargainers would often find it convenient to divide the underlying issue to several smaller
ones and to negotiate the ultimate agreement gradually. Thisis often done in order to
reduce the risk of a breakdown in the negotiation. Differences on smaller issues are
resolved much easily. Indeed, this philosophy was introduced by Henry Kissinger during
the seventies in the context of the Arab-1sragli conflict and, to alarge extent, it till
governs the approach to the peace process today. This intuition raises, of course,
important questions regarding the agenda. The ultimate outcome of the bargaining
depends on the way the large pie is broken into small pieces. In this paper, however, we
will take the agenda to be exogenous.

Our second motivation for exploring gradual bargaining in the Nash context is the
fact that our analysis of the new setup, and in particular our solution concept for the
gradual bargaining problem, will provide a new insight on Nash’s model and its solutions.
By enriching the domain, in the way we show here, we solve some of the shortcomings of
Nash’'s model that have been repeatedly discussed in the literature on axiomatic
bargaining. Our model does not require the sets of payoff opportunities to be convex. To
some extent they do not even need to be compact. This alows for alarger domain of
applicability, which is usually not permitted in axiomatic bargaining’. Furthermore, our
axiomatization does not use Nash's controversial axiom of Independence of Irrelevant
Alternative® (11A) and in fact it does not require any aternative axiom to replace it. Instead
it imposes a stronger version of Nash's Invariance axiom. The characterization of our
solution essentially builds on one property. Unlike Nash, who requires the invariance only
with respect to affine transformations, our property imposes the invariance with respect to

increasing transformations. We will interpret this property as an incentive compatibility

2 A different approach for lifting this constraint was recently proposed by Conley and Wilkie (1995),
Herrero (1989), and Zhou (1997).

3 Other authors have replaced the 1A axiom in the Nash standard framework with other axioms (see for
example Binmore (1987a) and Peters and van Damme (1993)).



requirement. It will be shown that this property jointly with the two standard axioms of
efficiency and symmetry uniquely determines our solution.

Aswe have mentioned earlier, our solution yields a continuous path of agreements
rather than a single agreement. Hence, for each problem it yields a function rather than a
point. It is therefore defined by means of a differential equation. This equation displays a
simple and intuitive principle. At each point in time players share the marginal growth of
the piein away that the more needy person obtains more, where “neediness’ is
determined by the marginal rate of substitution between the welfare of the two players. To
further support the solution, which we call the gradual Nash solution or GNS, we propose
several “arbitration schemes’ that give rise to it. In one of these schemes, players divide
each marginal “crumb” of the pie according to the Nash solution, where by “crumb” we
refer to an infinitesimally small part. We show that if this scheme is applied on a discrete
gradual bargaining problem it will generate a bargaining path that will converge to our
GNS as the crumbs become smaller and smaller.

Our axiomatic treatment is presented in Section 5. In Section 6 we study another
relationship between the GNS and the standard Nash solution. It turn out that if the set of
opportunities expands in a homothetic way, then the bargaining path hits the Nash solution
at each point in time. In Section 7 we establish the relationship between the GNS and the
asymmetric Nash solution. We present asymmetric arbitration schemesthat giveriseto a
generalized version of the GNS and with it to the asymmetric Nash solution as the
ultimate agreement. Moreover, we show how the asymmetric Nash solution emerges
from the symmetric GNS when the set of payoff opportunities expands in a quasi-
homothetic way. This, we will argue, offers a new interpretation to the asymmetric Nash
solution, which is quite different from the standard interpretation based on the idea that
players have different bargaining powers (since Roth (1979)).

Our approach is both cooperative (axiomatic) and non-cooperative. Section 8 is
devoted to the presentation of several bargaining games that support our solution. Again,
the enrichment of the domain alows for more flexibility in terms of the choice of the
bargaining model (compared with the standard Nash's framework). We present two types

of bargaining procedures. Thefirst is based on a sequence of ultimatum bargaining games



over each crumb, i.e. the allocation of each crumb results from a “takeit or leave it”
proposal. The second game form assumes that each crumb is negotiated according to
Rubinstein’s aternating offer procedure. We show that these two types of models virtually
implement our solution. Specifically, when applied on discrete gradua bargaining
problems they yield a subgame perfect equilibrium path of agreements that converges to
our solution as we approach the continuum. In Section 8 we discuss the allocation of
physical assets or money when players' risk attitude changes over time. We show that this
problem gives rise to a graduate bargaining problem and we establish a general equation
that determines the allocation of the physical assets over time. We accompany this
discussion with severa examples in which the GNS can be derived analytically and we
interpret the solution. We conclude in Section 10 with some final comments.

The approach of looking at continuous time processes and differential equationsin
the context of the standard Nash framework has been used by othersin the past. Starting
with Raifa (1953) who introduced an alternative solution to the Nash problem, and later
Maschler, Owen, Peleg (1987), Binmore (1987c), Livne (1989) , Furth (1990), Bergman
(1992) and Zhou (1997).

In contrast to these papers our main objective is to develop an axiomatic theory on
anew domain of problems, namely, the domain of gradual bargaining problems, which we
believe alows for a more elegant axiomatic treatment than those used for a variety of
solution concepts in the standard Nash framework. Finally, our paper is a'so somewhat
related to papers in the literature of non-cooperative bargaining theory, which look at
discrete bargaining but with multiple pies. Examples are Winter (1997) and Seidmann and
Winter (1997) in amultilateral context and Fershtman (1990) and John and Raith (1997)

in abilateral context.

2. The Standard Nash Problem



In the standard Nash paradigm a bargaining problem refers to a single pie represented by a
compact and convex set Sin R, that includes the origin (0,0)*. The Nash solution assigns
to each set S a point N(S) which satisfies N(S) = arg max) 1 sx¥%. Throughout this paper
we will refer to N(S) as the standard Nash solution.

Note that if the Pareto frontier of Sissmooth and is given by the equation
H(x,y) = c, then, at the Nash point, the curve x»y= const and the curve H(x,y) = c have a
common tangential line. This means that the gradients of these two curves are paralel at
this point. The gradient of the H function is (Hx(x,y), Hy(X,y)) and the gradient of x» is

simply the vector (y,x). Hence, at the Nash point we must have:
H(y) _y
H,(x,y) X

We will later extend this property in the definition of our gradual solution.
3. The Gradual Bargaining Problem

In our gradual bargaining framework two players are engaged in a bargaining process over
apie which grows over time>. At each point of time an agreement has to be reached
concerning the alocation of the pie currently available. Our graduate solution will attempt
to predict the complete path of agreements from the initial point to the ultimate pie
depending on the way the players underlying opportunities grow over time.

We start with some preliminary definitions and notations:

A Gradual Bargaining Problem (GBP) isafunction H from R, to [0,1]. The available pie
at timet is denoted by D(t) = {(x,y); t 3 H(X,y)}.

We impose the following conditions on H:

* For the sake of simplified notations we will assume a zero disagreement point all through the paper
although none of our results depend on this assumption.

> One should not confuse the sense in which our pies change over time with Rubinstein’s story of
“shrinking pies’. The difference is not merely the fact that our pies expand while

the latter, there is essentially a single pie and the model predicts a single agreement. In our framework the
pie grows and the model predicts a path i.e., an agreement for each crumb.



1. H is smooth and strictly increasing in both x and y®. We will denote by §D(t) the Pareto
frontier of D(t), i.e.,

D) = {(x,y)] D(t), st. (x',y’) > (x,y) impliesthat (x’,y’) T 1D(t) }. We will often refer
to D(t) asthe level curve of the function H at timet. Note that condition 1 implies that
D(t) satisfiesfreedisposdl, i.e. if (x,y)i D(t) and (x,y) 2 (X',y’)" then (x' ,y')I D(t).

2. 1ft>t thenD(t') I D(t), and D(0) = {(0,0)}.

Condition 2 requires that the underlying opportunities for the bargainers never
shrink, i.e. during each infinitesmal time a new crumb of the pie is being acquired, and
there are no re-negotiations over crumbs previoudly alocated. The necessary and
sufficient conditions on the function H that guarantee conditions 1 and 2 can be found in
Kannai (1977). Note that our conditions on H do not imply that the sets of payoff
opportunities D(t) are convex or even compact®. Hence our framework allows sets which
are forbidden in the standard Nash theory. Figure 1 depicts a gradual bargaining problem

and itslevel curves.

Figure 1. A Gradual Bargaining Problem

A Gradual Solution (GS) isafunction that assigns to each GBP H a continuos
path s,, which depends only on the level curves of H. Inits parametric form s, isgiven by
apair of functions s(t) = (x(t),y(t)) satisfying s(t) T D(t) for al t. The functions x(t) and
y(t) represent the total payoff acquired up to timet by players 1 and 2 respectively. Note
that when x(t) and y(t) are monotonically increasing, S(t) can be aternatively represented
by afunction y(x). We will often refer to y(x) or s(t) as the bargaining path of the GBP H.
We are now ready to introduce our specific solution for GBPs.

The Gradual Nash Solution (GNS) assigns to each GBP H the unique solution to
the following differential equation:

® One can get practically the same results when H is only Lipschitz and does not have critical points (i.e.
H, and H, cannot be both zero).
" Theinequalities® and > on vectors should be taken coordination-wise.

1 1
8 Take for example H(X,y) = xy- ——- ——.
ple H(X, y) = xy Tex 1ty




dy(x) _ H.(xy) (1)
dx  H,(x,y)

Equation (1) generates a vector field that determines the direction of the
bargaining path from each point (x,y) in D(1). Note that the right hand side of equation (1)
isthe marginal rate of substitution (MRS) between the welfare of the two players. It
determines the number of utils player 2 hasto forgo in order to increase player 1's welfare
by one util, while remaining on the same pie (level curve). Specificaly, if the MRSis, say
3, then the solution imposes that the subsequent crumb is alocated so that player 2 obtains
three times more than player 1. Thus at each point in time the players move from one
agreement to another by allowing the more “needy” person to obtain more. Note the
relationship between equation (1) and the one defining the Nash solution. In the latter case
the relation to the MRS is required only once (globally) while in our solution this relation
has to hold for each point in time.

Geometrically, the direction in which the players choose to move according to the

solution is orthogonal to the flipped gradient®. Thisis depicted in figure 2.

Figure 2. The Bargaining Direction

Two more technical remarks about our solution:
Remark 1. Equation (1) above determines a unique bargaining curve y(x). Thisfollows
from our condition 1 on H. However, it does not determine the specific parameterization
of this curve x(t), y(t). Whenever we refer to the solution in its parametric form we will
assume that the parameterization is such that H(x(t),y(t)) = t. This means that at timet the
players arrive at the frontier of D(t). Remark 2 below argues that this can be done without
loss of generality.
Remark 2. Equation (1), in fact, depends on H only through its level curves. To

demonstrate this consider a new function given by h(x,y) = G(H(x,y)), where G is smooth.

® The flipped gradient is the vector (Hx,-Hy). Its orthogonal vector is (Hy,Hy), which points at H,/H,. Note
that this direction isidentical to the one obtained by flipping the tangent (at the point (x,y)) which is
orthogonal to the gradient. Note that the same direction is obtained by flipping the tangent at the point on

1D(1).




Then H(X1, Y1) = H(Xz, Y2) implies that G(H(x1, y1)) = G(H(Xz, ¥2)). Thusthe level curves
are preserved, and we can verify that equation (1) for h defines exactly the same curve:

dy _ h(xy) _GHXH XY _ HXY)
dx  h(xy) GHMXYH, (XY H/(xY)

4. Discrete Time and the Gradual Nash Solution

We use the discrete version of the gradual bargaining problem to motivate the GNS
(equation 1). We will show how equation (1) emerges from a variety of different
arbitration schemes that determine the allocation of crumbsin the expanding pie. We will
start with a scheme that is based on the idea that at each point of time players alocate the
next available crumb by using the standard Nash solution. Then we will argue that the
same equation emerges from the rival solution to Nash's namely, the Kala Smorodinsky
solution. In our second type of scheme players take alternate turns in acquiring the
whole crumb at each period, i.e. player 1 starts by taking the first crumb, then player 2
takes the second, etc. In athird scheme that will be discussed at Appendix A.1, the
property rights on crumbs at each point of time are allocated randomly with respect to
equal probabilities.

We note here that although all our arbitration schemes are based on the idea that
each crumb is handled separately, aless “myopic” scheme cannot lead to a Pareto
dominating outcome. This is because a point x(t),y(t) on the frontier of D(t) represents
the players' utility from the whole stream of payoffs up to time t. Hence any arbitration
scheme that yields a point on JD(t) at time t is Pareto efficient.

A Discrete Time Gradual Bargaining Problemis a nested collection of standard
bargaining problemsin R?, given by setsthe D(t;)] D(t2) 1 ...I D(tc), which satisfy
conditions 1 and 2 in the definition of GBP. We will now describe several arbitration
schemes that result in our solution. We use the term arbitration scheme to distinguish from
formal non-cooperative games. These schemes should be thought of as procedures or

algorithms by which an arbitrator determines the allocation of each crumb in the gradual



problem. We will later turn some of these schemes into formal game forms when we
discuss the non-cooperative implementation of our solution.
Arbitration scheme 1: Allocating each crumb by means of the Nash solution:
Take a GBP H and establish a discrete problem given by D(d),D(2d),...,D(kd). Assume
that players are moving from a settlement on pie | to a settlement on pie j+1 by dividing
the j+1% crumb using the Nash solution, (i.e. by using the settlement on piej asthe
disagreement point of piej+1). We argue that this scheme lead to our equation when
crumbs become smaller and smaller.
Specifically, suppose that at stage | the settlement is at some point (x,y) on D(jd)
satisfying H(x,y) = jd. Then the new settlement will be at a point (x+Dx, y+Dy) such that
H(x+Dx, y+Dy)=(j+1)d. If the new settlement is established by allocating the additional
crumb according to the standard Nash solution then it has to satisfy the following
maximization problem: max Dx Dy subject to:

‘:, H(xy)=jd

TH(x+Dx y+Dy)=(j+1)d
The process is depicted geometricaly in figure 3.

Fig 3 (Nash on each crumb)

iH,Dx+H Dy=d

Using the Taylor expansion we obtain .
1 max(DxDy)

: asl - H 0
The above maximization problem is equivaent to maxgH—yDy Dyx
a

Differentiating with respect to Dy we get d - 2H Dy =0, which implies

d

d
=—) Dx=——
Y 2H, 2H,

leading to the to the differential equation (1) as d tends to zero.

10




Surprisingly, if we would have based our arbitration scheme on the Kalai & Smorodinsky
(1975) solution instead of the Nash, we would have arrived at the same differential
equation. Thiswill be argued at the end of Appendix A.1. We have also verified that other
solution concepts for the standard Nash problem, such asthe (continuous) Raiffa
solution and the Perles-Maschler solution lead to the very same equation when applied as
arbitration schemes for allocating crumbs. Our solution to the gradual problem is, thus,
universal in the sense that it can be generated by a variety of solution concepts for the
standard problem, which possess completely different properties and interpretations. We
note here, however, that not every well-known solution will qualify for this matter. The
Egalitarian Solution (see Kaai 1977b) for example, leads to a different differential
equation when used as an arbitration scheme. Thiswill all become more apparent later
when we discuss the axiomatic approach.

We now turn to a different type of scheme. Arbitration scheme 2 below isa
version of the structure developed in Bergman (1992). Our equation (1) is hence
equivaent to his equation (3.3). Bergman has derived the equation by looking at the
Rubinstein alternating offer game when the cake shrinks in a general way and involves a
single agreement (see al'so Binmore 1987b). He has concluded that the Rubinstein game
only rarely leads to the Nash solution. Although the mathematical structure of the
alternating offers is the same, our approach is different in terms of its economics and in
some sense diagonal. We look at an axiomatic framework where the cake expands and an

interim agreement is reached at each point in time.

Arbitration scheme 2: Each player gets the whole crumb in his turn:

The players aternate turns. At each stage one of the players obtains the whole crumb. Let
(x,y) be the settlement reached on piej and assume H(X,y) = ¢. Suppose that at this point
itisplayer 1'sturn to obtain a crumb, then the new settlement is at the point (x+Dx,y) on

ahigher level curve satisfying:

H(x+Dx,y) =H(x,y) +d .

11



On the subsequent stage player 2 acquires the whole crumb, which leads to the point
(x+Dx,y+Dy) lying on yet another level curve (as shown in figure 4):
H(x+Dx,y+Dy)=H(x,y)+2d .

Fig 4 (Alternating turns)

Now using the Taylor expansion, the above two equations can be written as:
TH(Xy)+H, (X y)Dx=H(xy)+d
THOGY)+ H, (6 Y)Dx+H (%, )Dy = H(x, y) + 2d
or
iH,(x y)Dx=d
iH,(xy)Dy=d
which yields:
DxH, (X, y) = DyH, (x,y)
So as we go to the limit allowing smaller and smaller crumbs, we arrive at equation (1)
again. Note that we would have established the same derivation if we assumed that player
2 isthefirst to obtain a crumb. In Appendix A.1 we show that if we revise Arbitration
Scheme 2 by assuming that the playerstoss afair coin at each stage to determine who will
get the crumb, then we would get the same solution. This appendix also presents formally
the sense in which the discrete bargaining path converges to the continuous path
determined by our solution. This convergence result will be used later when we refer to
the non-cooperative models that support our solution.
We will now introduce the axiomatic treatment to our solution for the gradual

bargaining problem.
5. The Axiomatic Approach

Earlier we have demonstrated the relationship between our solution to the GBP and the

standard Nash solution. However the Nash solution itself inherits much of its

12




attractiveness from its elegant axiomatic characterization. In this section we will develop
an independent axiomatization for the gradual Nash solution and discuss its relation to the
one supporting the standard Nash solution as well as other solutions. The advantage of
our characterization isthat it is based on three very simple properties and does nor require
Nash's controversial [1A axiom.

The main feature of our characterization is the requirement that the solution is
invariant with respect to al increasing transformations, not necessarily affine. Another
desirable property of the axiomatization is the fact that it requires very little structure on
the shape of the pies. Unlike the conventional Nash framework the pies don’t need to be
convex nor even compact.

Thefirst axiom requires that at each point of time the acquired pieisfully alocated
between the players. In fact this requirement is merely a choice of parametrization for the

solution:

Axiom 1 (Efficiency): At any timet (x(t),y(t))T 1D(t).

Our second axiom is a straightforward extension of Nash’'s symmetry axiom. It

asserts that in symmetric problems the bargaining path forms a 45° straight line.

Axiom 2 (Symmetry): If H(x,y) = H(y,x) for all (x,y), then x(t) = y(t) for all t.

The most significant axiom of our characterization requires that the solution is
invariant with respect to all increasing transformations. It is a strong version of Nash's

axiom of invariance with respect to affine transformations. Specifically,

Axiom 3 (Invariance with Respect to Increasing Transformations, 11T): Let A and B
be two increasing and smooth transfor mationsfrom R, to R, A(0) =B(0) = 0. Let
H and H* be two bargaining problems such that H(x,y) = H*(A(x),B(y)). Set

s(H) = (x(t),y(t)), and s(H*) = (x*(t),y*(t)). Then x*(t) = A(x(t)) and y*(t) = B(y(t)),
i.e. the solution of H* isthe transformed solution of H.

13



We view axiom 3 as a property of incentive compatibility. This axiom actually
requires that players cannot benefit (nor lose) by misrepresenting their utility function™,
e.g. when reporting falsely about their risk postulates to the arbitrator. If a player
misrepresents his utility function the solution shifts according to the same transformation
so that in terms of the physical allocation nothing would change, yielding the player the
same utility level with respect to his true preferences. We will refer to thisintuition later
when we discuss the allocation of divisible assets in Section 9. Note also the relation
between our axiom and Nash's axiom of invariance with respect to affine transformation.
We argue that although our axiom is stronger™, it can be more easily interpreted and
justified™. The standard interpretation of Nash’s axiom of invariance implicitly assumes
that players are expected utility maximizes. This assumption is not necessary in our
framework as our axiom requires invariance with respect to increasing transformations'.
Indeed, when presenting the Nash solution in class we have been repeatedly faced with the
guestion: “Why does Nash require invariance only with respect to affine, and not with
respect to monotonic transformations?’ Our usual response to this question is to note that
in the Nash framework if we replace Nash’ s invariance axiom with its stronger version,
then together with the other three axioms of Nash we obtain an impossibility result. There
exists no solution that will satisfy the 4 axioms'.

This should not be viewed as a drawback of the stronger version of the axiom, but

rather as a shortcoming of the domain used by Nash’'s conventional framework. Indeed,

19 As afunction of the received physical asset.

! Note that the sense in which this axiom is stronger than Nash’s is somewhat informal. This is because
our axioms operate on adomain of problems which is different than Nash's.

12 \We would argue that it is not necessarily true that the weaker the axiom the “better”. Thisis because
there are two sides to this coin. A weak axiom would make the uniqueness result more interesting, but
may make the solution itself less interesting.

13 A somewhat polar approach was taken by Rubinstein, Safra, and Thomson (1992) who have disposed
of theinvariance axiom completely by developing a Nash solution which is based on ordina preferences.
14 Moreover, any subset of the four will allow existence. Specifically, the argument is the following: if the
four axioms are imposed, then the only possible candidate is the Nash solution. But the Nash solution does
not satisfy the Invariance with respect to increasing transformations. Hence, there exists no solution
satisfying the 4 axioms. Now drop the 1A and you get multiple solutions, i.e. any GBP embedded in the
origina problem will give rise to a solution on the standard problem satisfying the 3 axioms. Drop the
invariance axiom, and the set of solutions includes Nash and the Egalitarian solution. Drop the symmetry

14



our framework that views bargaining as inter-temporal interaction permits the use of this
axiom for a complete characterization of the solution. Moreover it alows us to dispose of
the more controversial axiom of I1A.

Theorem 1 characterizes the Gradual Nash Solution. The proof is relegated to

Appendix A.2, which also shows that the three axioms are independent (claim 1).

Theorem 1: There exists a unique gradual solution satisfying axioms 1 — 3. This solution
isthe Gradual Nash Solution (GNS).

Aswe have argued earlier Nash's11A axiom is not required for the characterization of the
NGS nor isit necessary to replace it with another axiom, asisthe case with the various
solution concepts that emerged from challenging the 1A axiom (e.g. the Kaai
Smorodinsky solution or the Perles Maschler solution). Nevertheless, it is interesting to
note that natural versions of both the I1A and the Kalai & Smorodinsky Monotonicity
axioms are satisfied by our GNS. These versions are discussed in Appendix A.2 clams 2
and 3. We find this fact to be particularly stunning as these two axioms are incompatible in
the standard Nash framework (when imposed jointly with efficiency and symmetry). It is
precisely the richness of our framework that allows for the compatibility of these
properties. This observation is, in fact, reminiscent to the phenomenon that much of the
impossiblity resultsin socia choice theory are resolved by enriching the domain of social
choice functions. Finaly, we note that in contrast to the axioms discussed above one
property, which cannot be reconciled with the NGS, isKala’s (1977b) axiom of step-by
step negotiation. This property imposes that for two bargaining problems (in the standard
Nash framework) Sand T with ST T, solving T in two stages (i.e. by first solving S, and
then using the solution as a disagreement point for the remaining pie) would yield the
same outcome as in solving T in one stage, by completely ignoring S. Kalai has used this
property to characterize the Egalitarian solution. In our context this property would mean

that the bargaining path is independent of the way the pie is expanded in time (i.e

axiom and the set includes the solution in which player 1 getsit all. Finally, drop the efficiency axiom and
the set includes a solution which constantly gives (0,0) to the two players.

15



independent of the level curves of H) which is against the very essence of our solution
concept. Thisis not much a surprise. The Egalitarian solution used as an arbitration
scheme to allocate crumbs yields the differential equation dy/dx = 1, which is different

than ours.

6. Homothetic Problems

In the definition of gradual bargaining problems we have allowed players underlying
opportunities to expand in arather genera way. In particular the expansion may favor one
player more than the other. However, one interesting special case is when the expansion is
homothetic, i.e. where al feasible outcomes are increased with respect to a fixed
percentage. Specifically, a gradual bargaining problem H is said to be homothetic if for
each tl [0,1] thereexists 13 | 3 Osuchthat D(t) =1 D(1) ={ (I x,l y); (x,y) T D(1)},
where D(1) represents the final pie, i.e. the one established at t = 1.

Proposition 1 below asserts that in a homothetic GBP our solution yields the
standard Nash solution on the final pie. In fact the same assertion holds for any point in

timet.

Proposition 1. Let H be a homothetic gradual bargaining problem and let (x(t),y(t)) beits
gradua Nash solution, then (x(t),y(t)) is the standard Nash solution of the problem given
by D(t).

The proof of Proposition 1 is presented in Appendix A.3. We remark that in
general GBPs, the path of the Gradual Nash Solution may not terminate at the Nash
solution of the final pie. It may not even go through any of the Nash solutions of the
intermediate pies. Thiswill be made apparent later when we discuss examples. Figure 5

depicts the gradual solution in the homothetic case.

Fig 5. (Homothetic level curves)

7. Asymmetry
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Our solution, as well as the standard Nash solution, assumes that the two bargainers differ
only in terms of the sets of payoff opportunities, so that if these sets are symmetric the
players are allocated the same payoff in the solution. Kalai (1977a) has introduced the
asymmetric version of the Nash solution (see also Roth 1979). The concern of these
works was with cases in which players may possess different bargaining powers or
abilities, so that even if the set of feasible payoff vectorsis symmetric, players may be
allocated different payoffs. These authors, and may who followed them, interpreted this
generd version as a solution for bargaining situations in which asymmetry is built into the
bargaining procedure, which gives rise to unequal bargaining power. This interpretation
has been supported later by a variety of formal non-cooperative models (most notably
Binmore (1987Db)). These models have sustained the asymmetric Nash solutions as an
equilibrium outcome. Interestingly, in terms of applications in economics, the asymmetric
Nash solutions has been arguably more popular than the original symmetric version. This
is partly because the assumption of symmetry is very stringent and may not be adequate
for many of the underlying stories in which the bargaining mode is applied.

In this Section we discuss the relationship between our gradual solution and the
asymmetric Nash solution. We will approach this problem by looking at asymmetry from
two rather polar angles. In the first one we will refer to non-symmetric arbitration schemes
of the sort we have used previously to establish the symmetric gradual solution. In this
schemes crumbs are either being allocated randomly to the players with respect to unequal
probabilities, or players alternate turns in acquiring crumbs but the sizes of the crumbs are
unequal, so that one player always obtain alarger crumb. We will show how these two
non-symmetric arbitration schemes lead to an asymmetric Nash solution on the final pie.

In the second approach, which leads to a more surprising result, we show how the
asymmetric Nash solution can arise from a symmetric arbitration scheme, when the
opportunity sets expand in a quasi-homothetic way. This result, we will argue, offersa
new interpretation to the asymmetric Nash solutions, one that is quite different from the

procedural interpretation.
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7.1 Asymmetric ar bitration schemes

Arbitration Scheme|

Consider a homothetic discrete time gradual bargaining problem

B ={D(t), D(t2),..., D(tk)} with unequa crumbs. Specifically, assume that the crumb is of
size pd at odd stages and is of size qd at even stages™. |n arbitration scheme | the players

alternate turns in acquiring crumbs, starting with player 1 (who acquires crumbs of size

pd).

Arbitration Scheme |l

Consider a homothetic discrete time gradual bargaining problem

B ={D(ty), D(tp),..., D(t)} with equal crumbs. According to arbitration scheme |l at each
stage an unfair coin istossed to determine the owner of the current crumb, i.e. player 1
acquire the crumb with probability p (constant over time) and player 2 acquires it with
probability (1-p).

Figures 6 and 7 depict the two arbitration schemes| and I1.

Figure 6 (Arbitration Scheme )

Figure 7 (Arbitration Scheme I1)

In Propositions 2 and 3 we will show that the arbitration schemes| and 11 giverise to the
gradual solution determined by the following differential equations

dy _qH,(xY)
d pH,(xY)

We will use this result to establish the relationship between these schemes and the

(2)

Asymmetric Nash solution in the standard framework: specifically the p-asymmetric Nash
solution is defined to be the function that assigns to each bargaining problem D the
maximizer of X" %P over the set D.

The proofs of the following Propositions appear in Appendix A.3.

15 \we always can set g=1-p.
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Proposition 2: Let { B'} be an infinite sequence of discrete time GBPs of the form
described in arbitration scheme, and let S(t) be the bargaining path generated by that
scheme. If {B'} converges to the continuous GBP H then 3(t) will converge to the GS
S(H) given by the solution to equation (2). Moreover, this solution yields the p-asymmetric
Nash solution on the final pie D(1).

Proposition 3: Let { B'} be an infinite sequence of discrete time GBPs with equal crumbs.
Let S(t) be the bargaining path generated by the expected payoff that players obtain at
each stage, with respect to arbitration scheme 1. If {B'} converges to the continuous
GBP H, then $(t) will converge to the GS s(H) given by the solution to equation (2), and
S(H) yields the p-asymmetric Nash solution on the final pie D(1).

7.2 Symmetric Arbitration Schemes on Quasi-Homothetic Problems

As we have mentioned earlier the conventional interpretation of the Asymmetric
Nash solution attributes the asymmetry to the unmodeled bargaining protocol. Selten,
among others, has argued against this interpretation, by suggesting that if the protocol is
asymmetric to the extent that it is payoff relevant, then we should expect the protocol to
be negotiated as well in a preceding bargaining phase. Proposition 4 bellow proposes an
interpretation of adifferent nature. 1f we view a bargaining Situation as a gradual process,
then the asymmetric Nash outcome can arise from the fact that along the process the pie
has expanded in away that consistently favors one party. Since the gradua process
involves many interim agreements, which are binding, the final alocation depends on the

whole process by which the pie has been expanded to its eventua size.

A GBPH is said to be quasi-homothetic if for some pl [0,1] and somel T [0,1] we
have D(t) = (I **, 1 P»D(2) = { (I *Px, 1 y); (x.y) T D(1)}.

Proposition 4: Let H be a quasi-homothetic GBP with parameter p, then the GNS yields
the p-asymmetric Nash solution on the final pie D(1).
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The proof of Proposition 4 is presented in Appendix A.3. Figure 8 displays the
GNS for quasi-homogeneous GBP.

Figure 8 (The GNS on quasi-homogeneous GBPs)

8. The Nash Program for the Gradual Solution (Non-Cooper ative | mplementation)

One of the ultimate criteriafor judging the attractiveness of a cooperative solution concept
like the Nash bargaining solution is the availability of plausible and ssmple non-cooperative
games that supports it. Nash himself who was aware of the importance of models
proposed the “demand game” to support his solution. This agenda has been known ever
since as the Nash program. Later Binmore (1987b) and Binmore, Rubinstein and Wolinsky
(1986) have shown how the solution can be sustained by much simpler non-cooperative
bargaining games, which build on Rubinstein’s (1982) model of alternating offers. In this
Section we will utilize our discussion on arbitration schemes to develop a similar approach
to our gradual solution. We will describe three formal bargaining procedures in which
crumbs are bargained sequentially. In the first two models crumbs are negotiated via “take
it or leaveit” offers. In one model the property rights (on crumbs) are acquired randomly
with respect to equal probabilities, and in the second one players aternate the property
rights at each stage in which a crumb is established.

The third model has the feature that crumbs are negotiated by means of an
aternating offer procedure with an exogenous probability of breakdown. To avoid
discussing extensive games with continuous time'® we will analyze these games on discrete

gradua bargaining problems. We will show that the subgame perfect equilibrium behavior

16 See Perry and Reny (1993) for such an approach.
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in these games'” induce a bargaining path which converges to our gradual solution as
crumbs become smaller and smaller.

Consider a discrete generalized Nash problem with stages of timety,... tx. Inthe
models we will describe below, the bargaining on crumb j at stage t; takes place after an
agreement has been reached on all of the earlier crumbs. A feasible proposal at stage t;
constitutes a point (x(t;),y(t;)) on the boundary of D(t;) such that x(t;) ® x*(t.,) and
y(t) 2 y*(t-1), where (x* (ti.1), y* (-1)) isthe agreement at stage tj.; (on YD (t;-1)). We now

describe the procedures in detail:

1. Ultimatum games on Crumbs.
1.1. Alternating the Ultimatum Power

We begin with amodel in which the rules of the game represent a situation in which
players property rights are alternated at each stage in which a crumb of the pieis being
acquired. At odd stages player 1 proposes a division of the crumb, and at even stages
player 2 makes the proposal. Each proposal isa“takeit or leave it” offer regarding the
alocation of the crumb that has been acquired at that stage. If the offer is accepted then
the crumb will be divided accordingly. However, if the offer is rgected then the current
crumb is removed and the bargaining continues at the next stage on a new crumb with a

feasible proposal by the other player.
1.2 A Random Selection of the Proposing Player
Thisgame isidentical to the one described in 1.1, except that instead of alternating

the right to make a proposal, the proposer is determined at each stage by a random draw
with the probability of %2 for each player.

7 Our extensive form games are all of perfect information, which means that the way the pies are
expanding is assumed to be commonly known at time t=0. However, as we will show later this assumption
has no strategic consequences. Thisis because at each point in timet, a player is better off receiving a
larger share from the current crumb regardless of future expansion.
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2. Alternating Offer Bargaining on each Crumb.

In this game we will assume that the level curves induce convex sets'®:

Players use a Rubinstein type bargaining method on each crumb with a probability p of
breakdown after arejection. Specifically, stage t; starts with a player, say 1, making an
offer. If player 2 accepts, then an agreement has been reached on stage t;’ s crumb and the
bargaining continues on the next crumb at stage tj.1. If 2 rgjects the offer, then with
probability p the current crumb is removed and the bargaining proceeds on to the next
crumb and with probability (1-p) stage t; continues with an offer by 2. The bargaining in
stage t; continues in this manner until either an agreement is reached regarding the
allocation of the current crumb or the crumb has been removed. Note that it is not

necessary for the initial proposal on each crumb to be made by the same player.
The proofs of the three propositions below appear in Appendix A .4.

Proposition 5: Let B' be an infinite sequence of discrete gradua bargaining problems
(GBP) which converges to the continuous GBP B. Consider the models 1.1 and let

s ={3(t;)}; be the agreement path resulting from a subgame perfect equilibrium of the
corresponding game with respect to B'. Then s converges to the gradual Nash solution
(x(t),y(t)) of the continuous GBP B.

Proposition 6: The same statement as Proposition 5 but with respect to the model 1.2.

Proposition 7: Let B' be an infinite sequence of discrete GBPs which converges to the
continuous GBP B. Consider model 2 and let S = {S(t;)}; be the agreement path on B’
resulting from a subgame perfect equilibrium in the limit as p (the probability of
breakdown) goes to zero. Then asi goesto infinity s converges to the gradual Nash

solution (x(t),y(t)) of the continuous GBP B.

18 We conjecture that the result based on this model will hold true with a weaker version of this
assumption.
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9. Allocating Assets when Preferences Change over Time

We have previoudly interpreted our notion of the gradual bargaining problem as
representing situations in which players underlying payoff opportunities expand gradually
and non-uniformly. However, an alternative interpretation might view the problem as
representing an environment in which the actual physical benefits expand uniformly but
players preferences change over time.

Consider two individuals who are involved in allocating some divisible asset (for
example money) that is acquired gradually over the time horizon [0,1]. At timet precisely
aportion t of the asset has been acquired. Although both players always prefer more to
less of the asset, their utility functions (e.g. risk postulates) change over time. We denote
by U(t,% and V(t,%¥ the utility functions at time t of players 1 and 2 respectively (U(t,w)
stands for player 1'stimet utility of owning w units of the asset). At timet players
avallable piein the utility space is given by:

R®) ={(u,v) st. u=U(t,w), v=V(tt-w) OEwE1}
We will say that U and V induce the gradual bargaining problem H if at each timet the
level curve § D(t) of H coincides with R(t). If U and V induce a gradual bargaining
problem, then we can use our solution to predict the way the asset is allocated over time.
In the utility space this would simply mean solving the differential equation (1), which
defines the GNS. But we will be interested in more than that. For specific applications we
would like our solution to predict the actual share of the asset w(t) that player 1 receives
a timet. Player 2's share at that point in time will be t-w(t).
Proposition 8 specifies the way w(t) is determined by the utility functions of the players
through a differential equation.

Proposition 8: Let U and V be utility functions for players 1 and 2 that induce a GBP. Let
\7(t,>) denote player 2's utility as afunction of player 1's share, i.e.

V (t,w) =V/(t,t - w). Then at the corresponding gradual Nash solution we have:
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u

dw 1éU. V.
EL-TRREVA (3
VWU

da 280, V¢
where U,,U,,,V,,V,, denote the partial derivatives of U and V with respect to t and w.
The proof of Proposition 8 is presented in Appendix A.5
We will refer to equation (3) as the dual equation of the GNS as it determines the

way the allocation of the assets depends on the way preferences change over time.
Note that equation (3) can be also be written as:

dw 1é V. U0

d 287V, UL
Hence player 1 gets alarger share of the crumb in timet if and only if his“MRS’
(margina rate of substitution) for t vs. w is smaller than that of the other player, i.e.,
V,

_t

V,

w

U . .
> U_t . Note aso that if one of the players’ utility function is constant with respect to t

w

(i.e, Vi =0), then, according to the solution, the alocation of the asset depends only on
the other player’s preferences. This property follows directly from the invariance with
respect to increasing transformations, which is satisfied by the GNSin its general form.

We will come back to these properties soon when we discuss examples.

Examples
Example 1.
Two risk averse players are facing a stream of assets that have to be allocated. At each
infinitesimal period they have to allocate an asset of size e. Although both players are risk
averse, their attitude to risk is different. Player 1'srisk aversion changes over time: astime
elapses he becomes more risk averse. Specificaly, player 1's utility function as afunction
of timeis given by U(t,w) = —e “+1. Player 2 has a constant risk aversion as a function of
t, whichis V(t,w) = — e "2+1. Hence at t = %2 both players have the same risk aversion but
player 1 islessrisk averse than player 2 prior to timet = %2 and more risk averse later™®.

How should they allocate the stream of payoffs according to our solution?

1% One can interpret the underlying preferences as representing an interaction between a worker and a
firm. The worker’ s risk aversion grows as he gets closer to retirement. But the firm has a constant risk
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Using the dual equation in Proposition 8 we get:
dw _t-w

dt 2t
Solving the differential equation and setting w(0) = O, we obtain that the share
alocated to player 1is w(t) = t/3. Hence, player 1 always obtains a third of the crumb.
Figure 9 below depictsthe level curvesin this case and the corresponding bargaining path.

Figure 9 (Example A)

Note that this solution does not depend on player 2'srisk aversion aslong asit is
constant in time. Even if player 2 isrisk neutral they still share the asset in the same
manner. Thisis the essence of our Invariance axiom. If it were known that a player has a
constant risk aversion, then misrepresenting his preferences would never result in alarger
share of the asset. The bargaining path (at the utility space) will of course depend on
player 2's (constant) risk aversion but not the actual allocation of the asset. Note also that
player 1 suffers from the fact that his risk aversion increasesin time. Thisis because his
share is dways smaller than the one player 2 receives. Thiswill reverse itself when player

1’'srisk aversion decreasesin time.

Example 2.

Wit+1)

Player 1's utility function is given by U(t,w) = -e +1, and player 2's utility function is

given by V(t,w) = -e"%+1. Note that player 1'srisk aversion decreasesin t. By
Proposition 8 we have:

dw _1+t+w
dt — 2+2t

and the solution is w(t)= 1+t-(1+t)"?, yielding player 1 alarger share of the crumb at every

point in time. Our observation in the two examples above can be summarized in the

following claim:

aversion. The two have to bargain a scheme that will determine the worker’s share in the stream of profits
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Claim: Suppose that player 1's utility function is given by 1-e%"" and that player 2 hasa
constant utility function over time. If g'(t) > O (i.e. growing risk aversion at timet), then
w(t) < /2. However if g'(t) <0 then w(t) >1/2.

The proof of the claim follows directly form the dual equation. We will omit the
details here.

We now move to an example in which both players' risk aversion change over

time.

Example 3.
Utw) =—e™+1and V(tw) = €™ +1, a>0. Theresulting differential equation is given

by :
dw _ (1+a)(t- w)
dt 2t

and its solution is w(t) = (1+a)t/(3+4a). The parameter a indicates the pace by which player
2 become more risk averse as time elapses. The faster hisrisk aversion growsin time (i.e.
the larger a) the smaller hisshareis. Figure 10 depicts the corresponding level curves and

the bargaining curve for a= 0.5.

Figure 10 (Example B)

Example 4.
We now conclude by demonstrating that the bargaining curve in the utility space may be

neither concave nor convex:

Take U(tw) =—e ® +1 and V(tw) = - e " +1. We then obtain the equation:

dw _ (1+3t- 3w)
dt (2+2t)

whose solution isw(t) = (9t-1)/15 + (1+t)"¥%/15. The bargaining path is depicted in figure
11 below.

Figure 11 (Example C)

earned by the company.
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10. Discussion

We have introduced amodel of gradua bargaining based on Nash's axiomatic theory. We
have constructed the Gradual Nash Solution and supported it by a variety of approaches,
including the axiomatic and the non-cooperative approach. We believe that the model can
be applied on a variety of topics, which are characterized by the fact that the underlying
set of potential agreements changes over time and when players reach temporal
agreements that are constantly revised. We will mention here one potential application
which we find particularly attractive.

The standard marking to market procedure used in futures contracts has a nature
similar to our gradual bargaining problem. This procedure requires the involving parties to
rebalance their accounts on adaily basis according the change in the expected gains or
losses, rather then waiting for the end of the term. Thisis done in order to prevent either
party to default on its obligations. We suggest that a model of the sort we are analyzing
here can be used to address the question of how future contracts can be renegotiated
gradually according to the marking to market principle. Specificaly, the per period crumb
in this story is the change in the future market value of the asset®.

To broaden the scope of such applications, further extensions of our model are desirable.
Onewhichisrelatively easy isthe construction of an n-person version of our (bilateral)
bargaining model. The definition of the solution will be more complex. However it will

still involve an ordinary (not partial) differential equation (known as a Pfaffian) which
determines a vector field in the n-dimensiona space. A different direction of extension is
allowing the pies to change over time in a more general way. We would like to allow the
pie to expand and to shrink?* within the same gradua bargaining problem. More ideally we
would have liked to allow the level curves YD(t) to cut each other, i.e. to allow the set of

opportunities to change in an arbitrary way that neither corresponds to expansion nor to

% Note that the application of our model to this problem is valid only under the assumption that the
futures price of the asset grows.
2 Note again that the meaning of “shrinkage” here is different than that of Rubinstein’s shrinking pie.
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shrinkage. These extensions will alow the model to be applied on practically every

situation in which the bargaining environment changes over time. At the moment these

extensions present some technical difficulties, which we hope can be resolved in future

research.
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Appendixes
Appendix A.1

We begin with the definition of convergence of discrete GBP to continuous GBP:

A sequence of discrete gradual bargaining problems B' = { D/(t'), D/(t,),..., D'(t'\)}
1£j<¥, is said to be enbedded if {D'(t'})}1 { D"**(t*%)} for all j, which means that the
problem B'** refines the set of pies defining B'.

An embedded sequence of discrete gradual bargaining problems

B ={D/(t'y), DI(t,),..., DI(t\)} 1£j<¥, issaid to converge to a continuous bargaining
problem H if and only if for any number d > O there exists N, such that for all j > N
between any two level curves TD; and YD1 (defined by H(x,y) = i>d and H(x,y) = (i+1)d)
there exists at least one curve JD'(t,) of B .

The convergence of discrete bargaining paths 8 = {3(ty), S(t2),..., S(t)} to acontinuous
bargaining path s(t) is taken to be the standard convergence in the Hausdorff topology (of
setsin R?).

Lemmas 1, 2 and 3 assert that the three arbitration schemes discussed in Section 3
yield bargaining paths that converge to our GNS as the discrete gradual bargaining

problems converge to a continuous GBP.

Lemma 1: Let B'={D/(t;), D'(t,). ..., D'(t)} be an infinite sequence of embedded discrete
GBPs that converges to the continuous GBP H. Let §(3 be the paths generated by
arbitration scheme 1 with respect to B' and s(3 be the Gradual Nash solution of H. Then
the paths § converge to s asj goes to infinity.

Proof: Consider two consecutive pies of B!, say D!(t;) and D'(t;.). Because of the
convergence property their boundaries TD'(t;) and D/(t;.1) are arbitrarily close to two
level curvesof H. Say TD(t)»{H(x,y) = ¢} and TD!(ti.1)»{H(X,y) = c+d}. By
construction of the Arbitration scheme 1 the two consecutive agreement points

I(t)=0d (%), () and S(tis1)=(X(ti+1), Y (ti+1)) must satisfy the Nash condition
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max( (x —X (1)) (y —Y(t)))
among all (x,y) on ID!(ti+1). Denote Dx = X(ti.1) —X(t), Dy = Y/(tis)) —Y(t;). Thenthe
Nash condition can be approximated by the following restricted maximization problem
max(Dx>Dy) under the following constraints: H(x,y) = ¢, H(x+Dx,y+Dy) = c+d, see
figure 3. Using the Taylor series and keeping only first order terms we obtain
1 max(DxDy)
ist. H,Dx+H Dy=d
which can also be written as an unconstrained maximization problem
max(Dy*d—H,Dy)/H,).
This quadratic maximization can be solved by: Dy = d/(2H,), Dx = d/(2H,). Thisimplies
that the increments Dx and Dy satisfy the equation Dy/Dx = H./H, which in the limit is the
equation (1). Because of the uniqueness of the solution of equation (1) (the initia
bargaining point is fixed at the origin) the limit of solutions of discrete GBPsisthe

continuous solution of the limit GBP. Q.E.D.

Lemma 2: Let B' be an infinite sequence of discrete GBPs that converges to the
continuous GBP H. Let S(} be the paths generated by arbitration scheme 2 with respect
to B' and s(3 be the Gradual Nash solution of B. Then the paths § converge to s asj goes
to infinity.
Proof: Consider three consecutive pies of B!, say D/(t;), D'(ti+1), and D'(ti,). Because of
the convergence property their boundaries TD'(t;), TD'(ti.1) and TD/(t;+») are very close to
three level curvesof H. Say TD/(t)»{H(x,y) = ¢}, TD'(ti.)»{ H(x,y) = c+d} and
D' (ti2)»{ H(x,y) = c+2d}. By construction of the Arbitration scheme 2 the three
consecutive agreement points S(t)=(<(t), Y/(t:)), 3(tix1)=(¥(tir), Y/ (ti+1)) and
I(tix2)=(X (tis2), Y/(ti+2)) must satisfy the following conditions (see figure 4)

¥(tier) = X (6)+DX, Y (tira) = V(1)

¥(tis2) = ¥(tia), Y (tie2) = Y (tira)+Dy
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At thefirst step the first player takes the whole crumb and at the second step the second
player takes the next crumb (the crumbs are of equal size d). Using the level curves of H
instead of TD/(t) we can rewrite these conditions as
H(X(ti2), Y(tisa)) = HOX(t), Y/(1))+ d
H(X(ti2), Y (ti+2)) = HX(ti2), Y/ (ti2))+ d
By Arbitration scheme 2 this can also be written as
H(X (6)+Dx, Y (t:)= HOX(), y(t))+ d
H((t)+Dx, y(t:) )+Dy) = H(X(t)+Dx, y(t:))+ d
Using the Taylor series and keeping only first order terms we obtain
HE(t), Y(1)) +Hi(X (1), V(1)) Dx = H(X(t), Y'(t))+d
HE(t), V(1)) +Hx( (1), V(1)) Dx+Hy (X (1), Y (t:)) Dy = H(X(t:), y'(t)+2d
Or after smplification
H (X (L), Y(t))Dx = d
Hy(X/(t:), Y/(t))Dy =d,
which is equivalent to the differential equation (1) when d tends to zero. Because of the
uniqueness of the solution of equation (1) (the initial bargaining point is fixed at the origin)

the limit of solutions of discrete GBPs s the continuous solution of the limit GBP. Q.E.D.

Lemma 3: Consider the arbitration scheme on a discrete GBP in which at each stage the
next crumb is given to a player who is randomly chosen with equal probabilities. Let B' be
an infinite sequence of discrete GBPs that converges to the continuous GBP H. Let S(3 be
the paths generated by the arbitration scheme described above with respect to B! and s(3
be the Gradual Nash solution of B. Then the paths § converge to sasj goes to infinity.
Proof: Consider two consecutive pies of B!, say D'(t;) and D/(t;+1). Because of the
convergence property their boundaries TD'(t;) and D/(t;.1) are arbitrarily close to two
level curvesof H. Say TD!(t)»{H(x.y) = ¢} and TD!(t.1)»{H(x,y) = c+d}. Inthis
arbitration scheme the next agreement point 8 (ti.1)=(X (ti+1), Y(ti=1)) is not known in
advance but is aresult of arandom draw. However one can easily calculate the expected

position of this point. With equal probabilities the next agreement point will be at
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(X (t)+D*x, Y (t;)) or at (X (1), Y(t;)+D*y), such that H(S(ti+1)) = ¢ + d. Hence, the
expected position of the next intermediate agreement point is
(X (t)+D*x/2, Y (t)+D*y/2)
where
PHO () +D* x, y' () =c+d
TH( (1), (1) +D* y) =c+d
using the Taylor series decomposition we obtain
i H,D*x=d
+H,D*y=d

and thus the increments Dx and Dy satisfy % = :::X

y

which in the limit becomes the equation (1). Because of the uniqueness of a solution of
equation (1) (the initial bargaining point is fixed at the origin) the limit of solutions of
discrete GBPs is the continuous solution of the limit GBP. Q.E.D.

We conclude this section by arguing that an arbitration scheme based on the Kalai-
Smorodinsky (K-S) solution will lead to the same GBS given by equation 1:

The K-S solution of a standard bargaining problem Sis given by the intersection between
the Pareto frontier S and the line connecting the zero point and the utopian point
(my,my) (Wherem, = max {x; (x,y) 1 S})
Starting with an agreement (x,y) on some level curve we obtain the following equations:
iH(x,y)=c
:'H(x+D* X,¥) =H(xy)+d
THOG Y +D*y) =H(xy) +d
Where D*x and D*y are the utopian levels for players 1 and 2 respectively. Since locally,
the level curves are virtualy linear the new agreement is a (x+Dx,y+Dy), where
(Dx, Dy)=(D*x/2, D*y/2). Now use the standard Taylor expansion to establish the rest as

we have done before.

Appendix A.2



The Proof of Theorem 1 (axiomatization):

We start by showing that our solution satisfies the 4 axioms.

1. Efficiency. Asargued in Remark 1, equation (1) determines the bargaining curve but
not its parameterization. In its parametric form the solution was defined to satisfy
H(x(t),y(t)) = t which means (x(t),y(t)) T TD(t).

2. Symmetry. Note that if H(X,y) = H(y,X), then Hy(X,y) = Hy(x,y) and thus dx/dy = 1,

which meansthat the solution issimply the straight linex =y.

4. 11T: Let a= A(x) and b=B(y) be two smooth and increasing transformations from R to
R., such that A(0)=0 and B(0)=0. Let h and H be two GBPs such that
h(a, b) = h(A(x), B(x)) = H(X, y).
Differentiating H with respect to x yields Hy = h, A’(x). Differentiating H with respect to y
yiddsHy = h, B’ (y). Note a so that differentiating a and b with respect to x and y
respectively we get: da=A’(x) dx, and db=B’(y) dy
Since A and B areincreasing A’ and B’ are positive, equation (1) can be written as
do A(x) _h,A(x)

B'(Y) da hB(y)'

db _h,(ab)

da h(ab)’

or

which is the same equation defined on the new variables a, b for the GBP h.

We now move to the proof of the uniqueness of the solution. We first argue that a
monotonic transformation of utilities preserves the property Hy > 0, H, > 0. To seethis
write h(U(x), V(y)) = H(x,y) and differentiate with respect to x to obtain: h,U,=H. So
Hyx > 0, impliesimmediately h, > 0.

Note that the [T axiom partitions the set of al bargaining problems into
equivalence classes. Two functions (problems) are said to belong to the same classif and
only if one can be obtained from the other through increasing transformations U and V.

We first demonstrate that thereis at least one symmetric bargaining problemin

each equivalence class. To show this we construct explicitly the transformation which
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turns any problem into a symmetric one. Take any bargaining problem H(x,y) and find a
transformation U(x), V(y) or itsinverse X(u), Y (v) such that the transformed problem
iIsH(X(u),Y(v)) =h(u,v) and h(v,u) = h(u,v) for every uandv. Then
H (X (u),Y(v)) =h(u,v) =h(v,u) = H(X(v),Y(u)) .
Differentiating this expression with respect to u and v we get:
H, (X(u),Y()) X" (u) = H, (X(v),Y ()Y (u)
H, (X(U),Y(v)Y'(v) = H,(X(v),Y(u)) X" (V)
This defines the transformation uniquely (subject to the initial condition X(0) = Y(0) = 0)
by the differential equation:
dY _ H,(X,Y)
dX H,(X,Y)
This equation defines a change of variables that transforms the bargaining problem H into
a symmetric bargaining problem h. Note that this transformation is precisely the GNS.
Since the solution of the symmetric bargaining problem is known, the origina problem H
has a unigue solution as well. We next demonstrate that every two symmetric problems
belonging to the same equivalence class have the same solution.

Consider any two symmetric bargaining problems belonging to the same class of
equivalence. Denote them by h and H and note that they can be transformed into each
other by some transformations U and V. This means that

h(u,Vv) = h(v,u)
H(x,y) = H(y.X)

h(U(x),V(y)) = H(x,y)
h(u,v) = H(X(u),V(y))

Due to the symmetry we get

h(U (x),V (y)) =h(U (y),V (x) = h(V(x),U(y)) = h(V(y),U (X)),
and differentiating with respect to x gives
h, (U (x),V(y)U " (x) = h, (U (y),V(X)V'(x) = h,(V (X),U (Y)V'(X) = h,(V(y),U ()V'(X),
which immediately implies U’ (x) = V' (x). Because U(0) = V(0) we immediately obtain
V(x) = U(x) for all x. ThusH and h induce the same level curves (see Remark 1), and

therefore have the same solution. We have shown that all symmetric problems of the same
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class yield the same solution. To show the uniqueness we now argue as follows: take a
problem H and a symmetric problem h in its equivalence class. By the Efficiency and the
Symmetry axioms the solution is uniquely determined on h. Because al symmetric
problems in that class have the same solution and since H is transformed to h in aunique
fashion we obtain by the ITT axiom that the solution is uniquely determined on H. This
completes the proof of Theorem 1. Q.E.D.

Claim 1: The three axioms Symmetry, Efficiency and IIT are independent.

Proof: If we drop the Symmetry axiom then every asymmetric GNS (resulting from
equation (2) defined in Section 7.1) satisfies the two remaining axioms. If we drop the
Efficiency axiom, then the solution (x(t),y(t)) = (0,0) for al t and all GBPs satisfies the
two remaining axioms. Finaly if we drop the |1 T, then the solution that yields the standard

Nash point on every pie satisfies the two remaining axioms. Q.E.D.

Claim 2: The GNS sdtisfies the following version of the 1A Axiom: Let H and H* be two
GBPs such that D(t) | D*(t) for all t. If s(H*) is feasible with respect to H?, then s(H) =
s(H*).

Proof: I1A: Let H and H* be as specified in the statement of the I1A. Let (x(t),y(t)) be the
solution for H and (x* (t),y* (t)) the solution for H*, satisfying the following equation

dy* _ H (¢, y")
dx* H;(x*,y*)

(1*)

Note that H* lies below H, since each level curve of H* isfurther to the right from the

corresponding level curve of H. Each function H and H* generates its own bargaining

vector field. To define this vector field we can rewrite equation (1) in an equivalent form
H,dy =H,dx

or (dx,dy)*(H,-H,).

However any vector orthogonal to (Hx, —Hy) is also parallel to the vector (Hy, Hy), thus

equation (1) is equivalent to the condition that the bargaining direction is always parallel

2 \which means s(H*)(t) T D(t).
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to the rotated gradient (dx,dy) || (H,,H,). The vector field determining the bargaining

dynamic has the property that at each point (x, y) the bargaining direction is parallel to
(Hy, Hy). The two vector fields defined by H and H* are different. However both
functions coincide along the curve s(H)(t)=(x(t), y(t)). Moreover, they have acommon
(paralld) gradient along this curve, since the level curves are tangentia along s(H) and
cannot pass through each other. Otherwise the condition D(t) I D*(t) isviolated. Since
both functions have parallel gradients along s(H), the two vector fields generated by H and
H* are also parallel along this curve. However, s(H) is paralld to the vector field
generated by H, hence it isaso parallel to the vector field generated by H*. Therefore the
curve s(H) must also satisfy equation (1*).

Since both H and H* are smooth and do not have critical points there exists a
unique solution to the differential equation specified by the vector field generated by H*.
However we have demonstrated that S(H*) is the unique solution of the modified problem,
hence s(H) = s(H*).

Formaly, if H(x,y) 3 H*(x,y), H(x(t),y(t))=H* (x(t),y(t)) and
(Hx(x(0),y (1)), Hy(x(2),y (1) [ | (H*x(x(2),y(t)), H*,(x(1),y (1)), then the curve (x(t),y(t)) with
theinitial condition x(0) = y(0) = O satisfies equation (1). It also satisfies equation (1*),
since the two vector fields coincide on this curve, and thisis its unique solution starting at
the origin. Q.E.D.

We conclude this appendix by showing that our solution aso satisfies a version of
the Kalai-Smorodinsky (1975) monotonicity axiom. We will assume that the pies D(t) are

compact for this matter.

Claim 3: The GNS satisfies the following property: Let H and H* be two GBP such that
forany t, and t' D*(t) and JID(t’) intersect not more than once. Without |oss of
generality, assume that YD*(t) is always steeper. Then the GNS of H* is always above the
GNS of H.

Proof: The condition that the level curves of one problem are always steeper than those of

the other implies that the vector field generated by equation (1) for H* has a higher dope
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at any point than the one for H (see figure 12). The result follows immediately from the

uniqueness of the solution starting at the origin. Q.E.D.

Figure 12. The Kalai-Smorodinsky property

The Kaa Smorodinsky axiom in the standard framework imposes that if we take
two problems B and B* such that the maximal payoff for player 1 isthe samein the two
problems and such that Bl B*, then player 2's payoff with respect to B* is greater than
his payoff with respect to b. Not e that if we generate two GBP H and H* by shifting the
frontiers of B and B* homotheticaly (i.e. D(t) = tB and D*(t) = tB*), then by claim 3 the
NGSyiedsplayer 2 ahigher payoff in H* at each point in time. It isthis sensein which

claim 3 generalizes the Kaai-Smorodinsky axiom.
Appendix A.3

Proof of Proposition 1. Let Y (x) denote the outside boundary of D(1). Y (x) isawell
defined function due to the conditions Hy > 0, H, > 0 . This means that for any time t and
for any point (x,y) on the frontier of D(t) there exists some| between 0 and 1 for which

(x/I ,yll') liesonthe Y curve, or alternatively satisfies the following equation:

DAV -sal*] 4

Consider the family of curves parameterized by | as Y, (x) =1 Y?g The frontier of D(1)
él o

correspondsto Y, and al the curves Y, are homothetic.

The standard Nash solution for the bargaining problem given by D(1) is obtained by
maximizing x» over the set of points that satisfy equation (4) for | = 1. Hence by the first

order condition we get:

d(xY(x)) _o
dx '
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Alternatively Y(Xy)+ X Y'(Xy)=0. 5)
Where (xn, Y (Xn)) isthe standard Nash solution of the problem D(1).

Set afunction H such that
H(xy)=1(xY),
where | (x,y) isthe coefficient such that the point (x/I , y/I ) lieson the final frontier Y.
This assumption is without loss of generality since the GNS depends on the H function
only through its level curves. Using equation (4) we now obtain

Yy & X 2
(y) &y
Differentiating (6) with respect to x gives:

(6)

or =B - x ).
(%]

Differentiating (6) with respect to y gives:

|-y, e d,

| 2 &l gl? '
_\&XO0
or -I+yly—Yg|—Tny.
el g
Finaly we obtain:
oo Iy
b y-xy
|
i = |
f7 y-xy

Hence using (1) the GNSis given by

(y = Hx(y) 1, (xy)
YOI H ey T ()
0

or y'(X) =- Y'g o y)é (7)
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We now have to show that the solution of this equation (7) starting at the origin
arrives at the same point as (Xn, Y (Xn)) defined above. We do this by showing that the
solution in this caseis astraight line.

Because of the homothetic property the tangentia line to any curve Y, hasthe
same sope along a straight line passing through the origin and the Nash Solution asis

shown in the figure 5.

This means that at any point on the straight line gel(_N ,y—NQ the tangentia line to
e

| o
the Y, curve has the same slope. In addition the vector that defines the direction of the
bargaining process—Y’ (x/l ) has the same direction for al | . Hence, the only property we
have to verify isthat the vector at the Nash point has the right direction, in other words
that it points to the origin (because of the negative sign, the origin is on the line continuing
this vector). This property means that for some a

YOu) - av(x,).

XN

which is exactly the property we had in (5). Thus the straight line from the origin to the
Nash Solution is the bargaining path. Finally, note that the same result holds for any D(t),
and not only for t =1. To prove this ssimply repeat the argument with respect to a GBP H

for which D(t) isthefinal pie. Q.E.D.

Below is the proof that establishes the relationship between our solution and the
Asymmetric Nash Solution.

Proof of Proposition 2: The proof is similar to the one we have given in Lemma 2.
However because of the unequal crumbs the equations are dightly different. Using the
same notations X (1) = X(6)+DX, Y (tis1) = V(8

X (tis2) = X (tiss), Y (tis2) = Y (tisa)+Dy
At the first step the first player takes the whole crumb of size pd and at the second step the

second player takes the whole crumb of equal size qd.
HOd (tiea), Y (tir) = HOX(L), V(1)) + pd
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H(X (tiv2), Y'(tie2)) = H(X(ti22), ¥/ (ti+)) + ad
Using the Taylor series and keeping only first order terms we obtain
H(X(t), Y(1)) +He(X (t), Y'(t))Dx = H(X (t), Y'(t))+pd
HEA(), Y (1)) +HA( (1), Y (1)) Dx+H, (X (), Y/(t))Dy = H(X(t), Y(t))+(p+a)d
Or after smplifying
Hx(X'(t), Y(t))Dx = pd
Hy(X(t:), y'(t:))Dy = qd
Thus leading to the asymmetric gradual bargaining equation
dy _ g H,(xy)
dx pH,(xY)
Since this equation has a unique solution satisfying the initial condition x(0) = y(0) = 0, the
sequence of discrete gradual solutions tends to the continuous solution described by this
equation. Q.E.D.

Proof of Proposition 3: The proof is similar to the one in Lemma 3. However because of
the unequal probabilities the equations are dightly different. Using the same notation the
expected next intermediate agreement point is
(X (t)+PD*x, Y'(t)+dD*y)

where again

PHO () +D* x, y' () =c+d

TH( (1), (1) +D* y) =c+d
using the Taylor series decomposition we find the relationship between increments Dx and

Dy

Dy_aH.xy)
Dx  pH,/(xY)

The same uniqueness property implies that the limiting solution of the discrete problemsis

the solution of this differential equation. Q.E.D.

Proof of Proposition 4: The proof extends the homothetic case. Consider a symmetric

continuous bargaining procedure over a gquasi-homothetic pie with parameter p. This
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means that any level curve {(x,y) | H(x,y) = ¢} can be represented intheform  {(I *®x,
| Py) | H(x,y) = 1}. Denotethefinal level curve {(x, y) | H(x,y) = 1} by Y(x) and then all
level curves can be represented as afamily Y, (x) given by

Y (x) =1 pYZell—’_(p g.
The solution to the standard asymmetric Nash problem is at the point (x,y) on Y (x) where
xPy'P achieves its maximum. This can aso be written as the first order condition

d(prl' p(x)) o

dx ’

which means that at the asymmetric Nash solution (Xan, Yan) the following equation must
hold PXA YT P (X ) + (L= PYXRY P (X )Y (X ) =0,
or aternatively pY (X ) + Q- p)XaY' ' (Xan) =0,
Yo = Yw) - P 1y

XAN XAN

which implies that

) - Thisdefines the asymmetric Nash

solution.

According to Remark 2 any function H with the same level curves must generate
the same bargaining process. Let’s choose a specific form for H. Similarly to what we did
in the homothetic case, for any point (x, y) thereisanumber | such that the point
(x/I P y/l P) islocated on the final frontier Y(x). This| isafunction of x andy. Set
H(x,y) =1 (x,y). Thenfor al pairs (x, y) on the same curve Y, (x) the coefficient | isthe
same and hence automatically the value of H is the same, meaning that Y, (x) are level

curves of the function H as desired. We can now write

y Yae X 0
Py &g
Differentiating this expression with respect to x and y we obtain

- Y'Y
" ypl PrHY'x(p- DI P2

I'p

| =
Yoypl MY x(p- DI P2

Recall that we have chosen H(x, y)=I (X, y), and hence equation (2) becomes
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dy _H.(xy) _1(xy) _ 2p-1
i H,(xy) 1,y) §I“’( 2' *.9)

Verify that the curve x(t) = t*Pxan, Y(t) = tPyan satisfies this equation

dy(t Pt tPt -1 ax() o
y(): p _y:N - p _p(p )Y(AN)_ Ygl(p) t2pl
dx(t) (1- ptPxy @- pit p et

which showsthat t =1 istheright parameterization. Thus we have proved that a quasi-

homothetic pie with a symmetric bargaining procedure leads to the Asymmetric Nash
Solution on D(1). Q.E.D.

Appendix A4

Lemma 4 asserts that a player’ s payoff according to the Nash solution in a standard
problem is an increasing function of his disagreement point and a decreasing function of

the other player’ s disagreement point.

Lemma 4. Let B, be astandard Nash bargaining problem with the set of payoffs Sand a
disagreement point (XoYo). Let B, be a bargaining problem with respect to the same set of
payoffs S but with the disagreement point being (Xo+Dx, Yo—Dy), where Dx,Dy > 0. If N(%
denotes the Nash bargaining solution, then N(B1)£ N(B.).

Proof: Recall first that the Nash solution of the problem B; is argmaxs(y-Yo)(X-Xo). Let
(x,9(x)) be the point on the Pareto frontier of S. Then the Nash payoff for player 1 isthe
solution of max(g(X)-Yyo)(X-Xo). Differentiate with respect to x we get:
g'(X)(X- X,) = Y, - 9(x). But as we change the disagreement point (Xo, Yo), the
agreement point (X, y) changes. Hence the agreement point can be considered as a
function of the point (Xo, Yo). We thus have:
9" (X(X0))(X(Xo) - %o) = Yo (Xo) - 9(X(Xo))

Differentiating with respect to xo we get

9" ()X (X- %) + 9" (X)(X-1) = y,"- g' (X)X’



Y- g0
9" ()(x- %) +29'(X

When X, increases y, decreasesand soyo' <0, or g <0. Moreover g” £ 0, and x > Xo, and

and X (%) =

so the derivative X’ (X0)>0, which means that the payoff of the first player increases with
Xo. QED

Proof of Proposition 5: Along the unique equilibrium of the model above each player
takes the whole crumb at each stage in which he is making the proposal, and accepts any
offer made by the other player at al other stages. This follows from the fact that the
proposer has an ultimatum power and from the fact that the higher a player’s share is from
stage t;* s crumb, the higher his ultimate (total) payoff is. Therefore we can in fact treat
each crumb as a separate ultimatum game. Hence the subgame perfect equilibrium of the
above game gives rise to the same bargaining path as that of arbitration scheme 2, which

by Lemma 2, we know converges to the gradual Nash solution. Q.E.D.

Proof of Proposition 6: Using the same argument as in proposition 5 we establish that ex-
post after the proposer has been randomly chosen at stage j, he acquires the whole crumb
for himself at the unique subgame perfect equilibrium of the game. This means that the
discrete path of expected payoffs resulting from a subgame perfect equilibrium isidentica
to the path generated by the arbitration scheme discussed in Lemma 3, and the result
follows directly from that Lemma. Q.E.D.

Proof of Proposition 7:Take a discrete GBP and consider the game induced by asingle
stage t; of model 2 after an agreement s(tj.;) has been reached on stage t;.;. Thisgameis
identical to the one used by Binmore Rubinstein and Wolinsky (1986) to support the
Nash solution. It follows from their result that as p goes to zero the subgame perfect
equilibrium of this game converges to the Nash solution when the disagreement point is
taken to be s(t;.1). By Lemma 4 the Nash payoff for a player is increasing with respect to
his payoff in the disagreement point, which means that the subgame perfect equilibrium of
the whole game can be derived by looking at the game of each stage separately.
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Consequently after sending p to zero the agreement path derived from the subgame
perfect equilibrium of the game coincides with the path generated by arbitration scheme 1
(in section 4), which by Lemma 1, we know converges to the GNS of B when B’

convergeto B. Q.E.D.

Appendix A.5

Proof of Proposition 8: Denote by w(t) the total share of the assets that player 1
possesses at time t with respect to the GNS. Then the two players' utility level at timet
IS:

Tu=U(t,w(t))

v=V(tt- w(t)
(remember that the second player always getst —w(t)).
For an arbitrary solution we have:

E\L: = \L/J((tt,,tV\-I) W) (A)
Let:

V(t,w) =V(t,t - W) asdefined earlier.
Then the system (A) can be written as

iu=U(t,w)

%,v =\7(t, w)
This system of equations can be inverted by considering t and w as functions of u, v.
Specifically, given u, v we can express the time and the divison w using the two functions
T(u,v) and W(u,v). We therefore have:

iu=U(T(u,v),W(u,v))

{v =V (T(u,v),W(u,V))

Differentiating these two equations with respect to u and v we get:
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il1=U,T, +U W,
Lo=uT, +u.W,
{0 =V T, +V.W,
[1=VT +V.W,

Expressing the partial derivatives of W and T as a function of the partial derivatives of U

and V' we obtain:

Denote by X(t), Y (t) the GNS in its parametric form.. According to our choice of
parameterization we have H(X(t),Y (t)) = t. But we have already constructed a function
with this property —the T function. Thuswe can set H(u,v) = T(u,v) and we obtain the
eguation:

T(X(@),Y(®)°t
(the sign © refersto the fact that the identity holds for all t).
Differentiating this equation with respect to t we get:
TX't)+TY'(t)°1
According to the equation defining the GNS:

dY(t) _ Y'(H)dt _ T,(X(1).Y())
dX(t)  X'M)dt  T,(X(t),Y())

And the two equations above jointly yield:

TUY'(t)_-::—" +TY'(t)°1

u
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dv(t) _ 1
dt  2T,(X(1),Y(1)

or

We can now express the physical divisions of the assets (according to the GNS) asa
function of time:

dw(t)
dt

=W, (X ).y (1) X (t) AW, (X (1), Y(t)) Y dY(t)

dX (t) dY(t) dY(t)
W, (X(t),Y(t +W (X(1),Y(t
(X(1), ())dY() ot (X (1), Y () ——
Ve Ly Y v =
uyv, - UVT uyv, - UV,
-V, T, 1 U, 1
- e SE———
uv,-UVv, T, 2T, UV, -UV, 2T,
-V, UV,-UuV 1 U UV, -UN1_
= = = —+ — — — =
uv,-uVv. Vv, 2 UV,-UV, -U, 2
1@, U0
ngw U, g

Setting W(0) = 0 as an initia condition we obtain the differential equation asserted in
Proposition 8. Q.E.D.
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Figure 3.
Nash on each crumb
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Figure 4.
Alternating turns
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Homothetic level curves

H(x,y)=c+pd+qd

Figure 6
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Player 2 takesit all

(probability 1-p) The expected payoff

Current position

X
Figure 7 Player 1t§\k_eeitall
Arbitration Scheme |1 (probability p)

The Asymmetric
Nash Solution

y/l &

The NGS on quasi-homogeneous
leads to the Asymmetric Nash solution.
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