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Abstract. Common knowledge of a finite set of formulas implies a special
relationship between syntactic and semantic common knowledge. If S, a set of
formulas held in common knowledge, is implied by the common knowledge
of some finite subset of S, and A4 is a non-redundant semantic model where
exactly S is held in common knowledge, then the following are equivalent: (a)
S is maximal among the sets of formulas that can be held in common knowl-
edge, (b) A4 is finite, and (c) the set S determines 4 uniquely; otherwise there
are uncountably many such 4. Even if the knowledge of the agents are defined
by their knowledge of formulas, 1) there is a continuum of distinct semantic
models where only the tautologies are held in common knowledge and, 2) not
assuming that S is finitely generated (a) does not imply (c), (c) does not imply
(a), and (a) and (c) together do not imply (b).
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1. Introduction

In Simon (1999) we considered the space of maximally consistent sets of for-
mulas using the multi-agent epistemic logic S5 and we showed that there can
be a large descrepancy between syntactic and semantic common knowledge.
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In this paper, we re-examine this descrepancy in the light of how the syntactic
common knowledge, namely the set of formulas held in common knowledge, is
generated. Informally, a set of formulas held in common knowledge is finitely
generated if the common knowledge of some finite subset of formulas implies
logically the common knowledge of all the formulas in the set.

Let © be the space of maximally consistent sets of formulas that are gen-
erated by finitely many agents and primitive propositions. For every agent J
let 2/ be its knowledge partition of 2, where the knowledge of an agent is
defined to be its knowledge of formulas (see Aumann, 1999). Let 2 := A 2/
be the meet partition of the 2/. A member of 2 we call a “cell”. To every
cell C € 2 corresponds a set of formulas F(C), the set of formulas held in
common knowledge at any point in C. We say that C is “centered” if and only
if C is the only cell that corresponds to F(C).

We prove Theorem 1: if F(C) is finitely generated then the following are
equivalent:

(1) F(C) is maximal among all the sets of formulas that can be held in
common knowledge,

(2) Cis finite, and

(3) Cis centered.

In Fagin (1994) and Heifetz and Samet (1999) canonical semantic models
for the multi-agent logic S5 corresponding to ordinal numbers were con-
structed. Although for a fixed ordinal « their models U, were different, both
constructions shared an important property. For any semantic model M for
the S5 logic there are canonical maps to all the canonical models such that
for some ordinal « the image of M in U, is equivalent to M as a structure
representing the knowledge of the agents. Furthermore U, maps injectively
to Uy for o < . We define a semantic model M to be non-redundant if there
exists some ordinal o such that M maps injectively to the model U,. (It is easy
to see that the property of non-redundancy is not dependent on the type of
canonical models chosen.) For both constructions, €2 is the canonical model
associated with w, the first infinite ordinal. Since a non-redundant semantic
model is finite if and only if its image in £ is finite, we can extend Theorem 1
to the formulation contained in the abstract of this paper.

Theorem 1 allows us to determine for many infinite semantic models that
the formulas held in common knowledge cannot be finitely generated. Due
to topological characterizations of the centered property in Simon (1999) the
following simple and well known example of a denumerable semantic model
can be described completely by the formulas held in common knowledge, but
by Theorem 1 not by finitely many such formulas. Let there be two agents, 1
and 2, let the set S be {1,2,...}, and let the two partions of S corresponding
to the agents be 2! = {{1} {2 3},{4,5}...} and 2% = {{1,2},{3, 4.}
Let x, a primitive proposition, be true only at {1}. (At no point in S is there
common knowledge that x is not true, yet there are arbitrarily high levels of
mutual knowledge that x is not true.)

In the last section of this paper, we investigate what happens if the set
of formulas held in common knowledge is not finitely generated. We think
that this part of the paper is the most important. We present three examples
that demonstrate the subtlety of the centered property. Example 1 is that of an
un-centered cell corresponding to a maximal set of formulas that can be held
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in common knowledge. Second, as one goes up a tower of sets of formulas
that can be held in common knowledge, one can go from a corresponding
centered cell to uncountably many un-centered cells (Example 2). Lastly, Ex-
ample 3 is that of a centered cell (topologically equivalent to a Cantor set)
corresponding to a maximal set of formulas held in common knowledge such
that at no point in the cell is the knowledge of any player ‘“finitely generated,”
following the definition of Samet, (1990). All three of these examples employ
three agents. With regard to Theorem 1, Example 1 demonstrates (1) does not
imply (3), Example 3 demonstrates (1) and (3) do not imply (2), and Example
2 demonstrates a claim much stronger than (3) does not imply (1).

Example 1 is of special interest. Before demonstrating Example 1, we
prove Theorem 2: the cardinality of cells in £ for which only the tautologies
are held in common knowledge is that of the continuum. In Simon (1999), it
was proven that the number of uncentered cells sharing the same set of for-
mulas in common knowledge is always uncountable, including those sharing
the tautologies, but without assuming the Continuum Hypothesis a contin-
uum cardinality was not proven. Theorem 2 is proven with a hierachical con-
struction of 2 that allows one at every stage to construct or de-construct the
common knowledge of some formula. Because of the maximality of the for-
mulas held in common knowledge in Example 1, it belongs to a class of cells
that demonstrate how the techniques of proving Theorem 2 do not suffice to
conclude the stronger cardinality result for all uncentered cells.

All three examples use critically Theorem 3, a way to relate topologically
certain partitions of @ defined with two agents to semantic models with three
agents. It is possible that there is a special structure to Q valid only for two
agents; it is unknown if there are counter-examples to Theorem 1 when there
are only two agents and finite generation is not assumed.

The rest of the paper is organized as follows. Section 2 provides back-
ground information. Section 3 contains the proof of Theorem 1, and Section 4
contains the proof of Theorem 2. The three examples are presented in Section
5, along with the proof of Theorem 3.

2. Background
2.1. Formulas

Construct the set £ (X, J) of formulas using the finite sets X and J in the fol-
lowing way:

1) If x € X then x e (X, J),

2) If g e £(X,J) then (mg) € L(X,J),

3) Ifg,he L(X,J) then (g A h) e (X, J),

4) If ge £(X,J) then kjg e £ (X,J) for every jeJ,

5) Only formulas constructed through application of the above four rules are
members of (X, J).

We write simply . if there is no ambiguity. We define g v / to be —1(—g A —h)
and g — h to be g v h. For every subset L = J E;(f) = EL(f) is defined to
be N\, kif, EL(f) = f,and fori =1, E[(f) := EL(E["'(f)). If there is no
ambiguity, E will stand for E;.
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A formula f e ¥(X,J) is common knowledge in a subset of formulas
A< P(X,J)if E"f € A for every n < o0.

Throughout this paper, the multi-agent epistemic logic S5 will be assumed.
For a discussion of the S5 logic, see Cresswell and Hughes (1968); and for
the multi-agent variation, see Halpern and Moses (1992) and also Bacharach,
et al, (1997).

A set of formulas o7 = Z(X,J) is called complete if for every formula
feP(X,J)either f €.of or f € .o/. A set of formulas is called consistent if
no finite subset of this set leads to a logical contradiction, meaning a deduc-
tion of f and —1f for some formula f. We define

QX,J) ={S < Z(X,J)|S is complete and consistent}.

Any consistent set of formulas can be extended to a complete and consistent
set of formulas, a property we call the Extension Property, proven by applying
Lindenbaum’s Lemma. A tautology of Q(X,J) is a formula f in #(X,J) such
that f is contained in every member of Q(X,J). A formula is possible if its
negation is not a tautology. ‘

For every agent j € J we define its knowledge partition 2/(X,J) to be the
partition of Q(X,J) generated by the inverse images of the function g/ : Q —
27D the set of subsets of Z(X,J), defined by p/(z) :={f e Z(X,J)|
kif € z}. We will write 2/ if there is no ambiguity. A possibility set is defined
to be a member of 2/ for some j € J. Recall the definitions of cell and centered
from the introduction.

The following central lemma is in Simon (1999), but all the components
of the proof can be found in other papers (Lemma 4.1 of Halpern and Moses
1992, Aumann 1999):

Lemma A. For any cell C of Q(X,J) {f € L(X,J)| f is common knowledge in
z for some ze C} = {f e L (X,J)| f is common knowledge in z for all z € C}
={feP(X,J)|fezforall ze C}.

We define a topology for Q, the same as in Samet (1990). For every f € &
define a(f) :={z e Q| f ez}. Let {a(f)]| f € ¥} be the base of open sets of
Q. (The set of open sets is defined to be the arbitrary unions of base elements.
A topology is defined by the fact that a(f) na(g) = a(f A g)). The topology
of a subset 4 of Q will be the relative topology for which the open sets of 4
are {4 N O] O is an open set of 2}. For any subset D < Q, D will stand for
the closure of D. A dense subset of D is a subset F such that every open set
that intersects D also intersects F. An isolated point of a set D is a point x € D
such that there exists a open set O with {x} = O n D.

Due to Lemma A, we have a map F from the meet partition 2 to subsets
of formulas defined by F(C) := {f | f is common knowledge in any (equiv-
alently all) members of C}.

For any subset of formulas 7' < % define Ck(T) := {f € & | there exists
an i < oo and a finite set 7' = T with (/\,_, E'(r)) — f a tautology}. We
define 7 (X,J) = {Ck(T) | T < Z(X,J)}\{Z(X,J)}, and we say that T gen-
erates Ck(T). If there is no ambiguity, we can write simply 7. Ck(T) is the set
of formulas whose common knowledge is implied by the common knowledge
of the formulas in 7.
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An S € 7 is finitely generated if there exists a finite subset 7" < S such that
Ck(T) = S. For every set of formulas 7' < % define the set

CKk(T) := {z € Q| every member of T is common knowledge in z}.

For any T < &%, Ck(T) is a closed set, since the Ck(T) is the intersection of
the sets a(EL f) for all [ < o, finite K < J, and all formulas f in T.

2.2. Semantic models

For this paper a semantic model is a quintuple #" = (S;J; (2’| je J); X; )
where J is a set of agents, for each j € J 2/ is a partition of the set S, X is a
set of primitive propositions, and i : X — 25 is a map from X to the subsets
of S, such that for every x € X the set w( ) is interpreted to be the subset of
S where x is true. We define a map o” : £(X,J) — 25 inductively on the
structure of the formulas in the following way:

Case 1 f =xeX: o (x) = P (x).

Case 2 [ = —g: 2" (f) == S\ (g),

Case 3 f =g Ah:a” (f):=a"(g) 0o (h),

Case 4 f = ki(g): o (f) == {s|se Pe #] = P < o" (g)}.

We define a map ¢” : S — Q(X,J) (see Fagin, Halpern, and Vardi 1991) by

¢ () = {f e L(X,]))|sea” (f)}.

We are justified in using again the notation « for the following reason.
Consider the map ¥ : X — 29 defined by y/(x) := {ze Q|xez}. We have a
semantic model Q = (Q;J;2',...,2"; X; ). (Due to its canonical nature, we
index this semantic model with .Q.)

Theorem. For every f e ¥(X,J), fisa lheorem of the multi-agent S5 logic if
and only if f is a tautology. Furthermore, $**(z) = z for every z € Q.

For a proof of the first part of this theorem, see Halpern and Moses (1992)
and Cresswell and Hughes (1968), and for how the second part follows from
the first part see Aumann (1999). We will call this result the “Completeness
Theorem.” '

Fora semantlc model 4" = (S;J; (27| jeJ); X; ), if s e o’ (f), or equiv-
alently feg” (s5), we say that f is true at s with respect to #. We say that
f 1s valid with respect to the semantic model " if f is true at s with respect
to " for every s € S. The semantic model is connected if the meet partition
/\ ., 27 is a singleton (equal to {S}). We define a connected component of a
semantlc model to be a member of this meet partition. Two points s,s" € S
are adjacent if they share some member of 2/ for some j e J. We deﬁne the
adjacency distance between any two points s and s’ in S as min{d | there is
a sequence s = S, ...,5¢ = §', a function a: {1,...,d} — J and sequence of
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sets D1 e 2%V ... Dy e 2% such that for all 1 <i<d s; and s,_; both
belong to D;}, with zero distance between any point and itself and infinite
distance if there is no such sequence from s to s’.

2.3. Canonical finite models

We define the depth of a formula inductively on the structure of the for-
mulas. If x € X, then depth(x) := 0. If f = —g then depth(f) := depth(g); if
f =g A h then depth(f) := max(depth(g), depth(/)); and if f = k;(g) then
depth(f) := depth(g) + 1

For every 0 <i < oo we define .%; := {f € & |depth(f) < i} and define
Q; to be the set of maximally consistent subsets of .%;. If there may be ambi-
guity, we will write Q;(X,J). We must perceive an £, in two ways, as a
semantic model in its own right and as a canonical projective image of Q
inducing a partition of Q through inverse images. We define 7; : Q — €, to be
the canonical projection 7;(z) := zn %;. Due to an application of Linden-
baum’s Lemma, the maps z; are surjective. For any semantic model H =
(SJ (#7]j€J); X;) and i > 0 we define ¢ : S — Qi(X,J) by ¢ (s) :=
7 () " LX) = 7§ (s):

For every 0 <i< oo we consider the semantic model Q; = (Q;;J;
(F|jel);X; ¥;), where ; = m; oy and for i > 0 the partition &’ of Q; is
induced by the inverse images of the function f; : /L Q — 24X ) ) defined by
Bl(w):={f e L 1(X,])|ki(f) e w}. We define 7"/ = {Qo} for every jeJ.

Now we consider Q; again as a canonical pI‘O]eCtIVC image. ¥; is defined
to be the partition of € induced by the inverse images of m;, 4 == {77 (w)|
w € Q;}. By the definition of Q, the join partition \/ 9, is the discrete parti-
tion of 2, meaning that it consists of smgletons Let 7 ”’ be the partition on Q,
coarser than 4, defined by Z/ := {n;!(B)| Be Z; Za3 From the definitions of
the Q; and the Z/ it follows that vlf 7! =9/,

An i-atom (or just atom) is a member of Q;.

Since X and J are finite, there are several important properties of the
semantic models Q;, all of which are used in this paper.

(i) ©; is finite for every 0 <i < oo. (For a more general statement, see
Lismont and Mongin 1995.)

(i) For every w € Q; we can define a formula f(w) of depth i or less such
that «%(f(w)) = {w}, meaning that the formula f(w) is true with respect to
Q; only at w € Q;. This follows from the finiteness of ©2;. For any subset 4 = ;
define f(A4) :=\/,_,f(w), a formula that is true with respect to 2; only in
the subset A4.

(iii) It is easy to extend a member of Q; to a member of Q,;;. Fix 0 <i
< oo and w € Q;. For every j € J define F/ by we F/ e Z/. If (M] | j e J) are
subsets of (F/| j € J), respectively, such that

1) we M/ forevery]eJ and
2) foreveryBeg, | F/ A mi(B) # & implies that M/ ~ 7;(B) # &,

then there is a unique v € ;1 such that 7; o 7; +11( ) = w and for every u € Q;
—ki1f (1) e v if and only if ue M/. /. Furthermore, this is the only way to
extend a member of Q; to a member of Q;.1; thls is Lemma 4.2 of Fagin,
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Halpern, and Vardi (1991). For any i > 0 and v € Q; with k > i we define
M (v) := {u € Q;|~k~f(u) € v}. Notice that if we F € 7/ then M/ |(w) is
equal to 7;_; o n;l (F), which could be a proper subset of the member of ,9'7/_1
that contains 7;_1 o 7r; | (w).

(iv) For every formula f e % and [ > i 7 (e () = a2 (f). This fol-
lows from (iii) and the Completeness Theorem. (See also Lemma 2.5 in Fagin,
Halpern, and Vardi 1991.)

(v) As a semantic model, every ; is connected. This was proven first by
Fagin, Halpern, and Vardi (1991) and it can be proven in several ways (for
example from Proposition 1 of Simon, 1999).

3. Finite generation

Before proving Theorem 1 we must show for every connected semantic model
A that the image in 2 by ¢” can be approximated by finite cells.

Following the definition in Fagin, Halpern, and Vardi (1991) for “closed,”
for i > 0 we define a non-empty subset 4 = Q;(X,J) to be semamically closed
if for every jeJ, every Be %, | and every we 4 if n;'(w) € F e #/ and
FnB# @then F nBnn;'(4) # &. Any non-empty subset of Q is allowed
to be semantically closed. 4

~Two semantic models # = (S;J;(2/|jelJ); X;y) and #' = (S";J;
(27 jed); X;y') are strongly isomorphic if there is a bijection y: S-S
such that for every x € X p(¥(x)) = y'(x) and for every pair x,x* € X and
every jeJ, x and x* share the same member of 27 if and only if y(x) and
p(x*) share the same member of /. (In this paper we do not consider iso-
morphisms involving permutations of X and J.) Given a subset 4 = S, we
define the semantic model 7" (4) := (4;J; (P 41i€ed); Xsdly) where for
al]]eJ,7”|A = {FﬁA|FﬂA ;é@’andFeJ”} andforallxeXtMA( X) =
V¥ (x) n A. If there is no ambiguity concerning the semantic model #; we can
replace 7" ( ) by 7°(A4). For any semantically closed set 4 = Q;, by ¥ (A4)

we mean 7% (A)

Lemma 1.

(@) If A = Q; is semantically closed then for every w € A ¢ ( V) = w.

(b) If a semantic model H = (S;J;(P/|jeJ); X; ) is connected then
V(" (S)) and V% (¢ (S)) are connected for all i < %O and ¢” (S) is con-
tained and dense in a cell of Q. Furthermore, the image ¢ (S) in Q; is seman-
tically closed.

(c) If C is a finite cell of Q and i is large enough so that m;_y : C — Q;_q is
injective, then V" (n;(C)) is strongly isomorphic to V" (C), with ;| » providing the
corresponding bijection. (The proof is similar but with a different conclusion to
that of Theorem 4.23 of Fagin, Halpern, and Vardi, 1991.)

(d) If A = Q; is semantically closed and V" (A) is connected, then there
is a finite cell C of Q such that ¢ “Y(4) = C and furthermore ¥ (C) and
v (A) are strongly isomorphic by the bijection m;|-: C — A or its inverse
CORY el

Proof: (a) It suffices by Property (iv) to prove for every formula f € .%; that f
is true at w € 4 with respect to the semantic model #(4) if and only if f is
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true at w with respect to the semantic model ;. We proceed by induction on
the structure of formulas. If the depth of f is zero, the claim follows from the
definition of | 4- Likewise if the claim is true for f and g then it is true for
either —1f or f A g directly from the definitions of o’ () and «. Since every
member of ©; is complete, it suffices to show for every f € %;_1 for which the
claim is established that k; f (respectlvely —k; f) true at w with respect to £;
implies that k; (respectlvely —k; f) is true at w with respect to 77 (4).

Let us assume that w e A, depth(f) < i, and k; ./ 1s true at the atom w
with respect to the semantic model Q. LetweFe 97’|A and w e F'e 7/, s0
that F’ < a?(f). It follows that F = AN F' < a%(f)n A =a" W(f), the
last equality from the induction hypothesis.

On the other hand, assume that w € 4, depth(f) < i, and —k; f is true at
the atom w with respect to ;. That means if we F' € ,97] then F’ N oi(—f)
# . Let Be %,; | be such that —f is true in B and n,( YNF' # @ By the
semantically closed property of A there is some atom w’ € A with w' € 7;(B)
NF' Letting F:=AnF' e F 7! Lis the 1nduct10n hypothesis implies that ¢ #
Anmi(B) <o’ W (=f), hence F o (=1 # & and =k~ (—f) and —k;(f)
are true at w with respect to the semantic model ¥"(A4).

(b) The proof of the first part is straightforward; dense containment is
precisely the statement of Lemma 5b of Simon (1999). Now the rest follows by
Lemma 5a of Simon (1999) and Property (iii), (or explicitely by Proposition
4.20 of Fagin, Halpern, and Vardi 1991, which states that for any cell C the
subset of i-atoms 7;(C) is semantically closed. Lemma 5a of Simon (1999)
states that every member of #/ maps to a dense subset of some member of
27)

(c) For all /< oo and ce C, m(c) = ¢f(c) holds by the Completeness
Theorem. Let 4 = 7;,(C) = ¢ (C). Because of the definition of | , it suffices
to show that for all pairs ¢, ¢’ € C the atoms 7;(c) and 7;(c’) belong to the same
member of Z/|, if and only if ¢ and ¢’ belong to the same member of 2/, We
consider the non-trivial implication. For m > i let A(m) be 7,,(C) = ¢2(C),
so that A(i) = A. We suppose, for the sake of contradiction, that 7;(¢) and

7;(c") belong to the same member of 9’7 | ;, meaning also that ¢ and ¢’ belong
to the same member of Z/, but ¢ and ¢’ don’t belong to the same member of
. Since 2/ =\/, 7, we must assume that there is a maximal / with the
property that 7;(¢) and n;( ') do belong to the same member of 7/ |4 A()> and let
F be this member of 7/| ;. Let F' be the member of #/},1|, (1) contarmng
7141(c) but not 741 (c’) and let G be the member of ¥, contarnrng . m(G)
and F have a non-empty intersection (they both contain 7;(c’)), so by Prop-
erty (iii) 7741 (G) and F* € 7",11 have a non-empty intersection, where F' = F*
) A(l + 1). Because 4(/ + 1) is a semantically closed set by (b), there must be
a c¢* e C with ¢* eGe% 1 andmﬂ( *)e F'. Butsince / > iand 7;_; : C —
;) is an injection, ¢* must be ¢’, a contradiction.

(d) By (b), ¢” <A>(A) is a dense subset of a cell C. But ¢ @ (A4) is finite,
hence closed, and therefore equals C. )

As before for / > i define A(/) := (/51 ( ) = m(¢” W (4)) = m(C). By
(c), for /> i we have 7"(A(/)) strongly isomorphic to "V (C) using the map
77 ¢- By (a), ¢7+1A) A — A(i + 1) is bijective and 7; o 7, |Lac z+1) is the inverse.
It sufﬁces to show an isomorphism between ¥ (A4) and 7" (A (i + 1)) using the
map ¢, il “ g4 A(i+ 1). This follows directly from the definition of ¢ and

that the partition ., is finer than 7.
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Lastly, if ¢ € " D (4) = C then ¢°(c) = ¢” 9 (c) = ¢ YD (z(¢)) for all
[ > i, the last equality by the 1somorphlsm just proved The Completeness
Theorem implies that ¢ = ¢?(c), meaning that ¢ = ¢’ “)(z(c)) for all
> q.e.d.

Theorem 1. Let C be any cell and let S and T be sets of formulas such that
S =Ck(T), S=F(C), and |T| < co. Then the following are equivalent:

(1) C is a finite set,

(2) C=CKk(T) = CKk(S),

(3) S is maximal in 7,

(4) S is maximal among all the members of I generated by finite sets of
formulas,

(5) C is centered, meaning that F~'(S) = {C}.

Proof: We can assume that 7 = {g} for a single formula g. Let d be the depth
of g.

(1) = (2): Being finite, C is a closed set. Since C is dense in Ck({g}) it
follows that C = Ck({g}).

(2) = (3), (3) = (4), (2) = (5): All three implications are obvious.

Due to Lemma 1b, for every i < oo 7;(Ck({g})) is semantically closed and
¥ (m;(Ck({g})) is connected.

(4)=((1) and (2)): Consider 4 :=mr,;(Ck({g})). Since depth(gy) =d
Property (iv) implies that 7;'(4) < a?(g). For />d define A(l):=
m(p” D (4)) = ¢] ) (4). By Lemma la we have that 7' (A(])) < 7;'(A)
< a?(g) and therefore by Property (iv) f(A(l)) — f(A) and f(A4) — g are
tautologies for all / > d. By Lemma A and Property (iv) we have for all / > d
that f(A(1)) is valid with respect to ¥ (A(l)) and ¢’ D (4) = ¢” 1D (4(1))
< Ck({f(4(])}) = Ck(S) = Ck({g}), the first equality by Lemma 1d. It fol-
lows from (4) that Ck(S) = Ck({f(4(/))}) for all / > d. By Lemma 1d there
is a finite cell C’ of Q such that C'=¢" (A>( ) But then it follows that
€' < CK(S) = (1", Ck({/(AUNY) € 122/ (AWD) = Ny (AD) =

id ur ( ; ¥ )(A)) = ¢ (A) C’ and we must conclude that C' = C.

(5) = (1) By the proof of Theorem 1 of Simon (1999) C contains a non-
empty open set of Ck({g}). (The proof of Theorem 1 of Simon 1999 is the
argument that a cell C is centered if and only if it contains a non-empty set
that is open relative to the closure of C.) Without loss of generality, we assume
that this non-empty open set is W* n Ck({g}) for some W* e ¥; and i > d.
Consider the set 4 := 7;(Ck({g})). As in the proof of (4) = (1), we have that
f(A4) is valid with respect to ¥ (A) and we can conclude from i > d that
f(4) — g is a tautology and (/ﬁ ( ) = Ck({g}). Slnce W* nm; “l(4)2
W*nCk({g}) # & we conclude by Lemma la that ¢” “(4) has a non-
empty intersection with W*. But since ¢’ “(4) = Ck({g}) and C contains

the set Ck( {gg,» ) W* we must conclude that C ¢’ “(4) # & But by
Lemma 1d ¢ ) is a cell, hence C = ¢” Y (4), and furthermore ¢’ ) (4)
is finite. q.e.d.

4. A continuum of dense cells

The goal of this section is to prove the following:
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Theorem 2. If there are at least two agents then the number of cells dense in Q
has the cardinality of the continuum.

Before proving Theorem 2, we describe the main ideas behind the proof.

We want to construct uncountably many distinct dense cells through the
uncountably many possibilities in {0,1}”. As was shown by Fagin, Halpern,
and Vardi (1991), infinite repetitions of what they called the no-information
extension (applied to the members of any ;) generate membership in dense
cells. But one does not need to repeat the no-information extension at every
stage to generate membership in a dense cell. One can alternate the no-
information extension with long periods where the mutual knowledge of some
formulas is confirmed to arbitrarily long depths.

We consider the formulas g1, ¢, ... whose common knowledge define the
semantic models ©Q1,€,,.... At every level i we choose between the no-
information extension and an increasing depth of mutual knowledge of the
formula gy for some k < i; (k is determined to be the lowest number for which
this is possible). The latter is performed by the canonical map of € into Q;;.
An alienated extension is an alternation between these two processes which
involves an infinite subsequence of stages where the no-information extension
is applied. We call it alienated because there is a process of building common
knowledge that is interrupted repeatedly.

In our construction, we take a subsequence n,n,, . . . such that the distance
n; —n;_ increases as i increases. For any point in £, we make a choice
whether to confirm the mutual knowledge of the formula g, until the n;
stage (meaning up to the depth of n;;; — n;) or to perform the no-information
extension repeatedly until the n;, stage.

If two points belong to the same cell, there is some finite sequence of
adjacent pairs connecting them (meaning that for every pair of adjacent points
in the sequence there is some agent with identical knowledge at this pair). If
for one of these points the mutual knowledge of some formula f is confirmed
to depth n (meaning that E”(f) is valid at this point) then E"%(f) is also
true for all other points in the same cell within an adjacency distance of k.
In contrast, the no-information extension applied from stage n; + 1 to stage
n; + 2 destroys the first level of mutual knowledge of the formula g,. We
conclude that any two points x, y that belong to the same cell and result
from alienated extensions generated by our subsequence n;,n,, ... must have
involved the same extension choices after some finite level, namely any level
n; where n;.; — n; exceeds the adjacency distance between them. Therefore
infinitely repeated differences in our extension choices generate membership in
distinct dense cells. ) ]

Let 0 <i < oo, fix we Q;, and let F! be the member of Z/ containing w.
Define p;;(w) to be that unique member of Q11 such that 7;(p;y (W) =w

and M/ (p;.,(w)) = F/ for every jeJ (see the definition of M/ at the end
of Section 2. 3). The map p;,, : Q; — ;41 was called the “no-information”
extension in Fagin, Halpern, and Vardi (1991).

Let 2% be the set of subsets of the whole numbers Ny = {0, 1,2,...} with
infinite cardmahty (Se 2N° implies |S| = o). For every pair i,k € S with k >
we will define a map pj : Q; — Q. If i e S €20 define nS( ) :=inf{k € S|
k > i}, the first member of S strictly larger than i If ieS and we Q; then

define pn 0 ( V) = ¢ (w) and define pS(w) :=w - pn (l)(w) is an extension of
w because of Lemma 1 , meaning that 7; o 7 ()(pngm( w)) =w. Forevery k € S
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and w e Q; with k > ie S and p?(w) € Q already defined, deﬁne pn ) (w)
{)o be pn )(pk (w)). Lastly, for all i € S € 2% and w e Q; define p*s Qi Q
y

pwy= () 7' (pi(w)).

leS,I>i

For any i € S € 2% and w € Q; we call p5(w) the alienated extension of w with
respect to S.

An alienated extension involves an infinite number of no-information
extensions. For all 0 <i < oo and w e Q; it follows that ¢; +1( W) = pi(w),
meanmg also that p™o is the infinite repetltlon of the no-information extens10n
This is because if we F € 7/ and v is any member of F then ¢; +l(v) and

qﬁl( ) share the same member of 7111, implying that —k;—1f(v) € ¢l+"1 (w).
We can conclude for every J € J that M; +1(4/59"(w)) = F. However, as we will
see from Lemma 5, ¢, +2(w) does not equal p;,, o p;, (w) for any w € Q;.
Lemma 2. If S € 2% and there are at least two agents, all alienated extensions
with respect to S share the same cell of Q.

Proof: If w and w' are members of ©; such that both are contalned in the
same member of 7/, then from induction and the definition of ¢ pS(w) and
p3(w') are both contained in the same member of 2/.

Now, given any i,k €S and Be %, and D € ¥, the adjacency distance
between p°(7;(B)) and p® (7 (D)) in  is no more than the adjacency distance
between py. ) (7i(B)) and pS. . 1 (w(D)) i Qi x)- The rest follows by
the connectedness of Q; for every i. O

Notice by Lemma A that the cell containing all the alienated extensions
with respect to some S € 2N must intersect o**(f) for all possible formulas
f € &, which means that only the tautologies of the logic are held in common
knowledge in the cell.

Define the formula g; := f(qﬁ'l( )) of depth i + 1, the formula true with
respect to Q;. only in the image ¢, +1( ;). As we will see, the common
knowledge of g; is closely linked to the semantic model Q; (see also Theorem
4.23 of Fagin, Halpern, and Vardi 1991).

Lemma 3. If ie Se2, and i+ 1,i+2,...,i+1¢S for some | > 1, then
pS(Q) < «?(E'(g:)) and g; is common knowledge in the semantic model ;.

Proof- By Lemma 1d, ¢ (€2;) is a cell. Because ¢ (Q i) S a?(g,), Property
(iv) and Lemma A 1mply that g; is common knowledge in the cell ¢ ( ). If
E!(g;), a formula of depth i +/ + 1, were not true at some point of ¢1+1+1 (2)
then also by Property (iv) we must hdve that g, is not common knowledge at
some point of ¢ (;), a contradiction.

Additionally, by Lemma 1d we have that g; is common knowledge in the
semantic model Q;. O

The proof of the following lemma is omitted because it is a direct corollary
of Property (iii).
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Lemma 4. With at least two agents, the following is true for every jeJ and
0<i<oo:

a) if weQ, Fe 7/ andw e n;(F) e 7/ then the number of members of 7/,
contained in F wzth a non-empty intersection with 7; ' (w) is at least 2, and

b) if we Q; and ;' (w) " F # & for some F e .7] T '‘then the number of ele-
ments of Qi1 that are in miy (n; (W) N7y (F) is at least 2.

Lemma 5. If there are at least two agents and i + 1 is in S € 22, then Eg; is not
true at any point of pS(Q;).

Proof: Because ¢l+’§‘( w) = p;»(w) for any w € Q;,, it suffices to show for any
jeJ thatk; (g,) is not true at p,,,(w) for any w e Q;,1. Let w € miy  (F) € 7,
for some F € 7. For every v e Q; there is only one member of .Q,H in the
subset 7,1 (m; !(v)) where g; is true. From now on let v =m; o 7.} (w). By

Lemma 4 there is more than one u € Q) withu € i1 (F) Ny (77 ( )). The
F'e Ziz containing 7.}, (p; ,(w)) must have a non-empty intersection with
n .t (u) for all u € Qi1 with u € 7,4 (F), and therefore F' is not contained in

2?(gi). O

Proof of Theorem 2: Define a map f : 2N — 2™ by g(S) := {0,1,2,4,8,...}
U{2/4+1,...,2# —1|ie S}. Define an equivalence relation on 2™ by S~T
if and only if there exists an m e Ny such that S\{0,1,2,...m} = T\{0,1,
2,...,m}. The co-sets of this equivalence relation have the cardinality of the
continuum.

Due to Lemma 2, it suffices to show for some w € © that if S and T are
both subsets of Ny with S « T then p#®)(w) does not share the same cell
as p#T)(w). For the sake of contradiction, let us suppose that the adjacency
distance in Q between p#®)(w) and p#7)(w) equals a finite number / < oo.
Because S+ T there exists an i > log,((/ 4+ 2)) such that ie S and i ¢ T, or
vice versa. By symmetry, let us assume that i € S and i ¢ T. Lemma 3 applied
to p#T)(w) implies that p#7)(w) € a?(E'*'g,:). But because the adjacency-
distance between p”S) (w) and p#T) (w) is [ we have that p#S) (w) € «?(E(g,1)),
a contradiction to Lemma 5. q.e.d.

5. A special observing agent

Theorem 1 and Theorem 2 were made possible by our ability to get beyond the
maximal depth of the finite set of generating formulas. Now we will construct
infinite sequences of generating formulas to find cells that do not obey the
statement of Theorem 1 when the assumption of finite generation is removed.
We do this by introducing a partition of (X, {1,2}), creating a new semantic
model %" by as51gn1ng the new partition to a new third agent, and then look-
ing at the image of ¢ in Q(X,{1,2,3}).

There are several problems With this approach. First, we would like
to relate our partition of Q(X,{1,2}) to a set of generating formulas for
a member of 7 (X,{1,2,3}). More seriously, an arbitrary partition of
Q(X,{1,2}) for a third agent will not in general yield a continuous or an open
map from Q(X,{1,2}) to Q(X,{1,2,3}). We would like to use the topology



The generation of formulas held in common knowledge 13

of 2(X,{1,2}) in our analysis of the image in Q(X, {1,2,3}). Related to this,
we need to identify a cell rather than just a semantic model with the desired
property. These problems are overcome, however, by Theorem 3.

To illustrate this last problem with techniques of the fourth section, take
the set 4= {pN(w)|i>0,weQ;} = Q. It is not difficult to show that
¢’ D(a) =aforallac A. " (A) is a countable and connected semantic model
that maps canonically into an un-centered cell. But this is no example of a
countable un-centered cell.

For any n > 2, we define a consistent sequence of partitions of @ = Q(X,J)
to be a sequence of partitions (2, %, ...) of Q such that

1) for every 0 < i < o0 Z; is equal to or coarser than ¥,

2) for every 0 < i < oo &; is equal to or finer than #;_;, and

3) forevery0 < i< w0 if P;e?, Pioy€P;_yand P < P,y then P,n B # J
for every Be %, with B< P; ;.

For any consistent sequence of partitions # = (#;|0 <i < o) of Q(X,J)
define a semantic model

H(B) = (Q(X,T);(27]j €J), 2P; X))

where the partition 2., for the |J| + 1st agent is the limit of the partitions
2;, (meaning that z and ' share the same member of 2., if and only if they
share the same member of 2; for every i < o0), and ¥ and the 2/ are the same
used to define the semantic model (X, J). Let y stand for the |J| + 1st agent.
For every i < oo and w € Q; define P;(w) to be the member of #; containing
77! (w) and for any z € Q define P;(z) to be member of #; containing z. For
every 0 < i < oo define a formula #(#2;) = L(X,J v {x}) of depth i + 1 by

hZ) =\ (f(W) - ( N k() /\< ) klﬁf(v)))'

we; i(Pi(w)) v (Pi(w

Define the set of formulas T(%) := {h(Py), h(?1),...}.

Theorem 3. The semantic model Ck(T (%)), as a closed subset of Q(X,J U {y}),
is strongly isomorphic to K (B) using the bijection I : Ck(T (%)) — Q(X,J)
defined by I'(z) .= {f € L(X,J) | f €z} = zn L (X, J). Furthermore, the map
r mduces a homeomorphlsm between Q(X,J) and CKk(T (%)), and the inverse

of T is ¢

Proof: First we show for every i that 2(%;) is valid with respect to #'(%). Let
z be any member of Q(X,J) and let z € P € #,,. Due to Property (iv) it suf-
fices to show that for every B € 4; with B < P;(z) it follows that P n B # &
and for every B € %; with B P;(z) = & it follows that Pn B = (.

The latter follows from the fact that Z,, is finer than or equal to #;. For
the former, Condition 3 implies the existence of a nested decreasing sequence
of non-empty compact sets By € 9y, k > i, with B; = B and By < Py (z) for
every k > i. The limit z’ ﬂ «—; Br Will share the same member of #,, with

z. Therefore we conclude that ¢/(J maps Q(X,J) to Ck(T(4)).
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Notice from the deﬁmuon of #'(#) thatif f e X(X,J) thenfez eQ(X,J)

if and only if / e ¢ ¥)(z). This implies that the map I" o ¢* ¥ is the identity
on Q(X,J).
If ze Q(X,J) then there exists at least one i-atom ve Q;(X,Ju {y})

with f(m(2)) A EJLj) () A - A Egogy(HZ;-2) nHi1) € v, namely

= ¢ ( ). The following claim is equivalent to the claim that for every
i<oo and zeQ(X,J) f(¢7 () = (f(mi(z) A E L, (W(Z0) A o A
h2i-1)) e L(X,J u{y}) is a tautology.

Claim: If z € Q(X,J) then v = ¢l-%(%)(z) is the only atom in Q;(X,J v {y})
containing f((z)) A EjJ, (h(Zo)) A -+ A h(211).

We prove the claim by induction on i. If i=0 then Qo(X,J)=
Q(X,Ju{x}) and f(g]P(2)) = f(m(z)). Otherwise, if i>1, any two
different atoms v and v’ in Q;(X,Ju {y}) both containing f(m;(z)) must
differ on the containment of k;(f(u)) for some jeJ u{y} and some ue
Qi (X, T {}). U(Ej G, (h(P0)) A+ AW(Pi2)) eue Qi (X, T U {x}),

then Ej 7}, (h(29)) A -+~ A h(2;_1) being true at v and v" would mean that

both v and v’ contain k;(—f(«)). So for the rest of the proof we suppose for
the sake of contradiction that there are two atoms v and v’ in Q;(X,J U {x})
both containing f(7;(z)) A Ei7} (h(?’o)) A - ANh(2i-1) and k;j f(u) € v and

Joix}

ki f(u) ev’ for some ue Qi (X,Ju{y}) with EJ’UZ{X}(h(%)) A

h(P;_2) € u. For k < oo define y, : .Qk(X Ju{y}) — Q(X,J) by yk( ) v
N % (X,J). By the induction hypothesis we must assume that u = (z*)
for some € x Y (7, () and that f(u) = (f(y_i()) A E} Do)

7
- Ah(2:-3)) 1s a tautology. -

Case 1; j € J: Since either f(m;(z)) — k;j(f(y,_1(u)) is a tautology or f(7;(z))
— —k; (f(y,._l(u)) is a tautology we have also that either (f(m(z ) A
E oy (W 20)) Ao A h(2i1)) = kif (u) or (f(mi(2) A EjCy ((P0)) Ao A
h(2i-1)) — —k; f(u) is a tautology, a contradiction.

Case 2, j =y By the induction hypothesis and the validity of h(%;_;)
with respect to ¥ (Ck(T(4))), the atom m;_i(z) =7, (mi_1om; ' (v)) =
yH(n,»_l on; 1(v")) has already determined whether or not k (o1 () is 1
v or v’, and equivalently for k,(f(y;_;(u)) A Ejuz{y}(h(fo)) e AR(2i))
and for k ,(f(u)). The claim is proven. o
By the claim, I is injective. With I" o ¢ #) the identity on Q(X,J), ¢ ¥
and I" are inverses. The claim implies for every w € 2;(X, J) that ¢” (¥ (77t (w))
equals o ?XIYUD (£ (w)) " Ck(T(4)), an open set of Ck(T(#)). With the
above, showing the isomorphism and the homeomorphism is now straight-
forward. q.e.d.

5.1. Un-centered maximal common knowledge

Now we are able to construct an example with three agents for which S € 7 is
maximal and F~!(S) is uncountable.
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Example 1. For Q = Q(X,{1,2}) we deﬁne a consistent sequence of parti-
tions. For all i > 2 define the subset 4; := {¢, 2"( )| 2F <i< 21 and ve Q)
< Q;. We define the 2; in the following way: 2y = 2, = {Q}, if i > 2 then
Pi =P v A{n (4), i(l\A)} 2,

By Lemma 4, for all 2% <i < 2*"!, v e Q, and w = ¢;2*(v) there is an
extension of w in A,H and another in Q,.1\A4;+1, which means that both
71 (A4;1) and 7;71(Q;41\4:41) have a non-empty 1ntersect10n with all the
members ¥; in P; (w) Otherwise, if w € £; is not equal to ¢, 2"( ) for any
v € Qyc with 2% < i < 2K+ then the member of Z; containing n’l (w) will also
be a member of 2, ;.

First we show that every member of 2V A 9% A 2, is dense in Q. By
Theorem 3 that would imply that F~'(Ck(T(#))) is not empty and that
Ck(T(#)) is maximal in 7.

Consider any z € Q and define A(z) := {i| 7;(z) € A;} = {2,3,...}. Define
a new point z' € Q in the following way: Start with any wy = 7o(z’) € €.
We assume that 7;(z’) is defined for all / < i. If i is equal to 1 or i ¢ A(z) and
2k 41 < i < 2% for some k >0 then let 7;(z') be p;(mi_1(z)). If i € A(z)

and 2k < i <21 for some k then let (') be ¢ 2" (mpe(2)). If i ¢ A(z),
2k +1 =i for some k>0 and F! and F? are the members of %!, and
'7)31 containing 7;_(z’), respectively, then let M/ |(m;(z')) be F' and let
M? | (m:(z')) be any proper subset of F? containing 7;_;(z") and satisfying (iii);
(by Lemma 4 at least one exists). z’ and z share the same member of Z,,. Let
0=1{0yu{2¥|k=0,1,2,...}. Define B( ":={ili+1eA(z')}\Q. By in-
duction on i we have that z/ and p™o\B') (1) share the same member of .7,
for every i < o0, and therefore they also share the same member of 2!. (z and
PNONEG) (1) do not in general share the same member of #,.) Since
Q = No\B(z') and 2' A 22 A 2, is coarser than or equal to 2' A 2%, by
Lemma 2 pNo\BG')(y), and thus also z, belongs to a member of 2! A 27 A

2., dense in Q.
Now we must show that all of Q cannot belong to the same member of

2'ADP AP

Lemma 6. With regard to Example 1, for every we Qy and 0 <[ <2/ —1,
f(¢2r+1+1 (w)) — E{I,Z,S}(gz 1) is valid with respect to the semantic model A ().

Proof: We proceed by induction on /. If /=0, then the statement is true
from the definition of g,:. Let us assume that the claim is true for / — 1 > 0.
It suffices to show for all j e {1,2,3} that f(¢2,+l+l(w)) — kE{L“}(gz/) is
Vahd with respect to the semantic model #'(%). By Property (iv) and that
f(gbz,H(QQ,)) is common knowledge in ¢/ (Q,:) if j = 1,2 then f(qﬁiilﬂ(w))
— kf(¢2,+l( w)) e L(X,{1,2}) is a tautology, so that we have the result by
the induction hypothesis. For j = 3 it follows by the induction hypothesis and
from the validity of the formula /(2,:,,) with respect to #'(%). q.e.d.

We can proceed exactly as in the proof of Theorem 1. The only difference
is that we use Lemma 6 instead of Lemma 3 to arrive at a contradiction with
Lemma 5. If we want only that the cardinality of 2! A 22 A 2, is uncountable,
we can use a part of Proposition 2 of Simon (1999) which states that a com-
pact cell has finite adjacency diameter. Supposing m < oo is the diameter of
A (#) and choosing an i such that 2/ > m+ 2 and a w € 2,; we have from



16 R. S. Simon

Lemma 6 th;}Qt g»i 1s true with respect to #'(%) at all points within a distance
of m from ¢,7  (w), and therefore g, is valid in #'(#) and hence also in
Q(X,{1,2}), a contradiction.

5.2. Increasing common knowledge

One could imagine that the correct analogue to Theorem 2 would be that
enlarging the set of formulas held in common knowledge can never result in a
switch from centered to non-centered. But it is possible to have two members
S and S’ of 7 with F~'(S) and F~!(S’) not empty such that S = S’, F~1(S)
is a singleton but F~!(S’) is uncountable — such is the case with Example 2.

Example 2. Let X = {x, y} with x # y. Let Q stand for Q({x, y g {1 2}
Define the following consistent sequence % of partitions: #y = {oc
{rng'w)} |xewe Qo}, and for i>0 2;={{«?(x)}u {{r! (w)} \xe
we Q;

The limit partition is therefore 2., = {a(—x)} U {{z} |xezeR}.

First, we claim that the set Ck(T(2)) n (| )2, 22112 3})(ﬁE{’ 2y%)) i
a cell dense in Ck(T(,@)) If ze 2 and ﬁE{l 2yX €z then there is some
j=1lor j=2 and some z' e« (ﬁE{’1 2}x) that shares the same member of
27 (X {1,2}) with z. By induction we have that z shares the same member
of 21(X,{1,2}) A 2%(X,{1,2}) with some member of «?(—x) and all mem-
bers of o(—1x) share the JSame member of Z,,. Due to Theorem 3 and the
dens1ty of the set | )~ o W (DE! 1.2y%) in Q it is left to show that no point of
¢ P (Ck({x})) can belong to this same cell of Ck(7'(#)), where Ck({x}) is a
subset of Q(X,{1,2}). By the dlscretlon of the partition 2., in o #)(x), x is
also held in common knowledge in ¢” ¥ (Ck({x})) = 2(X,{1,2,3}), which
completes the first claim by Lemma 1.

Second, we claim that Ck(7T(%) u {x}) e ./ (X {1,2,3}) does not corre-
spond to a centered cell and that F~'(Ck(T(#) u {x})) is not empty. Every
subset 4 of Q) is semantically closed, and also ¥"(A) is connected since
FJ ={Qo} for every j. Therefore F*I(C_k({x})) is not empty by Theorem
4.22 of Fagin, Halpern, and Vardi, (1991), which states that if a subset 4 = Q;
is semantically closed and ¥7(4) is connected then F~!(Ck({f(A4)})) is not
empty. Ck({x}) = £(X,{1,2}) does not correspond to a centered cell by
Theorem 2, (since Ck({x, y}) strictly contains Ck({x})). The rest follows
by Theorem 3 and the descretion of the partition 2, in o (¥) (x).

5.3. Expressive

Let F be a possibility set contained in a cell C. F is defined to be expressive
(Maruta, 1997) if there exists some i < co and an i-atom u € £; such that F =
7 (u) n C. A cell is called expressive if 1t contains a some expressive F € 2/
for some agent j. Because the F and 7; ! (u) are closed sets, the containment
F 2 77! (u) n C implies the containment F 2 7 1(u) N C, so that by the proof
of Theorem 1 of Simon (1999) a expressive cell is centered.

In Samet (1990), the knowledge of agent j at some state is finitely gen-
erated if the set of formulas it knows is implied logically by a finite set of
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formulas (equivalently by one formula). In our context of looking at the
closure of the cell containing some z € Q as the relevant subspace of 2, this
means that the set of formulas {k;f |k;f € z} is implied logically by the set
S U {k;g} where S is the member of 7 held in common knowledge at z and
g is some formula If a possibility set F € 2/ is expressive, it contams a non-
empty set 7; ' (u) N C for some u e €;, equivalently contains 7, Yu)n C,
therefore it is the only possibility set of agent j in C where =k;f ( ) is true,
hence also where k;kj—f (1)) is true. If the set of formulas {kf | kif € z}
were not logically 1mp11ed by the set S'u{k;7kf(u))} then by Linden-
baum’s Lemma there would be another poss1b111ty set of agent j in C where
ki—k;—f (1) would be true. (See also Maruta, 1997). The converse, that in our
context the finite generation of knowledge implies expressive, is the easier
direction.

It is plausible to believe that a cell is expressive if and only if it is centered.
However, the following is an example of a non-expressive compact cell with
an adjacency radius of 2.

Example 3. Let Q = Q(X,{1,2}). We define a consistent sequence of parti-
tions in the following way:

For every 0 < i < oo define 4; = {p;(w)|w e Q;_1}. Define ) = {Q} and
P =P v A{m (4;), O\ ()}

Consider the member F' of 2'(X,{1,2}) containing p™(wp) for some
fixed wy € Qo. For any i < o consider the F’ € #, satisfying F' = F’ and
consider any u e Q; with uen;(F') e Z!'. Let F” and F* be the members of
Z}H and 72 i+1, respectively, defining p, +1( u). By Lemma 4 there will be a
v e Qi with v e mip (7' (u)), v € 71 (F”), but v ¢ 741 (F*). By finite induc-
tion this means that for every subset S < N there is an nested sequence
Cie%;, i=1,2,..., such that for every i C; <n;!(m(F')) but m(C) =
pi(mi—1(Cy)) if and only if i € S. By the compactness of F! this implies that
z=()-,CieF" and zen;!(4;) if and only if i € S. This means that F!
intersections every member of 2, and the adjacency distance with respect to
the semantic model #" (%) between p™°(w,) and every element of Q(X, {1,2})
is no more than 2. Every member of 2/ for j = 1,2 is a meagre set of Q.
By Lemma 4, no member of Z,, can contain an open set of Q. Theorem 3
implies that ¢ Q) isa centered cell that is not expressive. Because the cell
has finite ad]acency diameter, it is easy to show that it is also compact, (see
Lemma 2 of Samet, 1990), and therefore the corresponding set of formulas
held in common knowledge is maximal.

There is some sense in which the notion that “non-expressive implies un-
centered” may be valid.

Question 1: If a cell C is centered and has no isolated points, what additional
conditions are necessary, if any, for there to exist a semantlc model " with
uncountably many connected components that maps by ¢” injectively into C?

For all three examples, we had the advantage of Theorem 3, which applies
only if there are at least three agents. We have tried but failed to answer the
following question.

Question 2: For which of the questions Examples 1, 2, and 3 were designed to
answer can one find alternative examples with only two agents?
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