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Abstract. Survival of payoff maximization is the usual as if-justification for as-
suming rational economic agents. An indirect evolutionary analysis allows for
stimuli which are not directly related to reproductive success although they af-
fect behavior. One first determines the solution for all possible constellations of
stimuli, and then the evolutionarily stable stimuli. Our general analysis confirms
the special results of former studies that payoff maximization in case of com-
monly known stimuli requires either that own success does not depend on other’s
behavior or that other’s behavior is not influenced by own stimuli. When stimuli
are private information, one can derive similar necessary conditions.
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1 Introduction

As in evolutionary biology, evolutionary game theory (see the survey of Ham-
merstein and Selten, 1994) assumes genetically determined behavior and tries to
determine the evolutionarily stable genotype or behavior. Whereas this makes
sense for primitive organisms such as plants, the assumption of genetically de-
termined behavior is impossible for more highly developed species since they
live in complex environments and therefore face far too many different choice
problems.
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The basic idea of the indirect evolutionary approach (Güth and Yaari, 1992), is
to allow for an indirect dependence of behavior on genetically determined stimuli
(in general “stimuli” can be any individual aspect determining the rules of the
game; one prominent example is when this aspect defines individual preferences).
More specifically, it is assumed that genetically determined stimuli define a game
one has to solve in order to derive how behavior depends on these genetically
determined stimuli - we refer to this as the first step of an indirect evolutionary
analysis. Although we rely on rationality, as do most of the previous studies, it
would be even more important to apply psychologically more convincing ideas
when solving the game (see Güth and Kliemt, 1998; G̈uth, Kareev and Kliemt,
2001).

By inserting the solution into the material payoff function, one then knows
how (reproductive) success depends indirectly on genetically determined stimuli
via the solution of the game.1 This defines an evolutionary game whose strategies
are the genetically determined stimuli. As in usual evolutionary game theory,
the second step of an indirect evolutionary analysis requires us to determine
the evolutionarily stable strategy or stimuli. If stimuli are private information,
behavior can, of course, depend only on the beliefs about the stimuli of others.

Previous studies (e.g. Bester and Güth, 1998; G̈uth, 1998; G̈uth and Huck,
1997; G̈uth and Kliemt, 2000; Possajennikov, 2000; Schaffer, 1989) more or less
rigorously proved the following type of results for the case of commonly known
stimuli: Survival of the fittest (in the sense of maximizing reproductive success
or payoff) results if

(I.i) own success does not depend on other players’ behavior

or

(I.ii) own stimuli do not influence other players’ behavior.

Here it may suffice if these conditions are true only locally.2 Furthermore, it
has been argued that (I.ii) also covers the result of privately known stimuli that
cannot be signaled at all.

Payoff maximization, e.g. in the sense of profit maximization on markets,
represents the orthodox rationality assumption in economics. This has either been
stated as a behavioral assumption, or justified by an as if-hypothesis in the sense
that, in markets, only profit maximizing behavior can survive. This latter claim is
rigorously analyzed when exploring the evolutionary stability of payoff or profit
maximization. As already indicated above, this claim, i.e. the orthodox rationality
assumption, can only be maintained under special circumstances, indicated by
(I.i) and (I.ii).

1 By this we rely on the usual fitness measure of evolutionary game theory (see, e.g., Weibull,
1995).

2 Examples where (I.i) applies globally are competitive markets, and for (I.ii) games without
signaling of stimuli which are private information. Some of the specific examples, listed above, rely
on local conditions and (mostly) do not actually derive the results for privately known stimuli by
explicitly solving Bayesian games.
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Other more recent attempts, which focus on the polar case of complete type
information and which mainly discuss whether individualistic (one cares only for
the own material success) or interdependent preferences are evolutionarily stable
(one cares also for the material success of others), are Kockesen, Ok, and Sethi
(1997) and Ok and Vega-Redondo (1999). Any attempt to prove generally what
has been previously learned only for specific examples will have to be limited
to the class of games for which the claim can be shown to hold. In our case
we rely on the necessary conditions of interior extrema under suitable differ-
entiability assumptions. For easy exposition, we also proceed as if the solution
(on the first step of the indirect evolutionary analysis) is unique.3 This allows
an unambiguous definition of the evolutionary game (on the second step of the
indirect evolutionary analysis).

Actually the assumption of uniqueness is closely related to the one of differ-
entiability. To define the evolutionary game unambiguously one needs in general
only an association between the constellation of stimuli and an equilibrium of the
game resulting from this constellation. One way to establish such an association
is to apply the theory of equilibrium selection (e.g. Harsanyi and Selten, 1988).
Once such an association is constructed, one can proceed as if this equilibrium
would be the only one. If, however, the mapping from stimuli to solutions is con-
structed by selecting one of many equilibria, the selection rule will have to be
discontinuous. This explains why uniqueness is required by our differentiability
requirements. When dealing with situations where own stimuli are private infor-
mation we, however, show that selection rules might be differentiable (Sect. 6).

As in typical evolutionary game theory (see again Weibull, 1995), the evolu-
tionary games will be symmetric 2-person games although not necessarily with
complete information. Evolutionarily stable strategies (ESS) for such games are
symmetric Nash-equilibria satisfying an additional stability condition, namely
that an ESS is better against an alternative best reply to the ESS than the alter-
native. Since we rely on differentiability, an alternative best reply will usually
not exist. This explains why the additional stability requirement can usually be
neglected. Our main motivation is not to prove the existence of an ESS, but
rather to explore its implications whenever it exists.4

We first discuss in Section 2 the simplest case where both the commonly
known stimuli and the strategies are one-dimensional. A simple example of pol-
lution by production is used in Section 3 to illustrate our general findings. In
Section 4 it is shown how the results can be generalized for multi-dimensional
situations as well as for more refined solution concepts. Section 5 introduces a
narrow class of Bayesian games for which symmetric Bayesian equilibria exist.
Then, in Section 6 the evolutionarily stable distribution is analysed before, fi-
nally, Section 7 concludes with an extension of the analysis of the example to
privately known stimuli.

3 In economics, a continuous setting (see, for instance, the classic market models as reviewed by
Tirole, 1988) usually implies unique equilibria.

4 If no ESS exists one can rely on familiar coarsening ideas like neutral stability (Maynard Smith,
1982) or limit evolutionary stability (Selten, 1983 and 1988).
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Quite often the results of indirect evolution resemble those of the literature
on strategic commitment in interactive decision making, e.g. in agency relation-
ships (see, for instance, van Damme and Hurkens, 1996, who also review some
of this literature). There are, however, important differences between the two
approaches: Strategic commitment relies on an overall game model, while in
indirect evolution no decision maker has to be aware of the evolutionary forces,
i.e. the modelling tasks are very different. As will be demonstrated below, indi-
rect evolution allows us to distinguish between utility and (reproductive) success
what in strategic delegation requires different agents, e.g. by modelling a firm
as a team of a principal and an agent when analysing strategic commitment of
competing firms (see Dufwenberg and Güth, 1999, who try to elaborate and il-
lustrate in more detail the differences between indirect evolution and strategic
commitment).

2 The one-dimensional case with commonly known stimuli

Let S , with S ⊂ R, be a closed interval with a non-empty interior. An elementsi

of S is a strategy or a form of behavior of playeri . Similarly, letM with M ⊂ R

be a closed interval whose non-empty interior contains 0. The elementsmi ∈ M
are the genetically determined stimuli which, together with the chosen strategies,
determine the payoffH1 (s1, s2; m1, m2) of the symmetric 2 person-game

(II.1) G (m1, m2) = (S ; H1 (s1, s2; m1, m2))

for all m1, m2 ∈ M where, of course, symmetry implies that player 2’s payoff
function is determined by

(II.2) H2 (s1, s2; m1, m2) = H1 (s2, s1; m2, m1).

We assume thatH1 (s1, s2; m1, m2) is continuous in all its arguments and quasi-
concave ins1 for all s2 ∈ S andm1, m2 ∈ M . Furthermore, let the constellation
(m1, m2) ∈ M × M be common knowledge. From these assumptions (see, for
instance, van Damme, 1987) it follows

Remark 1. For all m1, m2 ∈ M game G (m1, m2) has at least one equilibrium

s∗ (m1, m2) =
(
s∗

1 (m1, m2) , s∗
2 (m1, m2)

)
.

An obvious implication of the symmetry ofG (m1, m2) in the sense of (II.2) is

Lemma 2. For all m1, m2 ∈ M and all equilibria s∗ =
(
s∗

1 , s∗
2

)
of G (m1, m2) the

strategy vector
(
s∗

2 , s∗
1

)
is an equilibrium of G (m2, m1).

What will be needed in the following is a mapping which associates one equilib-
rium s∗ (m1, m2) =

(
s∗

1 (m1, m2) , s∗
2 (m1, m2)

)
with each gameG (m1, m2). If there

exists only one equilibrium for all gamesG (m1, m2), the mappings∗ (m1, m2) is
already determined. Otherwise it must be derived by applying some theory of
equilibrium selection (e.g. Harsanyi and Selten, 1988) or some suitable criteria
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(see G̈uth and Nitzan, 1997, for an example). If the mappings∗ (m1, m2) is estab-
lished, one can proceed as ifs∗ (m1, m2) is the only equilibrium ofG (m1, m2).
Such a mapping would, however, be discontinuous. Thus we could not rely on
differentiability when solving the evolutionary game. We circumvent this problem
by requiring

Uniqueness.For all m1, m2 ∈ M the game G (m1, m2) has only one equilib-
rium s∗ (m1, m2) =

(
s∗

1 (m1, m2) , s∗
2 (m1, m2)

)
to which we refer as the solution of

G (m1, m2).

Uniqueness ofs∗ (m1, m2) for all m1, m2 ∈ M and upper hemicontinuity of the
set of equilibria (Fudenberg and Tirole, 1991) implies

Remark 3. The solution strategiess∗
i (m1, m2) are continuous in m1, m2 ∈ M .

Since the second step of indirect evolutionary analysis, namely the derivation of
evolutionarily stable stimuli, will be based on differentiability, it is important to
investigate the differentiability of the solution strategys∗

i (m1, m2). In order to
do so we introduce the following Assumption.

Interiority. For all m1, m2 ∈ M the Nash equilibria of G (m1, m2) are interior
points of S × S .

Lemma 4. Assume that in a neighborhood of the graph of s∗ (m1, m2) H1 =
H1 (s1, s2; m1, m2) has the following properties:

(i) H1 (s1, s2; m1, m2) is concave in s1 for every s2 ∈ S and m1, m2 ∈ M ;
(ii) H1 (s1, s2; m1, m2) is three times continuously differentiable in s1, s2, m1 and

m2;
(iii) the Jacobian ∣∣∣∣∣∣∣∣

∂2

∂s2
1

H1
∂2

∂s1∂s2
H1

∂2

∂s1∂s2
H2

∂2

∂s2
2

H2

∣∣∣∣∣∣∣∣ /= 0

for all s1, s2 ∈ int (S ) and m1, m2 ∈ int (M ).

Under the foregoing assumptions the (symmetric) strategies
(
s∗

1 (m1, m2) ,
s∗
2 (m1, m2)

)
are twice continuously differentiable in m1and m2 (on int (M )).

Proof. Let m1, m2 ∈ int (M ). By Uniqueness, Interiority, (i), and (ii), the equilib-
rium

(
s∗

1 (m1, m2) , s∗
2 (m1, m2)

)
is the unique (interior) solution of the following

equations:

∂

∂s1
H1(s1, s2; m1, m2) = 0

∂

∂s2
H2(s1, s2; m1, m2) = 0

Now, by (ii), (iii), and the Implicit Functions Theorem,s∗
i (m1, m2) for i = 1, 2

is twice continuously differentiable. ��
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Instead of stating the assumptions rather globally, as in Lemma 4, one can
prove also a local version of Lemma 4 which requires (i), (ii) and (iii) only for
some neighborhood of the graph of the (vectorial) functions∗ (m1, m2). Another
result is

Lemma 5. s∗
1 (m1, m2) = s∗

2 (m2, m1) for all m1, m2 ∈ M .

Proof. Let
(
s∗

1 (m1, m2) , s∗
2 (m1, m2)

)
be the solution ofG (m1, m2). According

to Lemma 2, the strategy vector
(
s∗
2 (m1, m2) , s∗

1 (m1, m2)
)

is an equilibrium of
G (m2, m1). Thus uniqueness of the solution forG (m2, m1) implies s∗

2 (m2, m1) =
s∗
1 (m1, m2). ��

The first step of an indirect evolutionary analysis amounts to computings∗ (m1, m2)
=

(
s∗
1 (m1, m2) , s∗

2 (m1, m2)
)

for all gamesG (m1, m2) with m1, m2 ∈ M . Having
completed this task, the second step starts with the definition of the evolutionary
game

(II.3) Γ = (M ; M ; R1 (m1, m2) , R2 (m1, m2))
(II.4) Ri (m1, m2) = Hi (s∗ (m1, m2) ; λm1, λm2) for i = 1, 2.

Here λ measures how stimuli are directly related to (reproductive) success
Ri (m1, m2) where we allow only for the two extreme relationshipsλ = 0, i.e.
stimuli influence success only indirectly vias∗ (m1, m2), andλ = 1 where stimuli
are directly related to (reproductive) success.5

In case ofλ = 1, payoff in the gamesG (m1, m2) and success in the evolu-
tionary gameΓ are the same. It may be surprising thatλ = 1 does not usually
imply the survival of the fittest: Equilibrium in gamesG (m1, m2) requires a best
response in the sense of

∂

∂s1
H1

(
s∗

1 (m1, m2) , s∗
2 (m1, m2) ; m1, m2

)
= 0

which does not guarantee

∂

∂m1
R1 (m1, m2) = 0

for m1 = 0 = m2 andλ = 1 (see equation (II.5’) below). Actually this may render
the caseλ = 1 more rather than less difficult or even trivial. In applications, one
often will want to allow for differences between motivation and success, i.e. one
is interested in situations whereλ /= 1. In the following, the caseλ = 1 will
therefore be largely neglected.

For λ = 1, utility and (reproductive) success coincide; they differ in the case
of λ = 0. Indirect evolution allows for both cases. One can, of course, also
assume other values ofλ, e.g. by consideringλ ∈ [0, 1] instead ofλ ∈ {0, 1}.

5 As Güth and Yaari (1992) most applications rely onλ = 0, i.e. assume that stimuli have no
direct material implications. In our view, this is an interesting border case but a rather unlikely one.
In most situations emotional states like anger, love etc. have direct material impact. It is, for instance,
generally accepted that production of adrenaline is costly in terms of life expectation.
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The caseλ = 0 justifies speaking ofindirect evolution: Sincem-values do not
determine successRi (m1, m2) directly, all their influence on success is indirect via
the induced strategic behaviors∗ (m1, m2). Only through behavior canm1 andm2,
respectively, determine success and thus the survival of behavioral dispositions
captured by themi -values,i = 1, 2.

Thus the setM of possible, genetically determined stimuli is the strategy
set of both playersi = 1, 2. The reproductive successRi (m1, m2) measures how
player i with stimuli mi fares when encountering another playerj

(
/= i

)
with

stimuli mj . One can describeΓ also byΓ = (M ; R1 (m1, m2)) due to

Lemma 6. Γ is symmetric, i.e. R1 (m1, m2) = R2 (m2, m1) for all m1, m2 ∈ M .

Proof.
R1 (m1, m2) = H1

(
s∗

1 (m1, m2) , s∗
2 (m1, m2) ; λm1, λm2

)
= H2

(
s∗

2 (m1, m2) , s∗
1 (m1, m2) ; λm2, λm1

)
due to II.2

= H2
(
s∗

1 (m2, m1) , s∗
2 (m2, m1) ; λm2, λm1

)
due to Lemma 5

= R2 (m2, m1) ��

For the purpose of the study at hand it suffices to rely on static concepts of
evolutionary stability such as the one of an evolutionarily stable strategy / ESS
[see Maynard Smith and Price (1973) as well as Maynard Smith (1982), and
Hammerstein and Selten (1994) and Weibull (1995) for surveys]. In our context
an evolutionarily stable strategy / ESSm∗ ∈ M must satisfy

(i) R1 (m∗, m∗) ≥ R1 (m, m∗) for all m ∈ M

and

(ii) R (m∗, m) > R (m, m) for all m ∈ M with R (m∗, m∗) = R (m, m∗).

A necessary condition6 for an interiorm∗ ∈ M to be an evolutionarily stable
strategy (ESS) of the evolutionary gameΓ = (M ; R1 (m1, m2)) is condition

(II.5)
∂

∂m1
R1(m∗, m∗) = 0

where the differentiability ofR1(·) follows from the differentiability ofs∗
i (m1, m2)

according to Lemma 4. If (II.5) does not hold,m∗ does not qualify as a local
maximum ofR1 (m, m∗) over allm ∈ M so that anm∗-monomorphic population
could be successfully invaded. Because of

6 If the extremum is (locally) unique also the additional stability requirement of an (locally defined)
ESS is fulfilled.
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(II.6)

∂

∂m1
R1 (m1, m2)

=
∂

∂m1
H1

(
s∗ (m1, m2) ; λm1, λm2

)
=

∂

∂s1
H1

(
s∗

1 (m1, m2) , s∗
2 (m1, m2) ; λm1, λm2

) ∂

∂m1
s∗

1 (m1, m2)

+
∂

∂s2
H1

(
s∗

1 (m1, m2) , s∗
2 (m1, m2) ; λm1, λm2

) ∂

∂m1
s∗

2 (m1, m2)

+λ
∂

∂m1
H1

(
s∗ (m1, m2) ; λm1, λm2

)
condition (II.5) is equivalent to

(II.5’)

∂

∂s1
H1

(
s∗

1

(
m∗, m∗) , s∗

2

(
m∗, m∗) ; λm∗, λm∗) ∂

∂m1
s∗

1

(
m∗, m∗)

+
∂

∂s2
H1

(
s∗

1

(
m∗, m∗) , s∗

2

(
m∗, m∗) ; λm∗, λm∗) ∂

∂m1
s∗

2

(
m∗, m∗)

+λ
∂

∂m1
H1

(
s∗ (

m∗, m∗) ; λm∗, λm∗) = 0.

Let us callm ∈ M critical if condition (II.5’) or (II.5) holds.
Given λ = 0, according to the definition (II.4) ofR1 (m1, m2), player 1′s

own parameterm1 influences his fitnessR1 (m1, m2) only indirectly via the so-
lution s∗ (m1, m2) of the gameG (m1, m2) determined bym1 and m2. This jus-
tifies our interpretation that only in the case of an evolutionarily stablem∗

1 = 0
does the survival of the fittest result: According to (II.4), ifm∗

1 = 0 maximizes
H1 (s∗ (m1, m2) ; λm1, λm2) this is equivalent to maximizing player 1′s fitness
R1 (m1, m2). In the following we want to explore the conditions for the survival
of the fittest, i.e. for an ESSm∗ = 0 based onλ = 0:

For m∗ = 0 the equilibriums∗ (m∗, m∗) of G (m∗, m∗) implies

(II.7) ∂
∂s1

H1
(
s∗

1 (0, 0) , s∗
2 (0, 0) ; 0, 0

)
= 0

so that (II.5’) for m∗ = 0 andλ = 0 simply means

(II.8) ∂
∂s2

H1
(
s∗

1 (0, 0) , s∗
2 (0, 0) ; 0, 0

)
∂

∂m1
s∗

2 (0, 0) = 0.

Since (II.8) is a necessary condition form∗ = 0 to be an equilibrium ofΓ ,
it is also necessary for an ESSm∗ = 0 of Γ . Thus for λ = 0 there are two
requirements guaranteeing the necessary condition (II.8) for an ESSm∗ = 0 of
Γ , namely7

(II.9) ∂
∂s2

H1
(
s∗

1 (0, 0) , s∗
2 (0, 0) ; 0, 0

)
= 0

or
7 It would suffice to require these two conditions only locally if strategy variation and mutation

can occur only locally, i.e. if only strategiessi near tos∗
i (0, 0) are feasible and in the case ofm∗ = 0

only mutantsm close tom∗ = 0 are to be expected, and if the derivatives vanish only generically
(at one point) so that local uniqueness is guaranteed.



When will payoff maximization survive? [-8mm] 487

(II.10)
∂

∂m1
s∗

2 (0, 0) = 0.

Equation (II.9) means that player 1′s reproductive success does not depend
on player 2′s behavior. Typical examples of such situations are social, but non-
strategic environments such as two isolated monopolists or, when leaving the
narrow range of duopoly markets, competitive markets where a seller’s success
does not depend on the behavior of any individual coseller. Condition (II.9) thus
confirms our initial claim (I.i) in a general framework.

Similarly, condition (II.10) justifies (I.ii). It says that the other player’s be-
havior is - at least locally - not influenced by own stimuli. More specifically: If
m1 would change and if, according to our assumptions, player 2 would be aware
of it, player 2’s equilibrium strategy would remain constant.

In previous studies it has been argued (Bester and Güth, 1998; G̈uth and
Huck, 1997; G̈uth, 1998; Possajennikov, 2000; Schaffer, 1989) that condition
(II.10), albeit being a result for the case of known stimuli, already sheds light
on situations where stimuli are private information. The argument is simply that
privately known stimuli should guarantee that own stimuli cannot influence other
players’ behavior. If only player 1 is aware ofm1, a change ofm1 cannot induce
a change ofs2, so that condition (II.10) applies. In our view, such conclusions
should be substantiated by an explicit analysis of games in which stimuli are
private information.8 The conjecture will be rigorously proved for a narrow but
reasonable class of beliefs concerning the other players’ stimuli.

For the case of commonly known stimuli andλ = 0 our results can be
summarized by

Theorem 7. Let Γ = (M ; R1 (m1, m2)) be the evolutionary game defined by (II.3)
and (II.4) with the help of the solutions s∗ (m1, m2) of games G (m1, m2) with
m1, m2 ∈ M . For the survival of the fittest, i.e. for m∗ = 0 ∈ M in case of λ = 0
to be evolutionarily stable, it is necessary that equation (II.9) holds, confirming
(I.i), or that condition (II.10) is true what justifies (I.ii).

Up to now we only investigated the necessary condition for an interior ESS
m∗ ∈ M . According to our differentiability assumptions,∂

2

∂m2
1
R1 (m1, m2) exists

(actually requirement (ii) of Lemma 4 is only needed for this). If for an interior
m∗ ∈ M one also would have

(II.11)
∂2

∂m2
1

R1
(
m1, m∗) < 0 for all m1 ∈ M ,

the only best reply tom∗ in Γ would bem1 = m∗. Thus (II.5) and (II.11) for
m∗ ∈ M are sufficient to prove thatm∗ ∈ M is an ESS ofΓ (see Hammerstein
and Selten, 1994). Whether (II.11) holds form∗ depends, of course, on the
mathematical structure of the model under consideration.

8 Privately known stimuli are just another extreme possibility [for an indirect evolutionary analysis
where stimuli can be more or less reliably signaled see Güth, Güth and Kliemt (forthcoming); G̈uth
and Kliemt (1994, 2000); and G̈uth, Kliemt, and Peleg (2000)]
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3 An example

To illustrate our general results we consider a simple heterogeneous market with
complementary products and individual demand functions

(III.1) xi (s1, s2) = 1− si − αsj for i , j = 1, 2 andi /= j .

Herexi (s1, s2) denotes selleri ’s sales amount ands1, s2 their respective sales
prices. The parameterα (≥ 0) describes how closely sellers 1 and 2 are interre-
lated, i.e. forα = 0 condition (II.9), substantiating our claim (I.i), should hold.

For the payoffs we assume

(III.2) H1 (s1, s2; m1, m2) = s1x1 (s1, s2) − m1x1 (s1, s2).

In the case ofm1 > 0, one can interpret the termm1x1 (s1, s2) as express-
ing player 1’s concern about environmental damage caused by his production
activities. Similarly,m1 = 0 stands for no environmental concern andm1 < 0
for enjoying polluting. Forλ = 0 (reproductive) success on the market depends
only on the actual profits1x1 (s1, s2). This justifies characterization of an evolu-
tionarily stablem∗ = 0 as the survival of the fittest. We thus haveS ⊂ R and
M ⊂ R with 0 ∈ M . By assuming that both,S and M , are closed intervals
with non-empty interiors, the other assumptions of the previous section are sat-
isfied, too. Later we will specify further conditions to guarantee the economic
non-negativity constraints.

Disregarding boundary solutions (which will anyhow be eliminated by our
more specific restrictions forS , M , andα) one obtains the solution

s∗ (m1, m2) =
(
s∗

1 (m1, m2) , s∗
2 (m1, m2)

)
given by

(III.3) s∗
1 = s∗

1 (m1, m2) =
2 − α + 2m1 − αm2

4 − α2

(III.4) s∗
2 = s∗

2 (m1, m2) =
2 − α + 2m2 − αm1

4 − α2
.

Since

(III.5)

x1
(
s∗

1 , s∗
2

)
= 4−α2−(1+α)(2−α)−2m1+αm2−2αm2+α2m1

4−α2

=
2 − α − (

2 − α2
)

m1 − αm2

4 − α2
,

reproductive success is given by

(III.6) R1 (m1, m2) =
(2 − α + 2m1 − αm2)

(
2 − α − (

2 − α2
)

m1 − αm2
)

(
4 − α2

)2

−λm1 · 2 − α − (
2 − α2

) · m1 − α · m2

4 − α2
,

with λ ∈ {0, 1}. To guarantee non-negativity of prices and sales amounts we
assume
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(III.7) 0 ≤ α < 1
2

(III.8) M =
[− 1

3, 1
3

]
,

and

(III.9) S =
[
0, 2

3

]
,

what completes the description of the example.
Now, we want to derive the necessary conditions (II.9) or (II.10) for the

evolutionary stability ofm∗ = 0 ∈ M . Since forλ = 0 one has

(III.10)
∂

∂s2
H1

(
s∗ (0, 0) ; 0, 0

)
= s∗

1 (0, 0)
∂

∂s2
x1

(
s∗ (0, 0)

)

= −α
2 − α

4 − α2
= − α

2 +α
,

condition (II.9) requires

(III.11) α = 0,

i.e. that the two sellers are actually monopolists serving two isolated markets, as
required in our initial claim (I.i). Since

(III.12)
∂

∂m1
s∗

2 (m1, m2) =
−α

4 − α2

for all m1, m2 ∈ M , condition (II.10) also implies (III.11). Thus form∗ = 0 ∈ M
to be evolutionarily stable, one needsα = 0; i.e. with commonly known stimuli
andλ = 0, the survival of the fittest can only be expected when the two sellers are
completely unrelated. This means that two related sellers, i.e. withα > 0, will
not in general neglect the environmental aspects of their production activities,
i.e. the evolutionarily stablem∗ ∈ M will usually satisfym∗ /= 0. The sign of
m∗ will determine whether this will actually reduce pollution, which according
to (III.1) and (III.3) or (III.4) requiresm∗ > 0.

4 Generalizing the case of commonly known stimuli

When S ⊂ E p and M ⊂ R
q such thatS has a non-empty interior and is

convex and compact, andM is convex and compact with 0∈ int (M ), and when
all our other assumptions are generalized to situations withp > 1 or q > 1
accordingly, the generalization of our results in Section 2 is straightforward. For
the sake of simplicity this will only be done for the caseλ = 0 when stimuli
influence success only indirectly. Let us, as before, denote bysi =

(
s1

i , ..., sp
i

)
andmi =

(
m1

i , ..., mq
i

)
an arbitrary element ofS andM , respectively. Instead of

(II.6) in the multi-dimensional framework one has
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(IV.1)

�1R1 (m1, m2) =

(
∂

∂m1
1

R1 (m1, m2) , ...,
∂

∂mq
1

R1 (m1, m2)

)
= �1H1

(
s∗ (m1, m2) ; 0, 0

) ∗ �1s∗
1 (m1, m2)

+ �2 H1
(
s∗ (m1, m2) ; 0, 0

) ∗ �1s∗
2 (m1, m2)

where
�1H1

(
s∗ (m1, m2) ; 0, 0

)
=

(
∂

∂s1
1

H1
(
s∗ (m1, m2) ; 0, 0

)
, ...,

∂

∂sp
1

H1
(
s∗ (m1, m2) ; 0, 0

))
�2H1

(
s∗ (m1, m2) ; 0, 0

)
=

(
∂

∂s1
2

H1
(
s∗ (m1, m2) ; 0, 0

)
, ...,

∂

∂sp
2

H1
(
s∗ (m1, m2) ; 0, 0

))

�1s∗
1 (m1, m2) =

(
∂

∂mi
1

(
sj

1

)∗
(m1, m2)

)
j = 1, ..., p; i = 1, ..., q

�1s∗
2 (m1, m2) =

(
∂

∂mi
1

(
sj

2

)∗
(m1, m2)

)
j = 1, ..., p; i = 1, ..., q

and “∗” stands for multiplying ap × q matrix with ap-vector. With the help of
this notation the equivalent condition for (II.5’) can be written as

(IV.2)
�1H1

(
s∗ (m1, m2) ; 0, 0

) ∗ �1s∗
1 (m1, m2)

+ �2 H1
(
s∗ (m1, m2) ; 0, 0

) ∗ �1s∗
2 (m1, m2) = 0.

As for the case ofq = 1 evolutionary stability of stimulim∗ = 0 ∈ M can
be interpreted as the survival of the fittest. Since in the equilibriums∗ (0, 0) of
G (0, 0) the condition

(IV.3) �1H1 (s∗ (0, 0) ; 0, 0) = 0

holds, condition (IV.2), whenm∗ = 0, assumes the simpler form

(IV.4) �2H1 (s∗ (0, 0) ; 0, 0) ∗ �1s∗
2 (0, 0) = 0

corresponding to equation (II.8) in the one-dimensional situation. Technically
(IV.4) is the product of ap-vector andp × q-matrix and thus aq-vector whose
components all have to vanish. In general, there are many ways in which

p∑
j=1

∂

∂sj
2

H1
(
s∗ (m1, m2) ; 0, 0

) ∂

∂mi
1

(
sj

2

)∗
(m1, m2) = 0

can be guaranteed fori = 1, ..., q . A sufficient but not necessary condition for
(IV.4) is

(IV.5) �2H1 (s∗ (0, 0) ; 0, 0) = 0 or �1s∗
2 (0, 0) = 0.



When will payoff maximization survive? [-8mm] 491

As (II.9) condition (IV.5) justifies the claim (I.i), respectively (I.ii), namely,
that the survival of the fittest(m∗ = 0 ∈ M ) can be expected if a player’s payoff
does not depend on any of the other’s choices, respectively if a player’s behavior
(equilibrium choice) does not depend on any component of the other player’s
stimuli.

The strategy setS may be the set of mixed strategies for a finite strategic

game
(

Ŝ ; H1 (·, ·; m1, m2)
)

, i.e. everysi ∈ S is a probability distribution over the

finite setŜ . One can then refer to refinements such as perfect (Selten, 1975) or
proper (Myerson, 1978) equilibria which are defined for finite games. Of course,
the other assumptions concerningH1 (·, ·; m1, m2) have to be satisfied, too, but
they do not contradict the interpretation that the gamesG (m1, m2) are the mixed
extensions of some finite games.

If one applies our uniqueness assumption to more refined equilibrium notions,
provided they are well-defined and exist, all our analysis remains valid. A careful
examination even reveals that the uniqueness assumption may be relaxed in the
following way:

There exists a single-valued selectionϕ : M × M → S × S associating
an equilibrium solutionϕ (m1, m2) = (ϕ1 (m1, m2) , ϕ2 (m1, m2)) with each game
G (m1, m2) which is twice continuously differentiable and satisfies the symmetry
requirement(ϕ1 (m1, m2) , ϕ2 (m1, m2)) = (ϕ2 (m2, m1) , ϕ1 (m2, m1)).

In spite of the general problems with continuous equilibrium selection (see
Harsanyi and Selten, 1988) the differentiability assumption may appear reason-
able when considering certain families of gamesG (m1, m2). Of course,ϕ (·) may
also select more refined equilibria when these are defined. The gameG (m1, m2)
may also be seen as the normal form of an extensive gameg (m1, m2). In such
a case the selectionϕ (m1, m2) may depend on the original extensive game
g (m1, m2), e.g. ϕ (m1, m2) may select the unique subgame perfect equilibrium
(Selten, 1975) ofg (m1, m2). However, one has to assume that all the properties
of the selectionϕ (·) are satisfied.

When studying sequential games a typical problem is the non-existence of
evolutionarily stable strategies. In such games, certain stimuli might guide the
behavior in proper subgames which, however, may not be reached at all (see
Güth and Kliemt, 2000, for a simple example). Such phenomena typically imply
that no evolutionarily stable strategy exists since evolutionary forces cannot drive
the evolution of stimuli in unreached information sets.

For the purpose of the study at hand, this problem, however, causes no harm
since non-existence of ESS typically results from the non-uniqueness of best
replies to a supposedly stablem ∈ M . We are not so much concerned with
conditions guaranteeing the existence of an ESS or of a coarsening of an ESS
(see, for instance, Selten, 1988), but with the necessary condition form∗ = 0 to
be evolutionarily stable in the sense of (II.8) or (IV.4). Any coarsening of the
ESS-concept will also have to satisfy these conditions so that our results will be
true regardless of whether the ESS-concept or one of its coarsenings has to be
applied.
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5 Bayesian equilibria when stimuli are private information

As for the case of commonly known stimuli in Section 2, we focus on one
dimensional actions and stimuli, i.e.S ⊂ R and M ⊂ R. More specifically, we
consider the class of symmetric Bayesian games

(V.1) G =
(
S , M ; H1 (s1, s2; m1, m2) ; p

(· | m
))

whereS , M ⊂ R are closed intervals with non-empty interiors and 0 is an interior
value ofM . The payoff functionH1 (s1, s2; m1, m2) is assumed to be three times
continuously differentiable in all its arguments and satisfies

(V.2) H1 (s1, s2; m1, m2) = H2 (s2, s1; m2, m1)

for all s1, s2 ∈ S and m1, m2 ∈ M . The probabilitypi
(
m̂ | m̃

)
measures how

likely it is for player i ’s type m̃ that playerj
(
/= i

)
is of type m̂. Symmetry of

beliefs concerning other’s stimuli requires

(V.3) p1
(
m̂ | m̃

)
= p

(
m̂ | m̃

)
= p2

(
m̂ | m̃

)
for m̂, m̃ ∈ M .

A symmetric Bayesian equilibrium of gameG is a Borel-measurable function
s∗ (·) = s∗

1 (·) = s∗
2 (·) from M to S such that

(V.4)

∫
M

H1 (s∗ (m1) , s∗ (m2) ; m1, m2) dp
(
m2 | m1

)

≥
∫
M

H1 (s1, s∗ (m2) ; m1, m2) dp
(
m2 | m1

)
holds for all s1 ∈ S and allm1 ∈ M . When proving the existence of symmetric
Bayesian equilibria for gamesG we rely on type independent or free beliefs
p

(· | m
)

satisfying

(V.5) p
(
m̂ | m̃

)
= p

(
m̂

)
for all m̂, m̃ ∈ M .

Further restrictions are that there existsδ such that

(V.6)
∂2

∂s2
1

H1 (s1, s2; m1, m2) ≤ δ/ |M | < 0 for all s1, s2 ∈ S ; m1, m2 ∈ M ,

where|M | is the length ofM . From the continuity of ∂2

∂s1∂m1
H1 (·) follows that

there exists a positive constantK with

(V.7) max

{∣∣∣∣ ∂2

∂s1∂m1
H1 (s1, s2; m1, m2)

∣∣∣∣ / |δ| : s1, s2 ∈ S ; m1, m2 ∈ M

}

≤ K/ |M |.

If one only allows for strategiess (·) : M → S such that
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(V.8) | s
(
m̂

) − s
(
m̃

) |≤ K | m̂ − m̃ | for all m̂, m̃ ∈ M ,

then the setS of possible strategiess (·) is convex, uniformly bounded and
uniformly continuous. According to Ascoli’s Theorem (see, for instance, Arrow
and Intriligator, 1981) the setS is therefore a compact subset of the set of
continuous strategiess (·) in gameG .

Theorem 8.Given the assumptions of games G there exists a symmetric Bayesian
equilibrium for all games G if all best replies are interior values of S .

Proof. (see Appendix). ��
Another existence proof of Bayesian equilibria for infinite games with in-

complete information can be found in Milgrom and Weber (1985). Here we do
not prove mere existence, but the existence ofdifferentiable Bayesian equilibria.
To the best of our knowledge our result is not implied by the existing literature.

6 On the survival of the fittest
when stimuli are private information

Let π be the true population distribution overM . As for games with commonly
known stimuli we define the evolutionary game by anticipating the solution
s∗ (·) : M → S , i.e. the Bayesian equilibrium derived above which does not
have to be unique. More specifically, let

(VI.1) G (π) = (S , M ; H1 (s1, s2; m1, m2) ; π (·))
be the Bayesian game withp (·) ≡ π (·), i.e. beliefs are determined by the true
population distribution. Let(π; s∗) denote a population densityπ defining the
symmetric Bayesian gameG (π) of which s∗ is a symmetric Bayesian equilib-
rium. With the help of this notation the evolutionary Bayesian game depends on
the true population densityπ (·) over M as follows:

(VI.2) Γ (π; s∗) =
(
M ; M ; R1

(
m̂, m̃; m1, m2

)
; π

)
for all distributionsπ (·) over M , with

(VI.3) R1
(
m̂, m̃; m1, m2

)
= H1

(
s∗ (

m̂ | π
)
, s∗ (

m̃ | π
)

; λm1, λm2
)

The notations∗ (
m | π

)
is supposed to indicate that the equilibrium depends

on the population distributionπ (it is not meant to indicate a conditional prob-
ability). In the evolutionary gameΓ (π; s∗) the setM of possible stimuli serves
both as an action space (players announce stimulim̂ and m̃, respectively) and
as a type space (players are of certain stimuli typesm1 and m2, respectively ).
The true population densityπ (·) determines a player’s beliefs concerning the
other player’s stimuli. As before,λ can assume two values,λ = 0 andλ = 1:
While in case ofλ = 0 stimuli influence (reproductive) success only indirectly via
the solution behaviors∗

i

(
mi | π

)
, in case ofλ = 1 utility equals (reproductive)

success.
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In direct evolutionary game theory, e.g. for the hawk and dove-game, the
carrier of an ESS may contain several strategies. In a Bayesian setting this corre-
sponds to distributionsπ (·) over M which are not just one point- or Dirac-
measures. Such a distributionπ (·) would be stable9 if all stimuli types are
matched onto themselves. To allow for polymorphic distributions as stable results
of evolutionary processes10 we rely on

Definition 9. A distribution π (·) over M is evolutionarily stable if id : M → M
with id (m) = m for all m ∈ M is an evolutionarily stable strategy of some
Γ (π; s∗) where s∗ is a symmetric Bayesian equilibrium of G (π).

For λ = 1, where utility maximization corresponds to maximizing fitness, we
obtain

Proposition 10. If λ = 1, then id satisfies the first order condition for an evolu-
tionarily stable strategy of each Γ (π; s∗).

When interpreting Proposition 10, one should recall that the evolutionary game
Γ (π; s∗) with action spaceM for both players is a direct mechanism and that the
first order condition for an evolutionarily stable strategys∗ (·) = id means that
the mechanismΓ (π; s∗) is incentive compatible. Thus Proposition 10 is a special
case of the revelation principle (Myerson, 1979) so that a proof is not needed. In
case ofλ = 1 differentm-types will rely on different announcements and thus on
different actions since their success functions differ. What Proposition 10 thus
says is that every type will finally behave as maximizing his own fitness. In other
words: The distribution of actions must resemble the distribution of types. Any
distribution overm-types with this property is evolutionarily stable according to
Definition 9.

For λ = 0 the necessary condition is

(VI.4)

∫
M

∂
∂s1

H1
(
s∗ (

m1 | π
)
, s∗ (

m2 | π
)

; 0, 0
)

d
dm1

s∗ (
m1 | π

)
dπ (m2) = 0

for all m1 ∈ M . So we can use the one point solutionm∗
1 = 0 ∈ M , which

confirms our initial claim (I.ii) that in the case of privately known stimuli, in the
sense defined above, only the fittest will survive, i.e. forλ = 0 only the stimuli
m∗ = 0. Our results are summarized by

Theorem 11.Assume that stimuli are private information and cannot be signaled.
If λ = 1 then the (first order) necessary condition for the survival of the fittest
is always satisfied (see Proposition 10). If λ = 0 then (VI.4) is this necessary
condition.

9 This requirement, of course, captures only the symmetric Nash-equilibrium property and no
additional stability requirements like an ESS whose mathematical analogue would raise serious
technicalities.

10 For examples of stable polymorphisms see again Güth, Güth, and Kliemt (forthcoming); G̈uth
and Kliemt (1994, 2000), and G̈uth, Kliemt, and Peleg (2000), which are all based on the game of
trust.
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7 The example with stimuli being private information

The necessary condition for maximizing

(VII.1)

∫
M

(s1 − λm1) x1 (s1, s2 (m2)) dπ (m2)

is

(VII.2)

∫
M

x1 (s1, s2 (m2)) dπ (m2) =

∫
M

(λm1 − s1) ∂
∂s1

x1 (s1, s2 (m2)) dπ (m2).

Thus a symmetric Bayesian equilibrium requires

(VII.3)

∫
M

(
1 − s∗ (m) − αs∗ (

m̃
))

dπ
(
m̃

)
= s∗ (m) − λm

what impliess∗ (m) = λ
2 m + γ for some constantγ and thus

(VII.4) s∗ (m) =
λ

2
m +

1
2 +α

− λ

2(2 +α)
µπ

whereµπ is the mean value ofm with respect to the distributionπ (·). According
to Proposition 10, any distributionπ (·) overM is evolutionarily stable forλ = 1
so that no condition has to be imposed. Forλ = 0 equation (VII.4) implies that

(VII.5)
∂

∂m
s∗ (m) = 0.

Thus a change of one’s own stimuli neither influences the other’s nor the own
behavior. Forλ = 0 only m∗ = 0 can be evolutionarily stable, since maximizing
R1 (·) is only equivalent to maximizingH1 (·) if m = 0.

8 Conclusions

According to traditional evolutionary analysis (see Hammerstein and Selten,
1994), behavior evolves in such a way that it is optimally adjusted to the pop-
ulation behavior. This has usually been described as the survival of the fittest.
This follows from the definition of evolutionary stability, e.g. in the sense of
evolutionarily stable strategies which are best replies to themselves.

Indirect evolution studies the way in which stimuli evolve which, in turn,
determine behavior. The manner in which behavior depends on stimuli has been
derived by applying game theory. Inserting this dependency yields an evolution-
ary game with stimuli as strategies to which one, as in traditional analysis, can
apply concepts of evolutionary stability. We then have asked whether the be-
havior, implied by the evolutionarily stable stimuli, is optimally adjusted to the
population behavior as in traditional evolutionary analysis.
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For all situations satisfying our - admittedly - strong differentiability require-
ments, the results confirm the intuition suggested by previous applications: If
stimuli are common knowledge, the fittest behavior only survives when own
success does not depend on other’s behavior or when other’s behavior does not
react to own stimuli. In the case of privately known stimuli, results depend on
whether stimuli are directly(λ = 1) or only indirectly (λ = 0) related to success
as described by Theorem 11.

We have mostly (see the discussion of condition (II.11) for an exception)
confined ourselves to investigating the (first order) necessary conditions of evo-
lutionary stability. When asking for existence or sufficient conditions for evolu-
tionary stability one should recall that evolutionarily stable strategies might not
exist. Actually this inspired some coarsenings of evolutionary stability such as
neutral evolutionary stability (condition (ii) of an ESS is a weak inequality in-
stead of a strict one, see Maynard Smith, 1982) or limit evolutionary stability (the
ESS-conditions can be justified by imposing arbitrary, but small trembles, see
Selten, 1988). As previous examples, especially of sequential games (e.g. Güth
and Kliemt, 1998), have shown these ideas usually allow derivation of evolu-
tionarily stable configurations. A general proof of this would, however, require
a thorough mathematical investigation which would overburden our analysis.

Let us discuss also why we have relied on rather strong assumptions of dif-
ferentiability. To guarantee existence of (interior) equilibria one usually imposes
either convexity (see van Damme, 1987) or differentiability assumptions as in
the present study. Recall, however, that indirect evolution requires two steps of
equilibrium analysis - one first derives the equilibrium for all type constellations
and then the equilibrium constellations of types or behavioral dispositions. While
convexity, imposed for the first step, would not be inherited by the evolutionary
game, strong enough differentiability assumptions can be inherited in the form
of weaker ones as long as one does not rely on equilibrium selection. This ex-
plains why in the first part of our study we have relied on admittedly strong
differentiability assumptions and also on the uniqueness of equilibria.

Appendix: Proof of Theorem 8

We first construct a best reply mappingβ (·) : S → S which is continuous with
respect to the maximum norm for continuous strategiess (·) : M → S and then
prove that the requirements of the Brouwer-Schauder-Tychonoff-Theorem are
satisfied.

(i) We want to show that for anys (·) ∈ S the best replyβ (s) is also
contained inS. For all ŝ ∈ S andm ∈ M define the expected payoff of
the stimuli typem for strategŷs by

(V.9) F
(
ŝ, m

)
=

∫
M

H1
(
ŝ, s (m2) ; m, m2

)
dp (m2).
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Because of our assumptionsF is three times continuously differentiable in both
its arguments. Furthermore,

(V.10)
∂2

∂s2
1

F
(
ŝ, m

)
=

∫
M

∂2

∂s2
1

H1
(
ŝ, s (m2) ; m, m2

)
dp (m2) ≤ δ < 0,

so the best responseβ (s (·)) to s (·) is implicitly given by

(V.11)
∂

∂s1
F (β (m) , m) = 0 for all m ∈ M

due to our assumption that all best repliesβ (m) are interior values ofS . By the
Implicit Functions Theorem one has

(V.12)
d

dm
β (m) = −

∂2

∂s1∂m F (β (m) , m)
∂2

∂s2
1
F (β (m) , m)

.

Because of| ∂2

∂s2
1
F (β (m) , m) | ≥ | δ | one obtains

(V.13) | d
dm

β (m) | ≤ 1
| δ | | ∂2

∂s1∂m
F (β (m) , m) | ≤ K .

Henceβ (m) satisfies condition (V.8), i.e.β (m) ∈ S. A corollary of part (i)
of the proof is that a symmetric Bayesian equilibriums (·) ∈ S of G is twice
continuously differentiable.

(ii) Let us rewrite the functionF
(
ŝ, m

)
, defined in (V.9), as

(V.14) F (β (m) , m; s (·)) =

∫
M

H1 (β (m) , s (m2) ; m, m2) dp (m2)

where, as before,β (m) is the best reply tos (·) for the m-type of player 1. For
any continuous strategys (·) : M → S let

(V.15) || s (·) ||= max{| s (m) |: m ∈ M }
be the (maximum) norm ofs (·). Let M

(
ŝ, s̃

)
= {m ∈ M : ŝ (m) /= s̃ (m)}. Since

| F
(
β (m) , m; ŝ (·)) − F

(
β (m) , m; s̃ (·)) |

= |
∫

M
(
ŝ, s̃

) H1
(
β (m) , ŝ (m2) ; m, m2

) − H1
(
β (m) , s̃ (m2) ; m, m2

)
s̃ (m2) − ŝ (m2)(

s̃ (m2) − ŝ (m2)
)

dp (m2) |

≤ max

{
| ∂

∂s2
H1 (β (m) , s2; m, m2) |: β (m) , s2 ∈ S , m, m2 ∈ M

}
|| ŝ (·) − s̃ (·) ||

because of the Mean Value Theorem, the functionF (β (m) , m; s (·)), defined in
(V.14), is Lipschitz-continuous ins (·) ∈ S. Similarly, all its first and second
derivatives are Lipschitz-continuous ins (·) ∈ S. Because of (V.10) and (V.12)
also β (·), i.e. the best reply functionβ (·) : M → S againsts (·), is Lipschitz-
continuous ins (·) and therefore continuous onS. Thus the existence of a sym-
metric Bayesian equilibriums (·) with β (m) = s (m) for all m ∈ M follows from
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the Brouwer-Schauder-Tychonoff-Theorem (see, for instance, Aliprantis and Bor-
der, 1994).
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