
Journal of Mathematical Psychology 42, 356�384 (1998)

Experimental Results on the Centipede Game in
Normal Form: An Investigation on Learning
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We analyze behavior of an experiment on the centipede game played in the
reduced normal form. In this game two players decide simultaneously when
to split a pie which increases over time. The subjects repeat this game 100
times against randomly chosen opponents. We compare several static models
and quantitative learning models, among them a quantal response, model
reinforcement models and fictitious play. Furthermore, we structure behavior
from period to period according to a simple cognitive process, called learning
direction theory. We show that there is a significant difference in behavior
from period to period whether a player has decided to split the pie before or
after the opponent. � 1998 Academic Press

INTRODUCTION

In this study, we report experimental results on centipede games in reduced
normal form, played repeatedly against changing opponents. The main purpose of
this study is to compare different learning models. Originally, the centipede game
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(Rosenthal, 1981) has been discussed mainly in extensive form in the theoretic and
experimental literature. The game in extensive form is as follows (see also Fig. 1):
two players, called player A and player B, decide sequentially whether to split a
given pie in a predetermined way or whether to pass the splitting option to the
other player. If a player passes the decision to the other player, the pie increases in
size. Passing can be done only a finite number of times. Once a player splits the pie,
the game is over with that player gaining the higher share of the pie and the other
player obtaining the smaller share. All standard game-theoretic equilibrium
concepts predict that the pie is split at the first decision node of player A, the first
player.

In the reduced normal form game, which is strategically equivalent to the extensive
form game, players decide simultaneously at which of his decision nodes to ``take''
the opportunity to split the pie. This form of decision making has an advantage for
studying learning in centipede games. The experimenter is informed about the
intended ``Take-node'' by both players. Thus, in the repeated normal form games
we are able to study the change of behavior of a player from round to round in a
more precise way than can be done in the extensive form game. Furthermore, this
kind of structure allows us to repeat long centipede games much faster than repeated
sequential move games. However, while there might be substantial differences in
behavior in the extensive form game and in the normal form game, we do not
address this question here and leave that to a later study. Here we only concentrate
on learning in the normal form game. Since after each period the players only
obtain information as in the extensive form game, we hope that the structure of
behavior we find will be valuable for the understanding of behavior in the extensive
form centipede games. The centipede game in extensive form has gained attention
in game theory in the discussion on the limitations of common knowledge of
rationality and backward induction (see, e.g., Aumann, 1992; Binmore, 1988).
Cressman and Schlag (1996) and Ponti (1996) discuss stability criteria of an
evolutionary model in the centipede game.

McKelvey and Palfrey (1992), Fey, McKelvey, and Palfrey (1994), Zauner
(1996), and McKelvey and Palfrey (1995b) have analyzed actual behavior in the
extensive-form centipede game. As in our experiments, behavior is quite different
from the game theoretic solution. These authors explain the data in terms of equili-
brium models with errors. Learning is discussed as reduction of errors or reduction
of uncertainty over time. As a consequence of that kind of learning, behavior should
converge to the Nash-equilibrium of the stage game. We apply the quantal response
model (McKelvey 6 Palfrey, 1995a) for our data set and compare it with other
models, some static models, a class of simple adaptive models, called reinforcement
learning models, and fictitious play. Furthermore, we formulate hypotheses according
to a qualitative learning direction model, in the spirit of Selten and Stoecker (1986).
Testing these hypotheses we reveal features of period to period behavior that have
not been discussed in other studies on the centipede game. There seems to be a
clear-cut separation of behavior whether a player has chosen the lower number or
has chosen the higher number of the match. Learning is not necessarily related to
convergence to equilibrium. All models we consider have been applied by different
authors to various experimental games in the economic literature.
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The paper is organized as follows. Section 2 presents the game under considera-
tion and Section 3 the experimental design. Section 4 gives a summary statistic of
the data. Section 5 discusses quantitative static models and learning models and
compares the performance of these models in the light of the data. Section 6 analyses
the actual data and the basic reinforcement model with respect to hypotheses of a
qualitative learning theory��learning direction theory. Section 7 concludes.

1. THE GAME UNDER CONSIDERATION

Consider the extensive form game displayed in Fig. 1. At each node (numbered
from 1 to 12) either player A or player B has to decide whether to ``take'' or to
``pass.'' Once a player chooses ``take,'' the game is over and the payoffs are deter-
mined by the payoff vector at that ``Take-node.''

FIG. 1. The centipede game in extensive game form (*=Nash-equilibrium payoffs).

The reduced normal form we study experimentally in this paper is presented in
Fig. 2. The main difference between the reduced normal form and the extensive
form is that in the normal form game both players have to decide simultaneously
at which node to take or whether to pass till the end. Therefore within a game,
when making a decision, the players do not know whether or not the opponent has
passed at early nodes. However, since the players repeat the game, they gain this

FIG. 2. Reduced normal form payoff matrix of the centipede game (*=Nash-equilibrium payoffs).
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experience from game to game instead within a game. The simultaneity removes
any explicit sequential ``reciprocity.'' If a player played repeatedly against the same
opponent, there could be reciprocity from period to period.

The strategies : (for the row (A)-player are odd numbers between 1 and 13,
: # [1, 3, ..., 13]; and the strategies ; for the column (B)-player are even numbers
between 2 and 14, ; # [2, 4, ..., 14]; numbers 1 to 12 indicate the take node of the
extensive form. Strategies 13 and 14 correspond to the strategy ``always pass'' in the
extensive form, resulting in the highest payoff for player A.1 Since some cells
contain the same payoff vectors, players cannot always infer what an opponent has
chosen; in the extensive form game, a player who takes before his opponent, does
not know opponent's move, except at node 12. We maintain this information of the
extensive form game by not telling the subjects what the other player has done if
he cannot infer it from the matrix.

Both games are strategically equivalent and have a unique outcome. In the exten-
sive form game, the players have to take at their first opportunity following the
backward induction logic. The equilibrium is subgame-perfect. There are also mixed
equilibria with the same outcome, player A ``takes'' the first node and player B
mixes between later nodes with a positive probability such that player A has no
reason to deviate from his strategy. In the normal form game, the players choose
strategy 1 and 2, respectively. There is only one form of elimination process to
reach this equilibrium2: Strategy 14 is a weakly dominated strategy (see normal
form payoffs for player B). Thus, player B will not play 14. If player A believes that,
he can delete 13, assuming that player B is rational. Then, player B should eliminate
12 and so on. This process is called iterative elimination of weakly dominated strategies
with strategies 1 and 2 being singled out. However, always ``passing'' by both players
or player A always ``passing'' and player B taking strategy 12 (taking at the last node)
are the Pareto optimal strategy combination. If the game is finitely repeated against the
same opponent or repeated against changing opponents, the pure one shot equilibrium
is maintained and there are no other pure equilibria.

2. EXPERIMENTAL DESIGN

We ran five sessions of the centipede game in reduced normal form with payoffs
as shown in Fig. 2. Both the first endnode and the last endnode have the same
payoff vector as in the 6-move game in McKelvey and Palfrey (1992). Each player
has seven choices; player A chooses an odd number from 1 to 13 and player B an
even number from 2 to 14.3 Each session involved 12 subjects (six for type A and
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1 In the nonreduced normal form game, a player has to decide for each of his node whether to take
or to pass. This is according to the definition of a strategy in the extensive form game, allowing for an
enormously large strategy space. However, all strategies with the same first intended Take node produce
the same payoff. Passes at later nodes have no influence on the outcome. McKelvey and Palfrey run
pilot studies on the nonreduced normal form. More than 950 of the chosen strategies were monotonic
in Take behavior, i.e., after the first intended Take node all other nodes were followed by a Take.

2 See also Glazer and Rubinstein (1996) who discuss the equivalence of solving normal form and
extensive form games.

3 We also ran five sessions of a game with four actions for each player, with the same payoff structure
as in the 6-move game of McKelvey and Palfrey (1992). We will not discuss the results here.



six for type B) from various departments of the University of Bonn. Each subject
participated only in one session maintaining the same role throughout the session.
The interaction between subjects was via computer terminals. After the assistant
had read the instructions aloud (see Appendix), subjects were randomly allocated
to one of the two types (type A or type B). Subjects were informed that the same
one-shot game was repeated for 100 periods and in each period, a player of one
type was randomly matched with a player from the other type without identifying
the players to each other. Instead of displaying the normal form, we presented and
explained a table as shown in the instructions (see Appendix): The lower number
(column 1) of a matched pair determines the payoff for each player, which is shown
in column 3 for player A and column 4 for player B. Since 14 can never be the
lower node, it is not shown in the table. Column 2 presents the possible choices
of the opponent in case he chooses the higher number. For example, if the lower
number is 9, player A must have chosen it, and player B has chosen either 10, 12,
or 14. This way we reduce the normal form to the diagonal cells and one cell of
each row below the diagonal. In the last column the total sum of the pie is stated.
We additionally mentioned that the pie increases by about 400 with each increasing
lower number. The person who chooses the lower number of the match receives about
800 of the pie.

During a session, columns 1, 3, and 4 of the table in the instructions were always
displayed on the screen. Player A had seven colored buttons numbered 1, 3,..., 13 to
choose from by clicking one button with the mouse or pressing the number on the
keyboard. The choices from player B were also displayed as gray buttons, with
no consequence if pressed by a mouse button. Player B screen was similar with
numbers 2, 4,..., 14 as colored buttons.

After each round, each player is informed of the lower number of his match (this
he can also infer from the payoffs), the corresponding payoffs to both players, and
his own cumulative payoff. Thus, the player who chooses the lower number is not
informed about the choice of the opponent, as in the centipede game in extensive
form. During the session their own complete history was displayed if requested by
a mouse click.4

At the end of a session the total points were converted into DM (2 points=0.01
DM), and paid privately to each subject. Each session lasted about 1 to 1 1�2 h.
Average payoffs were 17.70 DM (about 812.60). Note that the sessions by M�P
(1992) who repeated each six-move game 10 periods took also 1 h.

3. POOLED RESULTS

Many patterns of the behavior found in the extensive form game study by
McKelvey and Palfrey (M�P, 1992) and repeated in Zauner (1996) can also be
recognized in our study. Table I shows the relative frequencies of choices of players
A and B for each session.
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TABLE I

Relative Frequencies of Players A and B Choices Pooled over All Periods

Player A Session 1 Session 2 Session 3 Session 4 Session 5 All

Choices 1 0.005 0.002 0.008 0.000 0.008 0.005
3 0.005 0.008 0.035 0.000 0.030 0.016
5 0.053 0.022 0.107 0.003 0.083 0.054
7 0.325 0.073 0.347 0.117 0.445 0.261
9 0.258 0.333 0.342 0.427 0.297 0.331

11 0.192 0.293 0.130 0.380 0.130 0.225
13 0.162 0.268 0.032 0.073 0.007 0.108

Player B

Choices 2 0.022 0.003 0.005 0.003 0.010 0.009
4 0.027 0.008 0.012 0.002 0.035 0.017
6 0.140 0.053 0.132 0.018 0.220 0.113
8 0.313 0.118 0.467 0.317 0.438 0.331

10 0.312 0.382 0.282 0.355 0.225 0.311
12 0.143 0.217 0.095 0.215 0.047 0.143
14 0.043 0.218 0.008 0.090 0.025 0.077

v All strategies, but 1 and 3 in session 4, have strictly positive relative
frequencies.

v The weakly dominated choice 14 is selected with positive probability (7.70

across all sessions; most of it is accounted for by two players in session 2, who
decided after round 12 and round 44, respectively, to always choose 14). The
estimated frequency of altruists (player who always pass) in M�P (1992) is 50.5

v Choice 1 is chosen 0.50 of time in our game, compared with 0.70 in M�P-
6-move games and 70 in 4-move games. Thus, the longer a centipede game is, the
fewer equilibrium strategies are chosen, although this is not significant between the
6-move and our 14-move game. There is a significant difference on a 20 level
between our game and the 4-move game of M�P, using Mann�Whitney�U-test.

v Modal behavior is concentrated at the middle choice 7 and choice 9 for
players A, or middle choice 8 and choice 10 for players B. This is similar to the
coordination games where middle choices are most frequent (see van Huyck et al.,
1992). In the first round the highest frequency is at 9 and 10 for the two player
types.

v There is no clear trend at the sessional level. Also in M�P (1992) convergence
to equilibrium is questionable (see Fig. 3 which shows the average take node in
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model; the reason is that part of passing at the last move is attributed to errors in action and not to
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FIG. 3. Mean behavior over time in the extensive form centipede games (6-move games). In session
2 there were only 9 periods played with 18 subjects. Data source: McKelvey and Palfrey (1992).

each period, separately for each session of M�P). Note, that these authors interpret
their results as an indication of convergence to equilibrium, which might be due to
the fact that they aggregate the data.

Figure 4 shows for each session the average lower choice in 10 period blocks
(average lower choice across all six pairs over 10 periods) over time. One can see
that only in session 4 there is a slight downward trend. In neither session is there
a clear movement toward the Nash equilibrium. One reason might be that there are
only six players on each side, supergame effects, and thus cooperation cannot be
completely excluded. However, in McKelvey and Palfrey (1992) and Nagel and

FIG. 4. Mean behavior across all pairs pooled over 10 periods, separately for each session of the
normal form centipede experiment.
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Sadrieh (1998) players of one type met an opponent only once during 9 or 10
periods, and there is no significant downward movement either, based on single
session results. Thus, we see no reason to presume that our results are caused
entirely by supergame effects. Note also that the question whether or not there is
convergence to equilibrium is not the main purpose of this study. In the next
sections we study whether we can detect learning patterns over time and compare
different learning models.

4. LEARNING MODELS

Learning is usually defined as a systematic change of behavior according to past
information. In this section we discuss several learning models that have been
applied to various game experiments. We follow the quantitative methods used in
Tang (1996), who compared 18 different quantitative learning models for 3_3
normalform games, and Chen and Tang (1998). One of the several kinds of models
we consider is a basic reinforcement model which has been introduced into
experimental economics by Roth and Erev (1995).6 It has been refined for example
by Erev and Roth (1998), Stahl (1996), and generalized by Camerer and Ho (1997).
The later model contains fictitious play and reinforcement models as special cases.
In Section 6 we try to give some reasons why the extensions of this model cannot
be directly be applied to our dataset. We discuss three basic variants of reinforce-
ment models which have performed ``best'' in Tang (1996) and compare them with
the performance of some static models and the generalized fictitious play model. We
cannot directly compare the learning direction theory to these models because we
leave it in its qualitative form. Therefore, we discuss this theory in Section 6.

To detect the best performing model given the experimental data, we calculate
the quadratic deviation measure (QDM) for each proposed model. This measure
takes the quadratic difference between the actual choice vector of a subject in a
period and the choice vector predicted by the model. This measure is a proper scoring
rule; i.e., it does not give the forecaster any incentive to ignore the results of the
measure or to influence the results (see Brier (1950) and Yates (1990); also see
Selten (1997) for an axiomatic analysis).7

Let cA(t)=(cA1 , cA3 , ..., cA13) be the choice vector of player A who chooses odd
numbers from 1 to 13 and cB(cB2 , cB4 , ..., cB14) the choice vector of player B who
chooses from even numbers from 2 to 14 at round t with
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6 In many papers in which the reinforcement model is applied the authors do not compare different
learning models. Instead they want to see whether this basic model predicts some features of mean
behavior over time.

7 The more common method for comparison of models in experimental economics is the maximum
likelihood estimation (MLE). The relationship between QDM and MLE is as between nonparametric
vs parametric statistic. For MLE one usually assumes a distribution underlying the data and thus the
parameters are estimated and have a certain variance. Not so for QDM where the parameters are
usually calculated by the minimum distance of the actual data and the prediction by a model. Hence
such a parameter value does not have a variance. Unfortunatly, so far there is no discussion at hand
about the comparison of the two methods.



cA:(t)={1,
0,

if strategy : is chosen in round t
otherwise

;

cB;(t)={1,
0,

if strategy ; is chosen in round t
otherwise.

Let pA(t)=( pA1 , pA3 , ..., pA13), similarly for B, denote the predicted choice
probability vector of a particular model for player A at round t. Then the quadratic
deviation for subject A in round t is

QDMA(t)= :
13

:=1

[cA:(t)&pA:(t)]2, \A # [1, 2, ..., 6], : # [1, 3, ..., 13], (1)

similarly for B # [7, 8, ..., 12], ; # [2, 4, ..., 14]. QDM(t) of a player is between 0
and 2, since the choice of a player can coincide completely with the strategy pre-
dicted by a model or at worst if the model predicts that a strategy has to be chosen
with probability 1 and the actual choice of a player does not coincide with it, the
deviation reaches the maximum 2. The average quadratic deviation measure per
player and period for an entire session is

QDM=QDMA+QDMB=_:
A

:
100

t=1

QDMA(t)+:
B

:
100

t=1

QDMB(t)&<12*100. (2)

Clearly, the smaller the QDM score of a model, the better is its prediction.

4.1. Four Static Benchmark Models

The following four static models are strictly speaking not learning models, but
may serve as benchmark models to judge the relative performance of the dynamic
learning models. The static models are the equilibrium model, a quantal response
model, the uniform random model, and the individual-observed frequency model.

To analyze behavior in economic experiments, we usually start with the question
how well the game theoretic solution describes actual behavior. Here we use the
stage game subgame-perfect equilibrium, given that the players repeatedly play the
same game against changing opponents in finite times. To calculate the equilibrium
the entire structure of the game has to be considered.

The calculation of the QDM for the subgame-perfect equilibrium model per
session and period is straightforward:

pA:(t)={1,
0,

if :=1
otherwise,

pB;(t)={1,
0,

if ;=2
otherwise;

therefore, QDM=(200&100*( f1+f2))�100, where f1 and f2 are the relative
frequencies of equilibrium strategies 1 and 2 within a session. Note that the value
of QDM(t) for a player is either 0 or 2.

Another equilibrium model is the quantal response model (McKelvey and Palfrey
(M�P, 1995a)). It assumes that players do not play the equilibrium strategies of the
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original game, but make mistakes which can be interpreted as calculation errors of
expected payoffs. Given the error rate which is common knowledge, an equilibrium
is calculated. For any given *�0, the logit quantal response function is used, which
is also known in the study of individual choice behavior (Luce, 1959):

pA:(t)=
e*?A:(t)

�13
}=1 e*?A}(t) \A, :, and similarly for B, (3)

where * is a parameter inversely related to the error rate. For *=0 the uniform
random distribution results and for * � �, the equilibrium of the original game is
approached. ?A: is the expected payoff for strategy : given the probability distribu-
tion of strategies ;. M�P (1995b) examine the dynamics of behavior with the
quantal response model by calculating *-values for period blocks 1�10, 11�20, etc.,
and check the evolution of the values. We also did this and did not find that the
* parameters increase over time.

The next useful benchmark model is the uniform random model, which assumes
that a player chooses each of his seven strategies with the same probability in every
round. Any selected or preferred model should certainly perform better than this
model since it does not rely on the structure of the underlying game or situation.
The vector of predicted choice probability is pA(t)=( 1

7 , 1
7 , 1

7 , 1
7 , 1

7 , 1
7 , 1

7) \A \t and
similarly for B. Hence, the quadratic deviation measure for a session is

QDM={:
A

:
100

t=1

:
13

:=1

[cA:(t)& 1
7]2+:

B

:
100

t=1

:
14

;=2

[cB;(t)& 1
7]2=<12*100

=[(1& 1
7)2+6(0& 1

7)2]=0.86. (4)

The fourth static model, the individual-observed frequency (mean) model, is based on
the actual frequency distribution of each player. This means that we compare a
player's behavior in a period with the ``prediction'' given by his relative frequency
vector over all periods. The observed frequency distribution minimizes the QDM
for any subject and therefore is the best static challenge for a learning model. Since
it is constructed ex post and has six free parameters for each subject, we suppose
that a QDM of another model with only one or two parameters that comes near
this measure is better. The frequency distribution of an individual is given by pA(t)
=( fA1 , fA, 3 , ..., fA13), \A, similarly for B, where fA:=�100

t=1 cA:(t)�100 is the actual
relative frequency that subject A chooses strategy :.

4.2. Reinforcement Models

The next kind of models we study belong to a class of stochastic dynamic models
which consider the payoffs received in a period. They are probably the most basic
learning models, first developed in the psychological literature (see Hull, 1943; Bush
and Mosteller, 1955).8 Cross (1973 and 1983) introduced this so-called reinforcement
model into the economic literature; however, the major influence on experimental
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8 Reinforcement learning has similarities with machine learning (see Barto et al., 1983; Sutton, 1992)
or as classifier system (Holland, 1975; Holland et al. 1986).



economics was introduced by the papers by Arthur (1991) and Roth and Erev (1995).
The family of models they use has met with success in predicting behavior in some
experiments, despite (or perhaps because of) the low level of rationality they attribute
to individuals.9 The basic idea is that over time, players play better strategies (strategies
leading to higher realized payoffs) more often, and worse strategies less often. We will
evaluate three basic reinforcement models without using the extensions made by
various authors. In Section 7 we will give a justification for this.

The first dynamic model is the linear form relative-payoff-sum model (RPS).
Define MA:(t) and MB;(t) as the discounted payoff sum or propensity of player A
and B, respectively,

MA:(t)=qMA:(t&1)+cA:(t) ?A:(t), : # [1, 3, ..., 13] and similarly for B, (5)

where q # [0, 1] is the time�memory discount factor or forgetting parameter. Note,
when q=0, the model degenerates to the repeat last choice model. ?A: is the payoff
for strategy :, given the strategy of the opponent in that period. In the most
rudimentary case q=1, if strategy : is chosen in period t, the payoff sum increases,
whereas the payoff sum stays put for strategies that are not chosen in period t.10

The predicted probability for player A at round t+1 is

pA:(t+1)=
MA:(t)

�13
k=1 MAk(t)

; similarly for player B. (6)

In addition to estimating the parameter q from the data, we also have to initialize
the discounted payoff sum of the first round. One restriction is that all strategies
have to be chosen with positive probability in the first round if they should be in
the choice-set of a player in the future. We choose to initialize the first round probabilities
to uniform distribution over all choices; the initial values of the propensities are
MA:(0)=50 and MB;(0)=50 which minimize the QDM. (We have tried various
combinations of initial propensity values selected from 1 to 500; the differences are
negligible. It seems that the effects of initial propensity values, if not selected to be
too extreme, tend to vanish in 100 runs. This also holds for the two following models).

We also report on the results of a variant of the basic RPS model, the power-rein-
forcement model which was independently developed by Tang (1995, 1996) and
Chen, Friedman, and Thisse (1996). The difference to the former model is that it
uses the power transformation of the basic RPS model with the predicted probability
of choosing a strategy by player A,

pA:(t+1)=
[MA:(t)]r

�13
k=1 [MAk(t)]r \A, :; similarly for player B, (7)
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9 This model does particular well in mixed motive games (see, for example, Tang, 1996; and Erev and
Roth, 1998). Yan and Tang (1998) show that it is better than fictitious play in public good experiments.
Camerer and Ho (1997) show that reinforcement does worse than their more general model for data on
different normal form games.

10 See Chen and Tang (1998) and Erev and Roth (1998) for adjustment of the model if negative
payoffs are involved in a game.



where r is a nonnegative constant. When r=1, the probabilities are as in the RPS
model. When r=0, the model degenerates to the uniform random model. When
r>1, the relative weight of the discounted payoff sum is scaled up and when r<1
it is scaled down.

The third reinforcement model we consider is the exponentialized-RPS model
with the predicted probability

pA:(t+1)=
e*MA: (t)

�13
k=1 e*MAk (t) \A, :, (8)

where *�0 can be interpreted in a similar way as the power parameter r; when
*=0, the uniform random model results.

Chen and Tang (1998) mention that an advantage of this functional form is that
negative payoffs can be treated the same as positive payoffs. In our case (with non-
negative payoffs) the model performs worse than the other two reinforcement
models. This model has also been applied by Camerer and Ho (1997), Mookherjee
and Sopher (1996), and Weisbuch, Kirman, and Herreiner (1996). It can be inter-
preted as a dynamic version of the quantal response model of McKelvey and
Palfrey (1995a). However, it is not an equilibrium model, since the probability
pA:(t) does not depend on the probability distribution of the opponent and no fixed
point is calculated.

For the RPS model, the optimal discount factor q minimizing QDM was searched
at the grid size 0.05 which is fine enough; the power parameter r for the power-RPS
model and * were searched at a grid size of 0.001 for the static quantal response
model and the exp.-RPS.

4.3. Generalized Fictitious Play

Fictitious play (Brown, 1951; Robinson, 1951) is a dynamic learning model or
algorithm that predicts convergence in the centipede game towards the equilibrium
within some finite number of rounds. The reason is straightforward; in each period
a best response to the frequency distribution of the entire past is calculated. There-
fore the highest choice can never be best response; 14 will not be selected, except
maybe in the initial rounds where each choice has a positive probability. Hence,
strategy 14 will sooner or later die out. Then 13 will not be best response anymore
and so on. Slowly, but surely the choices will become lower and lower over time.
We already know that the data does not show this characteristic. However, since
it is a learning model with a long tradition in economic theory we do not want to
ignore it. Another reason for its application is that it contains the Cournot model
as a special case. This is also an important benchmark learning model which states
that in each period a player gives best response to the opponent's choice of the
previous period.

According to Brown (1951) and Robinson (1951), in each period, a player makes
a best response to the frequency distribution of the opponent(s) he observed in the
entire past. Due to the random matching scheme we used, we will not follow this
approach but instead calculate player's best response to the frequency distribution
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of the entire group of his opponents. Note that our players do not get this kind of
information. This learning model is a population learning model.

The best response xA(t) for player A, given the probability vector of players B,
pB(t)=( pB1(t), pB3(t), ..., pB13(t)), is

xA(t)={m+1 for max {4 if m=0, :
m

;=2

pB;(t) ?A;+\1& :
m

;=2

pB;(t)+ ?Am+1= ,

(9)

for m=[0, 2, ..., 14], ;=[2, 4, ..., 14]. ?:x is the payoff for player A, where
x # [;, m+1] is the lower choice of a match. The dynamics of the decision process
is determined by a retrospective learning rule. For some discount factor, $, we
assume that players A predict the probability of the players B strategies, pB(t+1)
according to

pB;(t+1)=
gB;(t+1)

�14
b=2 gBb(t+1)

with gB;(t+1)={
$gB;(t&1)
1+� t&1

u=1 $u ,

$gB;(t&1)+1
1+� t&1

u=1 $u ,

for ;{xB(t)

for ;=xB(t),
(10)

where gB;(t) is the frequency of strategy ; for the entire past. This means that in
period t+1 a player A updates the frequency vector of player B by adding 1 to that
choice of the vector of the entire past that has been best response for B in period t. The
other frequencies remain the same.

If there are several best responses, their frequencies are updated with equal
weights. When $=0, the Cournot model results, choosing best response strategy
xA , xB , to the opponent's last choice. When $=1, we obtain the general fictitious
play model. With 0<$<1, more recent observations influence the present choice
with higher weights than the distant past.

As for the dynamic models mentioned above, the initial frequency distribution is
the uniform random distribution. The discount factor, $ # [0, 1], was searched at a
grid size of 0.01. In the next section we describe the performance of the different
learning models given our data set.

4.4. Performance of the Suggested Learning Models

Table II states the average QDM scores pooled over all sessions for each model,
together with the initial values and the calculated parameter values; the first four
rows contain the information about the static models, the next three rows, about
the reinforcement models (individualistic models), and the last row contains the
population learning model. Table III summarizes the results of QDMs for the single
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TABLE II

Average Quadratic Distance Measures of the Learning Models, Parameter Values, and Initial
Frequencies

Type Model Initial value Parameters Parameter values QDM (avg.)

Static models Equilibrium Stage game �� �� 1.99
equilibrium

Quantal Individual * 0.1745 0.79
response frequency

distribution
Random (1�7, ..., 1�7) �� �� 0.86
Mean Individual 0.54

frequency
distribution

Individualistic RPS 50*1�7 q 0.90 0.57
models Power-RPS 50*1�7 (r, q) (0.58, 0.8) 0.56

Exp.-RPS 50*1�7 (*, q) (0.018, 0.85) 0.60

Population Generalized (1�7, ..., 1�7) $ 0.95 1.32
model fictitious play

sessions. The QDM-score is between 0 and 2. The lower score is obtained if the
prediction coincides perfectly with the observation. The upper score results if the
model predicts a pure strategy which is not chosen at all.

Not surprisingly, the equilibrium model performs worst in explaining the behavior
of the players. This is easily seen from the frequency distribution of choices given in
Table I. Both equilibrium strategies, 1 or 2, are rarely selected. The random model does
not explain the data well either. The static quantal response version is slightly better.
However, the null-hypothesis that it is indistinguishable from the random model can

TABLE III

Quadratic Distance Measures of Each Learning Model in the Single Sessions

Model Session 1 Session 2 Session 3 Session 4 Session 5 QDM avg.

Static models Equilibrium 1.97 2.00 1.99 2.00 1.99 1.99
Quantal 0.82 0.86 0.74 0.72 0.78 0.79
response
Random 0.86 0.86 0.86 0.86 0.86 0.86
Mean 0.54 0.47 0.58 0.50 0.58 0.54

Individualistic RPS 0.58 0.48 0.64 0.56 0.61 0.57
models Power-RPS 0.57 0.47 0.63 0.55 0.58 0.56

Exp.-RPS 0.59 0.52 0.66 0.60 0.63 0.60

Population Generalized 1.51 1.45 1.17 1.29 1.19 1.32
model fictitious play
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be rejected only on a 100 level with any conventional test. If we calculate a different
parameter * for each session then the QDMs of the quantal response model is
always lower than the random model. The worst dynamic model is the fictitious
play model; one reason might be that it is a deterministic model and thus the
QDM(t) of a player is either 0 or 2.11 However, note also that this model predicts
that choices converge steadily towards the equilibrium over time, contrary to the
evolution over time shown in Fig. 4. Since $ is far away from 0 it is clear that the
Cournot model would predict the behavior more poorly.

The best performing models are the Individual-Observed Frequency (Mean)
model and the power-RPS. The null hypothesis that there is no difference cannot
be rejected on a 50 level, when applying the permutation test.12 Both models are
significantly better than the basic RPS and the exponential RPS-model on a 50

level under the permutation test. Note, however, that the Mean model is not a
prediction model, since it takes the aggregated data over all periods as a ``prediction.''
It serves just as an extreme benchmark.

In the following we will analyze the basic RPS-model in terms of a simple
cognitive process. This might help to improve this simple model for explaining the
centipede data or other similar games with a similar form of information given to
the subjects.

5. A SIMPLE COGNITIVE PROCESS��LEARNING DIRECTION THEORY

The following analysis of actual behavior and the reinforcement model are guided
by a simple qualitative theory, called learning direction theory, which has been
applied for describing behavior for many games (see, for example, Selten, Stoecker,
1986; Nagel, 1995; Selten and Buchta, 1998; Cachon and Camerer, 1996). Stahl
(1996) incorporated elements of this theory in his reinforcement model.

So far we have shown that a simple updating rule, the reinforcement model,
explains the behavior better than the equilibrium model, the random model, and
fictitious play. The updating in the reinforcement model relies entirely on the payoff
streams realized. No other detail of the game is necessary. The following analysis
of the reinforcement model will show that on a different dimension (separating take
and pass by a player) the model does not perform as well as when take and pass
situation are combined. This additional analysis might help to improve the perfor-
mance of RPS models even further.

Bounded rational agents might be more clever and use more information about
the environment than supposed by that model. In particular they might try to search
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12 For permutation test (also know as the Fisher randomization test), is a nonparametric version of
a difference of two means t-test (see Siegel and Castellan, 1988, pp. 151�155). It compares the difference
between the means of two independent small samples (in our case with 5 for each of two learning
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model has a smaller mean than the other sample is just the frequency of all possible sums of any 5 out
of the 10 means smaller or equal the actual sample sum divided by all possible permutations. This test
uses all of the information in the sample, and thus has a power-efficiency of 1000. It is among the most
powerful of all statistical tests.



for better strategies given the information in a period. This is the basic element of
a simple theory which has been called ``learning direction theory'' developed in
Selten and Stoecker (1986) in experiments on repeated prisoners' dilemma super-
games. This kind of reasoning can be incorporated into quantitative models as done
by Stahl (1996) for a beauty contest game and Camerer and Ho (1997) for other
normal form games. Here, we want to look at the hypotheses in isolation in order
to get a full picture of the reasoning process. Furthermore, we will explain why the
model used by Camerer and Ho (1997) reduces to the basic reinforcement model
when applied to our experiment.

The basic idea of the simple cognitive reasoning process is the following: Observing
his payoff in the previous period and obtaining all additional information according to
the rules of the game, a player considers in an ex-post reasoning process whether he
could have improved his payoff by a different strategy, x; i.e., was there a better strategy
x<xt&1 or x>xt&1 , given the behavior of the opponent(s)? If a player intends to
change his strategy he should change it in the ``right'' direction. Since other influences
might also guide the behavior, one might only expect a weak conformance to direc-
tional learning; that is, in case of a change, more choices will go in the right direction
than in the wrong direction (see also Selten 6 Buchta, 1998). For this kind of reason-
ing, the structure of the payoff function has to be known to the player. However,
the player does not need to know where exactly the optimum is. It is supposed that
the player only uses the information of the previous period.

In the centipede game each player is informed after a match whether or not he
has chosen the lower number; in extensive form language he knows whether he
took earlier (``take'') or later (``pass'') than the opponent.

After ``take'' he knows that a lower choice would have produced a lower payoff.
Since he is not informed about the opponent's choice, he does not know whether
he has already chosen the optimal number or whether higher payoffs would have
been possible by a higher choice. He can only make a guess. Of course, after a
choice 12 and 13, the players A and B, respectively, have no uncertainty, and 14
can never be the lower choice. After lower choice 1 or 2 a player cannot decrease
his choice. We formulate the following hypothesis13:

Hypothesis (1). After ``take'' decreases of choices are less likely than increases
(excluding observations after choices 1, 2, 12, and 13): p(increase | take)>
p(decrease | take).

After ``pass'' he knows exactly what would have been best: his opponent's choice
minus 1 (except after choice 2 for player B). Higher choices would have produced
the same payoff.

Hypothesis (2). After ``pass'' increases of choices are less likely than decreases,
excluding choices 1, 2, 13, and 14: p(decrease | pass)>p(increase | pass).
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These two formulations can also be found for the analysis of behavior in repeated
prisoner's dilemma supergames by Selten and Stoecker (1986, p. 54). Take is replaced
by ``player deviates sooner than his opponent after a string of cooperation'' and pass
is replaced by ``player intended to deviate later than his opponent.''

We also test the hypothesis whether decreases are more likely after ``pass'' than
after ``take'' and increases are more likely after ``take'' than after ``pass'':

Hypothesis 3. p(increase | take)>p(increase | pass).

Hypothesis 4. p(decrease | pass)>p(decrease | take).

In the next section we analyze the data with respect to the proposed hypotheses
and also analyze simulations of the reinforcement model in the light of the
hypotheses.

5.1. Hypotheses Testing of the Actual Data and the Reinforcement Model

In table IV, we show two transition matrices resulting from the actual data
pooled over all periods and five sessions. The first transition matrix contains the
relative transition frequencies after a choice was the lower number in a match
(previous period was ``take'') and the second transition matrix shows those frequen-
cies after a choice was the higher number in a match (previous period was ``pass'').
For example, the main diagonal presents the relative frequencies of transition
behavior when choices are the same in period t and t+1 (unchanged behavior).
Cell aij gives the relative transition frequencies from choice i in period t to choice
j in period t+1, and i and j either odd or even. Recall that player A chooses odd
numbers and player B chooses even numbers and therefore there are never entries
from odd to even numbers or the reverse. The last column states the number of
observations of choices i in period t.

In order to check whether an individual player agrees with the hypotheses we
calculate the frequencies of increases, unchanged, and decreases of choices,
separately after a ``take'' and a ``pass'' in a match. This means that we aggregate the
frequencies above the main diagonal, on the diagonal, and below the diagonal,
respectively, for each player, separating transition frequencies after ``take'' and
``pass.''

Unchanged behavior in t+1 is most likely after a choice greater than 6 in period t.
We come back to this point when we look at transition behavior in the beginning
versus the end of a session. At low choices increases are more likely than unchanged
behavior. Zauner (1996) predicts that after about 80 periods behavior will converge
to equilibrium. However, if increases in t+1 are always very high after low choices
in t, then his prediction is questionable. Selten and Stoecker (1986), who study the
end-effect behavior (i.e., defecting after a string of cooperation) in the repeated
prisoners dilemma supergame, wonder about the following: ``Even if it is clear from
the data that there is a tendency of the end-effect to shift to earlier periods, it is not
clear whether in a much longer sequence of supergames this trend would continue
until finally cooperation is completely eliminated [or whether] ... the intended
deviation period ... finally converges to a stable limit.'' The end-effect here is just the
choice of a player. If the end-effect shifts to the first period (choice 1), then in the
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TABLE IV

Transition Matrices Separating ``Take'' and ``Pass''

Total
1 2 3 4 5 6 7 8 9 10 11 12 13 14 observ

Choice in period t+1 after ``Take'' (own choice in t was lower choice of match)

c 1 0.07 0.29 0.21 0.07 0.21 0.07 0.07 14
h 2 0.28 0.08 0.32 0.08 0.12 0.04 0.08 25
o 3 0.04 0.09 0.44 0.13 0.18 0.09 0.02 45
i 4 0.11 0.11 0.40 0.15 0.15 0.06 0.02 47
c 5 0.01 0.06 0.20 0.47 0.15 0.08 0.03 156
e 6 0.05 0.32 0.41 0.14 0.06 0.01 296

7 0.01 0.04 0.60 0.28 0.07 617
i 8 0.01 0.05 0.56 0.36 0.02 0.01 594
n 9 0.01 0.08 0.62 0.26 0.03 545

10 0.01 0.12 0.73 0.14 0.01 353
t 11 0.17 0.60 0.23 173

12 0.03 0.05 0.07 0.83 0.02 59
13 0.09 0.91 46
14 not possible 2970

Choice in period t+1 after ``Pass'' (own choice in t was higher choice of match)

c 1 Not possible
h 2 0
o 3 1.00 1
i 4 0.50 0.50 2
c 5 0.60 0.20 0.20 5
e 6 0.08 0.23 0.15 0.33 0.18 0.03 39

7 0.01 0.06 0.25 0.48 0.10 0.06 0.04 156
i 8 0.01 0.04 0.29 0.49 0.15 0.04 0.01 388
n 9 0.01 0.04 0.33 0.48 0.11 0.02 446

10 0.01 0.01 0.08 0.40 0.40 0.06 0.03 572
t 11 0.01 0.02 0.10 0.31 0.43 0.12 490

12 0.01 0.03 0.10 0.21 0.54 0.11 364
13 0.01 0.05 0.10 0.34 0.50 276
14 0.06 0.10 0.19 0.65 231

2970

Note. Each entry is a relative frequency of transition behavior using the actual data. The underlined
entries are the modal off diagonal frequencies. Italic cells indicate the frequencies of unchanged behaviour.

next centipede game, the player most likely does not stay there. This might support
the hypothesis that in prisoner's dilemma supergames complete elimination of
cooperation is also unlikely. Instead it suggests that there is some stable limit of
cooperation as shown in a mathematical analysis by Selten and Stoecker.

Note also that unchanged behavior is more likely after ``take'' than after ``pass.''
This has also been observed in ultimatum games where we distinguish between
acceptance and rejection of offers (see Mitzkewitz 6 Nagel, 1993). The reason
might be that the information is different after the two conditions ``take'' or ``pass''
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in the centipede game or ``acceptance'' or ``rejection.'' After a ``pass'' it is clear that
a decrease of the choice would have been better. In ultimatum games after
``rejection'' it is clear that an increase of an offer would have increased the likeli-
hood of acceptance. This is not true after a ``take'' or an ``acceptance of an offer.''
In these cases one knows for sure that decreases of take nodes or increases of offers
should not be done and the going in the opposite direction only might improve
payoffs.

Disregarding unchanged behavior, two observations are striking after ``take'': (1)
In each row less than 200 of the transition frequencies are below the main
diagonal. This means only a small percentage of players decreases their choices if
they had chosen the lower choice of the match. Each player confirms Hypothesis 1
and, moreover, 21 players out of 60 decrease their choices in less than 20 of the
cases after ``take.'' Note that comparisons of transition frequencies after choices 1,
2, 12, and 13 are excluded from the first hypothesis. (2) The highest off-diagonal
frequency is in the cells above and next to the main diagonal (underlined numbers)
and its frequency is greater than the sum of the remaining frequencies to the right
in the same row (not for choices 1, 2, 12, and 13). The hypothesis, that higher
strategies are equally likely chosen, can be rejected in favor of the hypothesis, that
the next highest strategy is more likely chosen than higher choices, after each choice
5 to 10 (binomial test, significance smaller 10). Thus, players seem to be reluctant
to increase their number by much from period to period. However, at low choices
(below 5) there is a stronger tendency to increase more than just one step. This
connects to the findings of Selten and Stoecker (1986). If the end effect occurred in
the later part of the supergame and a player deviated to noncooperation before the
opponent, then he most likely shifts upwards by one round. However, they have no
observations for early end effect games. In the light of our game we suppose that
defection in the PD-supergame already in the beginning rounds of a supergame is
followed by defection more than one period later in the next supergame. The reluc-
tance of shifting by ``too much'' can also be found in ``beauty-contest'' experiments
(see Stahl, 1996).

After ``pass'' the situation is almost the reverse: (1) cells next to and below the
main diagonal have the highest weight, indicated by the underlined numbers
(except for choice 6, where there are few observations). The hypothesis that a
decrease by one or more steps is equally likely can be rejected for behavior after
choices 6 to 13 (binomial test, significance <10). No more than 200 of the
observations are above the main diagonal (except for choices lower than 7, where
there are few observations). All but five players confirm Hypothesis 2. Three of
those exceptional players decreased their choices less than 100 for all cases,
irrespectively after ``take'' or ``pass.''

Furthermore, increases are more likely after ``take'' than after ``pass'' (six players
do not confirm this hypothesis) and decreases are more likely after ``pass'' than after
``take'' (all players confirm Hypothesis 4). In fact, the relative frequency of decreases
after ``pass'' is about three times as high as after ``take'' after all choices; even after
a ``successful'' choice 13, decreases are much less likely than after a ``pass.'' The
confirmation of the four hypotheses for most players suggest that the reactions after
take and pass are very different.
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Note that the patterns of learning direction theory do not necessarily imply learning
to play closer to the equilibrium strategy (i.e., to decrease a choice). Furthermore, if
players give the best reply to a belief of the existence of altruistic players and errors,
as assumed in McKelvey and Palfrey (1992) the difference of behavior between
Take and Pass should not be that sharp. Mixed strategies cannot explain these
differences either. McKelvey and Palfrey (1992, p. 811) pointed out the behavior of
two subjects who in fact behave as described by the learning direction theory.
However, M�P did not notice that pattern. Instead, they called that an ``interesting
nonpattern in the data, ... inconsistent with the use of a single pure strategy ... .
Fairly common irregularities of this sort, ... would seem to require some degree of
randomness to explain. While some sort of this behavior may indicate evidence of
the use of mixed strategies, some such behavior is impossible to rationalize, even by
resorting to the possibility of altruistic individuals or Bayesian updating across
games.''

In the following we analyze the basic reinforcement model with respect to the
hypotheses of our simple cognitive process. In order to do so we run 200 simula-
tions of the basic reinforcement model, with the parameter q=0.9, initial uniform
frequency distribution, and propensity weights 50 for each strategy as in Section 5.
The updating after each period is similar as in the formula of the basic reinforce-
ment model in Section 5. However, instead of updating the discounted payoff-sum
with the payoff resulting from the actual choice of a player in a session, the updating
follows from the choice resulting of the draw according to the probability distribution
after each period,14

MAi(t)=qM:(t&1)+c$A:(t) ?Ai:(t), : # [1, 3, ..., 13]; similarly for B, (11)

where c$Ai:(t)=1 results from the draw of the probability distribution:

pA:(t)=
MA:(t&1)

�13
k=1 MAk(t&1)

\A, :; similarly for player B. (12)

Six players A are randomly matched with six players B in each period. We present
the results of the simulations of the average lower choices over time, together with
the pooled observation of the actual lower choices in each period (see Fig. 5). As
one can see, the simulation captures the general trend of the data but converges too
slowly and undershoots early and overshoots late. That it goes too slow is typical
for the basic model as also seen in Roth and Erev (1995), where it takes about 100
periods for the simulations to reach period 10 data (however, see also footnote 14).
Tables 5a, b show the transition matrices produced from the simulations of the
reinforcement model.
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FIG. 5. Reinforcement simulation (mean lower choice), with forgetting parameter q=0.9 and
random initial frequencies, and actual mean lower choice per period pooled over all sessions.

As one can see, the asymmetry between ``take'' and ``pass'' is not as strong as in
the actual data. Choices next to the main diagonal are only modal frequencies for
choices higher than 6 (after take) or 8 (after pass); furthermore, the weights of these
modal frequencies are not always greater than the remaining cells off the diagonal.
Decreases after ``pass'' show higher frequencies than after ``take,'' but they are only
about twice as high as after ``take,'' whereas in the actual data they are about three
times as high. If we aggregated the frequencies after ``take'' and ``pass'' for the actual
data and the simulations, the differences between actual behavior and simulation
become much smaller. We know this already from the fairly low QDM measures
calculated in the previous section which also does not distinguish for ``take'' and
``pass.'' The chosen strategy is positively updated and the probabilities of the other
strategies decrease by the same amount. Thus, the major improvement of this
model would be to update strategies that are not chosen dependent on whether
there was a ``take'' or a ``pass''. We mention in the following modifications of the
reinforcement model, mentioned in the literature and the consequences for our data
set.

Roth and Erev (1995) extend the basic reinforcement model by allowing for local
experimentation. This means that the two adjacent strategies (here the adjacent
strategies are \2 the choice i ) of the realized action get also reinforced; some
fraction of the round-t payoff of the realized action is subtracted from this propensity
and added to the propensities of neighboring strategies. If so, decrease after ``take''
would be even more reinforced (also the increase after ``pass''). Thus this kind of
extension will clearly make it worse. Stahl (1996) and Camerer and Ho (1996) also
use known information about payoffs of other strategies not chosen in a period for
the updating. Chosen strategies are reinforced by their actual current payoffs. Non-
chosen (hypothetical) strategies are also reinforced by the payoffs (weighted by a
parameter) resulting from the current strategies of the opponents. This kind of
updating has only been applied for normal form games, where the chosen strategies
of the opponents are clear. Although players in our experiments play normal form
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TABLE V

Transition Matrices Separating ``Take'' and ``Pass''

Total
1 2 3 4 5 6 7 8 9 10 11 12 13 14 observ

Choice in period t+1 after ``Take'' (own choice in t was lower choice of match)

c 1 0.10 0.11 0.12 0.17 0.18 0.18 0.15 60
h 2 0.10 0.11 0.12 0.18 0.21 0.17 0.12 64
o 3 0.09 0.11 0.11 0.17 0.19 0.18 0.16 64
i 4 0.07 0.12 0.13 0.19 0.22 0.16 0.11 78
c 5 0.05 0.06 0.27 0.17 0.19 0.14 0.12 102
e 6 0.04 0.05 0.23 0.22 0.21 0.16 0.09 162

7 0.02 0.02 0.04 0.64 0.11 0.09 0.08 341
i 8 0.01 0.02 0.05 0.49 0.23 0.15 0.04 521
n 9 0.01 0.01 0.02 0.04 0.81 0.06 0.05 539

10 0.01 0.01 0.03 0.13 0.61 0.17 0.04 531
t 11 0.01 0.01 0.01 0.03 0.05 0.84 0.05 292

12 0.01 0.01 0.03 0.10 0.18 0.62 0.04 205
13 0.02 0.03 0.03 0.04 0.06 0.07 0.76 43
14 Not possible 3000

Choice in period t+1 after ``Pass'' (own choice in t was higher choice of match)

c 1 Not possible
h 2 0.10 0.14 0.15 0.15 0.20 0.14 0.12 5
o 3 0.10 0.13 0.11 0.20 0.19 0.11 0.16 6
i 4 0.11 0.13 0.13 0.20 0.17 0.13 0.14 14
c 5 0.09 0.11 0.20 0.15 0.16 0.16 0.13 15
e 6 0.08 0.10 0.19 0.21 0.18 0.13 0.12 29

7 0.05 0.06 0.08 0.53 0.11 0.09 0.09 65
i 8 0.02 0.04 0.09 0.49 0.20 0.11 0.05 177
n 9 0.02 0.02 0.03 0.07 0.77 0.06 0.04 320

10 0.02 0.02 0.05 0.19 0.55 0.13 0.04 481
t 11 0.01 0.01 0.02 0.05 0.06 0.81 0.04 585

12 0.01 0.02 0.04 0.14 0.22 0.53 0.04 553
13 0.01 0.02 0.02 0.05 0.07 0.07 0.76 569
14 0.05 0.05 0.09 0.18 0.25 0.19 0.18 180

3000

Note. Each entry is a relative frequency of transition behavior using the reinforcement simulations.
The underlined entries are the modal off diagonal frequencies. Italic cells indicate the frequencies of
unchanged behaviour.

games, they cannot always deduce from the payoff matrix what their opponent
chose. This is the case for the player who chooses the lower choice in a match.
However, one could apply Camerer and Ho's mechanism to restrict the updating
to the observed information of the players: In a match in which a player has chosen
the lower number, only those of his strategies equal to and below his current choice
can be updated since the player knows these payoffs in that case. Of course, lower
(hypothetical) choices produce lower payoffs. In case a player has chosen the higher
number of his match, all strategies are updated, since he knows what the opponent
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has chosen. The payoffs for (hypothetical) choices above his actual choice are the
same as for his actual choice. The highest payoff is obtained for the choice just one
below the opponents choice. This kind of updating would mean that after ``take''
decreases become more likely than increases, and after ``pass'' best response choices
become most strongly updated. These choices might not be next and below the
main diagonal. A similar point has been made by Vriend (1997) in connection with
ultimatum games. A promising extension suggested by Camerer and Ho which was
inspired by discussions about our data is to reinforce unchosen strategies after
``take'' by some elements of the set of forgone payoffs. This means, that after take,
choices above the chosen take nodes are updated by for, e.g. the median payoff, or
a combination of minimum or maximum payoff possibly gained with these higher
choices. This will generate transition probabilities similar to those reported in
Table 4 after take.

Another aspect which we feel worth mentioning is the transition behavior over
time, that is, at the beginning versus at the end of the experiment. From the psycho-
logical literature, it is well known that learning takes place in the beginning of a

FIG. 6. Transition behavior of actual choices pooled over 10-periods, separately for ``take'' (a) and
``pass'' (b). E.g., the decrease line after ``pass'' for example means how many players in 0 chose a lower
node after observing that their choice was higher choice of match.
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new situation. In order to put this hypothesis in operation, we pool transition behavior
across 10 periods and aggregate the relative frequencies of increased, decreased, or
unchanged behavior across choices, respectively, separately for ``previous period
was take'' and for ``previous period was pass.'' In other words we aggregate the cells
above, the cells below the main diagonal and the diagonal cells, respectively for
each block of 10-period transition matrix. Figure 6 shows the development of the
transition behavior (increased, decreased, unchanged) for each of the 10-period
blocks pooled over all sessions, separately for ``take'' and ``pass.''

In the opening periods behavior according to learning direction theory has the
highest frequency, which is the sum of relative frequencies of increases after take
and those of decreases after pass. This holds for all five sessions, separately as well.
A similar feature has been observed in Duffy and Nagel (1997). In the centipede
game unchanged behavior receives increasing importance with highest frequency
after about 50 periods in all sessions, except after ``pass'' in session 3. Thus, in the
centipede game, most learning takes place in the beginning. This is an observation

FIG. 7. Transition behavior of the reinforcement simulation pooled over 10-periods, separately for
``take'' (a) and ``pass'' (b). E.g., the decrease line after ``pass'' for example means how many players in
0 chose a lower node after observing that their choice was higher choice of match.
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which is called the law of effect. Only after pass there is still substantial movement
towards the equilibrium (see relative frequencies of decreases after pass). If unchanged
behavior increased even more in a longer time horizon, it is questionable whether
actual behavior would ever converge towards the one-stage equilibrium, as suggested
by Zauner (1996). Clearly, the reinforcement model also predicts an increase of
unchanged behavior. However, increases after Take and decreases after Pass are too
much reduced and the difference between right or wrong direction is less sharp,
especially after Take (see Fig. 7).

6. CONCLUSION

We have analyzed behavior on the centipede game played in the reduced normal
form. The main advantage of the strategic form over the extensive form is that
players have to reveal the intended take node, information that is interesting to
study the adaptation of a player from period to period. We have compared different
learning models which have been predominant in the experimental literature.

McKelvey and Palfrey (1992), Fey, McKelvey, and Palfrey (1994), and McKelvey
and Palfrey (1996b) explain the behavior in centipede games by ex-ante rationality
and by using equilibrium models with errors in beliefs or actions. We show that the
two equilibrium models, the standard Nash equilibrium and the quantal response
model (McKelvey 6 Palfrey (1996a) perform much worse than simple reinforcement
models. This model is also better than fictitious play.

Another important aspect of this paper was to analyze behavior in terms of a
simple ex-post reasoning process which prescribes in which direction the behavior
should be changed from period to period. Because of the structure of the centipede
game, we were able to discuss the qualitative learning direction theory in much
greater depth than in any of the previous papers, where this theory has been
applied. In particular, we were able to disaggregate transition behavior from period
t to period t+1 after each possible choice in period t and also the transition
behavior in earlier periods, in comparison to later periods. We found that most
subjects conform on average to the qualitative learning theory. In the first periods
this holds more often than in later periods, when unchanged behavior tends to
dominate. The most robust finding is that decreases after Pass occur almost three
times as much as after Take at each node; after Take increases are more likely than
decreases and after Pass decreases are more likely than increases. This calls us to
question the interpretation of the data by McKelvey and Palfrey (1992) that players
adjust their behavior according to a model of incomplete information about altruists.
Because unchanged behavior increases over time, Zauner's predictions of convergence
towards the equilibrium is also questionable. At least we showed that they do not
converge within 100 periods as he hypothesized. The extension to a simple reinfor-
cement model introduced by Roth and Erev (1995) and Camerer and Ho (1997)
cannot explain the differences of transition behavior after take and pass either. The
later so far applies only to normalform games with exact information of opponents
strategies. A modification of their model to extensive form games or games with
extensive form information as in our game should be possible.
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Since we gave the extensive form information to the subjects, we hope that our
analysis will inspire improvements of learning models for experiments of games
played in extensive form or with extensive form information as in ours. The main
difficulty of improving learning models for extensive form games is that a player
might not receive information of behavior of opponents in subgames not reached
in a period. This means that the updating of unchosen choices might have to be
based on unobservable information.

APPENDIX

Instructions

�� Each participant has to make a decision in each of 100 rounds.

�� There are two different types: six participants are of type A and six are of
type B.

�� At the beginning of the experiment you will know your type, which is the
same for the entire experiment.

�� A type A always meets a type B and a type B always meets a type A.

�� In each round, it is randomly determined which type A meets which type B.

�� A and B simultaneously choose a number out of the following numbers:

�� A chooses a number from [1, 3, 5, 7, 9, 11, 13],

�� B chooses a number from [2, 4, 6, 8, 10, 12, 14].

�� The smaller number of the chosen numbers (smaller choice) determines the
payoff (according to Table VI).

�� Table VI shows that the higher the ``smaller choice,'' the higher the sum of
the payoffs; the sum increases by about 400 if the ``smaller choice'' increases by 1.

�� The sum is divided into a small and a high payoff:

�� About 800 of the sum is provided to the person with the smaller choice,

�� About 200 of the sum is provided to the person with the higher choice.

TABLE VI

Smaller Possible higher choices Payoff Payoff
choice of opponents of A of B Sum

1 [2, 4, 6, 8, 10, 12, 14] 4 1 5
2 [3, 5, 7, 9, 11, 13] 2 5 7
3 [4, 6, 8, 10, 12, 14] 8 2 10
4 [5, 7, 9, 11, 13] 3 11 14
5 [6, 8, 10, 12, 14] 16 4 20
6 [7, 9, 11, 13] 6 22 28
7 [8, 10, 12, 14] 32 8 40
8 [9, 11, 13] 11 45 56
9 [10, 12, 14] 64 16 80

10 [11, 13] 22 90 112
11 [12, 14] 128 32 160
12 [13] 44 180 224
13 [14] 256 64 320
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Information

�� At the end of each round, each participant is informed about his result of
the round:

�� the lower choice

�� the payoffs to A and B.

�� You will not know with whom you were matched. You will know only
about the choice of the other, if his number was the lower choice.

Payoffs

�� The sum of the payoffs of all rounds of a participant is his total gain.

�� The exchange rate is 0.01 DM for 2 points, thus 1000 points is 5 DM.
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