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Abstract. We study fundamental properties of monotone network enterprises
which contain public vertices and have positive and negative costs on edges
and vertices. Among the properties studied are the nonemptiness of the core,
characterization of nonredundant core constraints, ease of computation of
the core and the nucleolus, and cases of decomposition of the core and the
nucleolus.
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1. Introduction

Monotone spanning network enterprises were introduced in Megiddo [1978a]
and Granot and Huberman [1981]. They are distinguished from other (not
necessarily monotone) enterprises (Bird [1976], Granot and Huberman [1981]),
by permitting coalitions to use vertices occupied by other players in order to
connect themselves to the root. Such enterprises generalize airport games (e.g.,
Littlechild [1974]) and tree games (Megiddo [1978b]).

In this paper we extend the class of monotone enterprises to include public
vertices, namely vertices not occupied by players. We also allow costs on
vertices, in addition to costs on edges. These costs can be negative, thus rep-
resenting pro®ts. Some of the results we obtain, however, are valid only if
some restrictions are imposed on the network. One restriction that we often
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require is that an optimal network for the grand coalition exists that is a tree
spanning all vertices.

We study fundamental properties of games induced by these enterprises,
such as nonemptiness of the core and its e½cient representation, representa-
tion of the nucleolus and possible decomposition of such games.

The paper is organized as follows: After providing the necessary notation
and de®nitions (Section 2), we introduce the reduced enterprises and prove
that there exists a commutative diagram relating the reduced enterprises with
the corresponding reduced games (Section 3).

Unlike the classical enterprises, in our case the core may be empty. Thus, it
is important to provide conditions that can be read from the network, guar-
anteeing that the core is not empty. Such conditions are given in Section 4 and
are derived, for example, from the commutative diagram, mentioned above,
and from the reduced game property of the core concept. We also exhibit an
important class of such games whose cores are not empty.

Section 5 is devoted to the problem of computation and representation of
the core and the nucleolus. it turns out that only relatively few coalitions need
to be considered when computing these solutions and these coalitions can be
``read'' directly from the network. Analogous results exist in the case when a
coalition is not allowed to use vertices occupied by players not in that coali-
tion (see Granot and Huberman [1984]). A byproduct of the proof is the fact
that the intersection of the kernel and the core is the nucleolus when the core
is not empty, and it can be derived by solving equations of the type sij�x� �
sji�x�, where �i; j� are pairs of ``adjacent'' players in an optimal network.

Finally, we provide in Section 6 an extension of a decomposition result,
given by Granot and Huberman [1981] for monotone and nonmonotone game
representations, to our wider class of monotone enterprises. Namely, it is
shown that if an optimal network enterprise consists of several branches em-
anating from the root, then, under certain conditions, the core and the nucle-
olus are cartesian products, not of the branches, but of some modi®cation of
the games on these branches.

2. The spanning network enterprise and its game

We shall be concerned with a spanning network enterprise (SNE), or a span-
ning network, for short, de®ned by E � �V;E; a; b;N�. Here, �V;E� is an
undirected connected graph with a ®nite set of vertices V, containing a dis-
tinguished vertex v0, called the root, and a set of edges E. The function
a : E ! R associates with each edge e a cost a�e�, interpreted, e.g., as the cost
of constructing edge e. The function b : V ! R associates with each vertex v a
cost b�v�, interpreted, e.g., as the cost of constructing vertex v. The n-tuple
N :� f1; 2; . . . ; ng is the set of players (agents). It is assumed that each player i
is located at some vertex, denoted vi. A vertex can be occupied by several
players. It may be occupied by no player, in which case we call it a public
vertex. We assume that a player is located at precisely one vertex.

Discussion. Several scenarios may ®t a SNE. For example, the root is the
location of a supplying center. The players, located at some places, want to be
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connected to the root.1 In order to do so, they have to construct routes to
the root, which may use some public and private locations.

From the above discussion it follows that the implementation of the
enterprise should be conducted in accordance with the following rules:

(1) Eventually each player should be connected to the root.
(2) If an edge or a vertex is `constructed', its cost must be covered by (some

of ) the players.
(3) Once an edge, or a vertex, is constructed, every player can ``use'' it; there

is no need to pay for constructing it more than once.

We say that a coalition T is formed if its members agree to connect each
one of them to the root. Obviously, the members of T will choose to connect
themselves using least expensive (or most pro®table) edges and vertices. They
may even choose to be connected through vertices occupied by players not
in T. Thus, we allow free riders. This is in contrast to other models (see, e.g.,
Bird [1976], Granot and Huberman [1981]), where members of a coalition T
are not allowed to use vertices occupied by members of NnT . However, we
require that the set of vertices and edges constructed by a formed coalition
should be a connected subgraph of �V;E�. Accordingly, for every coalition T
we de®ne the cost c�T� of T to be

c�T� :� minimal cost (maximal pro®t, if negative) of joining all
members of T to the root via a connected subgraph of �V;E�. (2.1)

This de®nition applies also to the empty coalition. Note that an optimal
subgraph for the empty coalition does not necessarily consist of the root
alone. It may ``behoove'' the empty coalition to choose a subgraph that passes
through other vertices, including those that are inhabited by players. This,
indeed, will often happen in networks that represent reduced games (see
Section 3). We adopted this convention, instead of another convention that
puts the worth of the empty coalition as zero, because some of our theorems
do not hold without cumbersome modi®cations.2 Note that our convention3
has the formal advantage that no exception is needed in (2.1) and it simpli®es
the de®nition of the reduced game. It should be clear, however, that it is done
for mathematical simplicity only. It makes little sense, perhaps, to claim that
``the coalition of nobody incurred costs, or gained pro®ts''.

The computation of c�T� may be long and tedious, but it will not concern
us here. Su½cient to say that there may be several optimal subgraphs for a
coalition T. We choose one of them and henceforth denote it GT � �VT ;ET�.
The results in this paper do not depend on the choice of the optimal graph;
however, if several optimal graphs for the grand coalition are known, one may
®nd it advantageous to choose one of them for the computation of the core
and the nucleolus (see Sections 5 and 6).

De®nition 2.1. Let E � �V;E; a; b;N� be a spanning network enterprise. The
cost game GE :� �N; c�, where the cost function c is given by (2.1), is called the

1 Think about a cable TV enterprise.
2 e.g., Theorem 2.2, Lemma 4.1 and Corollary 4.2.
3 Also adopted in Nouweland et al. (1993)
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corresponding spanning network game (SNG), or the game representing the
enterprise.

Assumption. In this paper we assume that no player resides at the root. This
entails no loss of generality, because if this is not the case one can add a
costless edge connecting the root to an uninhabited new root and transfer the
cost of the old root to the new root. This entails no change to the character-
istic function (2.1).

Let E0 be obtained from a SNE E by increasing the cost of the root by an
amount d. Then, the cost of every subgraph �V 0;E0�, where v0 A V 0, is in-
creased by d. Thus, for every coalition T, �VT ;ET� can be chosen to be the
same subgraph for both enterprises. We can therefore call E and E0 network-
equivalent enterprises. However, if GE � �N; c� and GE0 � �N; c0� then
c0�T� � c�T� � d for every T; therefore these games are not strategically
equivalent. For example, GE may have an empty core (Section 4), whereas GE0

will have a nonempty core if d is large enough. Thus, changing the cost of the
root a¨ects the nature of the enterprise very little, but changes signi®cantly the
corresponding game.

The following is a simple generalization of Granot and Huberman [1981].

Theorem 2.2. A SNG is monotonic; i.e., if S HT JN then c�S�U c�T�.

Proof. c�T� is the cost of �VT ;ET�. The subgraph �V T ;ET� connects every
member of T to the root; therefore, it connects every member of S to the root.
Its cost is therefore not smaller than c�S�. 9

A SNE was ®rst discussed by Claus and Kleitman [1973], where each
vertex other than the root was occupied by a player, aV 0 and b � 0. Bird
[1976], Claus and Granot [1976] and Granot and Huberman [1981] con-
structed the corresponding SNG. A special case is the airport game, ®rst
studied by Littlechild and Owen [1973], Littlechild [1974] and Littlechild and
Thompson [1977]. In this case the graph is a chain; namely, a sequence of edges
that form a line. Littlechild and Owen [1977] introduced negative cost at the
root. Megiddo [1978b] studied a tree enterprise and Granot and Huberman
[1981] coined and studied the distinction between (nonmonotone) minimum cost
spanning tree games, in which a coalition can use only those vertices occupied
by its members, and monotone minimum cost spanning tree games, where a
coalition can use other vertices, as in this paper. Public vertices essentially ®rst
appeared in Megiddo [1978a].

3. The reduced SNE and its game

Following Davis and Maschler [1965], for a given cost game �N; c�, a given
nonempty coalition S and a given preimputation4 x, we call �S; ĉx

S� the re-

4 I.e., a cost vector x in RN , satisfying x�N� � c�N�.
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duced game on S at x, if

ĉx
S�T� �

x�S�; when T � S;

minfc�T WQ� ÿ x�Q� : QJScg; if T JS:

�
�3:1�

Here, Sc :� N nS and x�Q� :�Pi AQ xi if Q0q and x�q� � 0.

Remark. Had we de®ned c�q� to be always zero, as is sometimes done, we
would then have to require that also ĉx

S�q� � 0, in order that the reduced
game will always be a game. Such a requirement is indeed made in the litera-
ture in di¨erent contexts.

Formula (3.1) can be simpli®ed if x belongs to the core C�N; c�; i.e., if
x�N� � c�N� and x�S�U c�S� for every coalition S.

Lemma 3.1. If x A C�N; c� and S is a nonempty coalition then

ĉx
S�T� � min fc�T WQ� ÿ x�Q� : QJScg; all T JS: �3:2�

Proof. For QJSc, c�S WQ� ÿ x�Q�V x�S WQ� ÿ x�Q� � x�S�, because x is
a core point. On the other hand, c�S WSc� ÿ x�Sc� � x�N� ÿ x�Sc� � x�S�,
so minfc�S WQ� ÿ x�Q� : QJScg � c�S WSc� ÿ x�Sc� � x�S� and (3.1) col-
lapses to (3.2). 9

Having de®ned a reduced SNG, we now de®ne a reduced SNE and study
the connection between the two concepts.

De®nition 3.2. Let E � �V;E; a; b;N� be a SNE. Let S be a coalition and let
x � �x1; x2; . . . ; xn� be a preimputation. The reduced spanning network on S at
x, denoted Ex

S, is a SNE obtained from E by removing the players in Sc from the
network enterprise and by subtracting xi, for each removed player i, from the
cost at vertex vi, where player i is located. In symbols:

Ex
S � �V;E; a; ~b;S�; �3:3�

where

~b�v� � b�v� ÿ x�Sc
v�; all v A V : �3:4�

Here, Sc
v :� the set of players in Sc that are located in v.

Interpretation. We regard x as a proposed cost allocation for the enterprise E.
The players in S tell the removed players in Sc: ``Leave the place, go have
some beer (or co¨ee), but let us keep your payment.5 If a coalition T, T JS
needs some of your locations, it will connect them to the root, using your
payments towards covering the costs of constructing its optimal subgraph. If
none of the coalitions that eventually form bene®ts from someone's money, he
can take it back as he will not be connected to the root.''

5 We owe this vivid description to Stef Tijs (oral communication).
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The following theorem shows a remarkable relation between the reduced
SNE and the corresponding reduced SNG.

Theorem 3.3. Let E � �V;E; a; b;N� be a SNE. Let GE :� �N; c� be its SNG.
Let x be a core point, x A C�N; c�, and let S be a nonempty coalition. Denote by
�S; ĉx

S� the reduced game on S at x and let Ex
S :� �V;E; a; ~b;S� be the reduced

SNE on S at x. Let �S; ~cx
S� be the game corresponding to Ex

S. With the above
notation, ĉx

S � ~cx
S.

In symbols, Theorem 3.3 can be phrased as follows:

Theorem 3.30. With the notation of Theorem 3.3, the following commutative
diagram holds for x A C�N; c�:

�V;E; a; b;N� ! �N; c�
# #

�V;E; a; ~b;S� ! �S; ~cx
S�;

where horizontal arrows denote transition from an enterprise to its correspond-
ing game and vertical arrows denote reduction on S at x.

Proof. Let �V 0;E0� be an arbitrary connected subgraph, connecting all mem-
bers of a subset T of S to the root. Denote by a�E0� and by b�V 0� the total cost
needed to construct E0 and V 0, respectively. By (3.4), the cost to construct
�V 0;E0� in the reduced enterprise is equal to a�E0� � b�V 0� ÿ x�Q�, where Q is
the set of players residing in Sc XV 0. This expression is greater than or equal
to c�T WQ� ÿ x�Q�, which is greater than or equal to ĉx

S�T�, because in the
original SNE the members of T WQ are indeed connected to the root via
�V 0;E0�. If �V 0;E0� is an optimal subgraph for T in the reduced enterprise,
then a�E0� � b�V 0� ÿ x�Q� � ~cx

S�T�. Thus, ~cx
S�T�V ĉx

S�T�. Conversely, let Q0

be a subset of Sc such that ĉx
S�T� � c�T WQ0� ÿ x�Q0�. Let �VTWQ0 ;ETWQ0�

be an optimal subgraph for T WQ0 in the original SNE. This subgraph con-
nects all members of T WQ0, and, in particular, all members of T to the root.
Being optimal means that a�ETWQ0� � b�VTWQ0� � c�T WQ0�. The cost of the
same subgraph in the reduced enterprise is c�T WQ0� ÿ x�Q0�, by the de®ni-
tion of the reduced enterprise. This amount is greater than or equal to ~cx

S�T�.
We have now proved that ~cx

S�T�U ĉx
S�T�. 9

For x in the core of the original game, Theorem 3.3 o¨ers a natural inter-
pretation of the reduced game: The reduced game is the game of the reduced
enterprise. One can get a similar interpretation, somewhat more complicated,
if x is not in the core. In this case, though, one has to extend even further the
class of games considered. We shall not pursue here this direction.

De®nition 3.4. A solution concept j is said to satisfy the reduced game property,
or consistency, if for every coalition S and every solution point x, the projection
xS :� �xi�i AS belongs to j�S; ĉx

S�.
Discussion. The reduced game property can be used to evaluate a solution
concept on intuitive grounds. We interpret �S; ĉx

S� as the game members of S
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are facing, given that x in the solution j is contemplated. If, for all nonempty
coalitions S, xS A j�S; ĉx

S�, then the players in S, who are supposed to believe
in j, will not move away from xS, because it is in the solution of their own
game. So, a consistent solution has this kind of stability. If, on the other hand,
for some S, xS B j�S; ĉx

S�, then the players in S may criticize j as not being a
reasonable solution concept. They could argue that if j is a good solution
concept, then x is an appropriate outcome; so xS should be an appropriate
outcome in �S; ĉx

S�. But if they really believe in j, xS cannot be an appropriate
outcome, because in their own game, �S; ĉx

S�, xs B j�S; ĉx
S�. Thus, by the above

contradiction, j is not a good solution concept after all.
The above argument is valid only if indeed it can be claimed that in some

sense the players in S evaluate ``their own game'' as �S; ĉx
S�. Such a claim is

enhanced if there exists a physical meaning to the reduced game, directly re-
lated to the situation. De®nition 3.2 and Theorem 3.3 provide such a meaning.

It is well known that the core, the prekernel, the prenucleolus and the
prebargaining set satisfy the reduced game property.6 (See Sobolev [1975],
Aumann and DreÁze [1974], Peleg [1985], [1986], [1992]).7

4. The core of a SNE

It is well known (Granot and Huberman [1981], Megiddo [1978a]) that the
core of a monotone minimum cost spanning tree game is not empty if the
underlining network has nonnegative costs and every vertex is occupied by a
player. It is also known that there are SNGs with an empty core. Megiddo
[1978a] furnished one example in which the network �V;E� consists of a union
of Steiner trees, the vertex costs are all zero and the edge costs are the eucli-
dean distances among the vertices. A simpler example, provided by Tamir
[1991], is reproduced in Figure 1. In this ®gure there are public vertices and
only edges have costs.

Fig. 1. A SNE whose derived SNG has an empty core

6 ``Pre'' denotes that the underlying space is the space of preimputations.
7 These facts are true even if we allow ĉx

S�q� to be di¨erent from zero, as we do in this paper.
Indeed, the de®nitions of the prekernel and the prebargaining set do not involve the empty coali-
tion. The excess of the empty coalition remains constant and does not a¨ect the prenucleolus. If x
is a core point, then ĉx

S�q�V 0 (see (3.1)); therefore ĉx
S�q� ÿ x�q�V 0 automatically.
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Figure 2 o¨ers a 4-person SNE with an empty core without public vertices,
but some costs are negative.8 It is easy to verify that the cores of these games
are indeed empty.

The above examples raise the question of identifying classes of SNEs with
nonempty cores, other than minimum cost spanning tree games. Some of
these will be derived in this section. We start with some elementary lemmas.

Lemma 4.1. Let �N; c� be a cost game satisfying c�Nnf jg�U c�N� for some
player j. Under this condition, xj V 0 for every core point x. In particular, the

core of a SNG is a subset of RN
� .

Proof. If x is a core point then x�N� ÿ xj � x�N nf jg�U c�Nnf jg�U c�N� �
x�N�. Thus, xj V 0. The rest of the proof follows from the monotonicity of the
SNG (Theorem 2.2). 9

Corollary 4.2. The core of a SNG is empty if c takes some negative values.

Proof. Lemma 4.1, if c�T� < 0 for some nonempty coalition T. If c�q� < 0,
the core is empty because x�q� � 0. 9

The next lemma shows that players occupying a vertex v can share their
total cost in a core point any way they wish, without leaving the core. Denote
by Nv the set of players occupying a vertex v.

Lemma 4.3. Let x be a core point in a SNG �N; c� corresponding to a SNE
�V;E; a; b;N�. Let y be a nonnegative imputation which coincides with x at all
coordinates indexed by players not located at v. Then y is also a core point.

Proof. For every subset T of players, x�T WNv� � y�T WNv�. If T XNv �q
then y�T� � x�T�U c�T�. If T XNv 0q then, by (2.1), c�T� � c�T WNv�;
hence, since x is a core point, y�T WNv�U c�T WNv� � c�T�, because
x�T WNv�U c�T WNv�. Consequently, y�T�U y�T WNv�U c�T�, because
yV 0. 9

The next theorem extends Bird [1976], Granot and Huberman [1981] and
Megiddo [1978a] to our SNEs. It pertains to SNEs, where it is known that

8 In this ®gure, edges and vertices with no cost attached carry zero cost.

Fig. 2. A SNE without public vertices whose corresponding SNG has an empty core
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there exists an optimal subgraph GN � �V N ;EN� for N which is a tree. This
case occurs, for example, if aV 0, because one can delete edges in a cycle
without losing connectivity and without increasing the cost of the remaining
subgraph.

First, we introduce the following notation.

Notation 4.4. Let GN � �VN ;EN� be an optimal network which is a tree. For
each v in VN , we denote by ev the unique edge in EN , which emanates from v
and is on the unique path between v0 and v in GN .

Theorem 4.5. Let E � �V;E; a; b;N� be a SNE without public vertices for which
it is known that an optimal subgraph GN � �VN ;EN� for N exists, and it is a
tree.9 If a�ev� � b�v�V 0 for every v in V and b�v0�V 0 then the core of GE is
not empty. Speci®cally, x � �x1; x2; . . . ; xn� is a core point if xV 0, the occu-
pants of v, for each v in V, share a�ev� � b�v� and, in addition, each player
contributes a nonnegative amount towards covering the cost b�v0�.
Proof.10 It is su½cient to prove the theorem under the additional assumption
that b�v0� � 0. Indeed, if x is a core point when b�v0� � 0 and we increase
b�v0�, and at the same time share the increase among the players in non-
negative amounts, we derive a core point to the new enterprise (see the dis-
cussion prior to Theorem 2.2).

Clearly x is a preimputation. Suppose it is not in the core, then there is a
coalition R with x�R� > c�R�. Let �VR;ER� be an optimal subgraph for R and
let T be the set of players occupying VR. Then, T KR and a�ER� � b�V R� �
c�R� � c�T�. Therefore, since xV 0, x�T� > c�T�. It follows that

c�N� � x�N� � x�NnT� � x�T� > x�NnT� � c�T�: �4:1�
Consider now the subgraph �V;E0�, where E0 � ER W fev : v A V nVRg. Note
that

ev A EN XE0; whenever v A V nVR; �4:2�
and

ev B ER; whenever v A V nVR: �4:3�

The cost to construct �V;E0� is therefore equal to

b�V� � a�ER� �
X
fa�ev� : v A V nVRg

� b�VR� � a�ER� � b�V nV R� �
X
fa�ev� : v A V nVRg

� c�R� � b�V nVR� �
X
fa�ev� : v A V nV Rg

� c�R� �
X
fb�v� : v A V nV Rg �

X
fa�ev� : v A V nVRg

� c�R� � x�N nT� � c�T� � x�NnT�:

9 Of course, then VN � V .
10 The proof is similar to that given in Granot and Huberman [1981].
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By (4.1), b�V� � a�E0� < c�N� and we arrive at a contradiction if we show
that �V;E0� is a connected subgraph. Indeed, every player in T is connected
to the root via �V R;ER� and for every player not in T there is a path via
�V N ;EN� towards the root, by (4.2), which either reaches the root or reaches a
vertex in VR. 9

We call the payo¨ vector, described in Theorem 4.5, when, in addition, all
residents at each vertex share their payments equally, the tree vector for the
enterprise. An important usage of this payo¨ vector will be made at the end of
this section.

Theorem 4.5 dealt only with games without public vertices. In the next
theorem we show that, whenever we know core points of such games, we can
derive core points for games that contain public vertices.

Theorem 4.6. Let E � �V;E; a; b;N� be a SNE containing public vertices. Let
E� :� �V;E; a; b;N�� be a SNE, obtained from E by placing an additional
player at each public vertex. Let x � fxigi AN� be a core point of GE� . Under
these conditions the projection xN of x into RN is a core point of G ~E, where
~E :� �V;E; a; ~b;N�. Here,

~b�v� � b�v� ÿ
X
fxi : i A Nv X �N� nN�g; �4:4�

where Nv is the set of players occupying vertex v.

Proof. ~E is the reduction of E� to N at x; therefore G ~E is the reduced game of
GE� (Theorem 3.3). Consequently, xN is a core point of G ~E, because the core
satis®es the reduced game property (De®nition 3.4). 9

Example 4.7. Consider the game of Figure 1. Add players 4, 5, 6 at the public
vertices. By Theorem 4.5, the tree vector x � �1; 1; 1; 1; 1; 1� is a core point of
the new game. Reducing this enterprise to the set f1; 2; 3g we obtain a SNE ~E
which is identical to the one in Figure 1, except that there is a cost of ÿ1 at

each public vertex. The enterprise ~E has �1; 1; 1� as its core point.

In the previous analysis we started with known core points and by the
process of reduction we obtained games with fewer players and di¨erent costs,
for which we could assert that the core is not empty. We now proceed in an
opposite direction. We start with games with known core points and then try
to add players and change costs so as to get other games with nonempty cores.
Speci®cally, we start with an arbitrary SNE E � �V;E; a; b;N� having x as a
core point. We then increase the costs at some vertices and add players at
these vertices, hoping that they will pay the additional costs. Do we get games
with nonempty cores by this procedure? The answer is negative, as the follow-
ing example shows.

Example 4.8. Consider the 3-person SNE of Figure 3. In the derived SNG,
c�S� � 0 for every coalition, so that �0; 0; 0� is a core point. Placing a player 4
at the public vertex and increasing the cost at that vertex by any nonnega-
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tive amount d, and we obtain a SNE E� with an empty core (compare Figure
2).11,12

Note that in Example 4.8, c��1234� ÿ c�123� � d� 1 whereas b��V� ÿ
b�V� � d. Thus, the increase in b is di¨erent from the increase in the worth of
the grand coalition. If this were not the case we could have claimed that the
new game has a nonempty core:

Theorem 4.9. Let E � �V;E; a; b;N� be a SNE with a nonempty core. Let
x A C�GE�. Let b� be another cost function on V satisfying b�V b. Place an
additional player at each vertex v for which b��v� > b. Denote by K the set of
additional players and let N� � N WK . Let �N�; c�� be the SNG that corre-
sponds to the new SNE E�. If

c��N�� ÿ c�N� � b��V� ÿ b�V�; �4:5�

then E� has a nonempty core. In particular,

x� :� �fxigi AN ; fb��vk� ÿ b�vk�gk AK� �4:6�
is a core point of E�.

Proof. For a coalition T, denote by vT the set of vertices occupied by the
members of T. With this notation x��N�� � x�N� � �b� ÿ b��vK� � c�N� �
�b� ÿ b� �V� � c��N��, so x� is a preimputation. Let S� be a coalition in GE� ,
then S� � S WT�, where S JN and T�JK . It follows that x��S�� � x�S� �
�b�ÿb��vT� �U c�S� � �b� ÿ b��vT� � � minfa�E� � b�V� : V K vS W fv0g and
�V;E� is a connected subgraphg � �b� ÿ b��vT� �U minfa�E� � b�V� : V K
vS W fv0gW vT� and �V;E� is a connected subgraphg � �b� ÿ b��vT� � � c�
�S WT��. These inequalities follow from the fact that any subgraph in GE�

that connects S WT� to the root must connect S to the root. We have proved
that x��S��U c��S��, so x� is indeed a core point of E�. 9

Example 4.10. Consider the enterprise E� given in Figure 4. We want to ®nd
out if its game has a nonempty core. To do so we remove all the players

Fig. 3. A 3-person SNE with a nonempty core that becomes empty when a public vertex becomes
occupied

11 In this ®gure, costs of edges are zero, whenever not shown.
12 The core of this game is empty for any positive cost placed at the vertex occupied by Player 4.
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except player 1, thus making their locations public. We also add negative costs
at the endpoints so as to make it barely pro®table for player 1 to absorb all the
vertices.13 We obtain the game of Figure 5. Denote by E this 1-person enter-
prise and note that the relation between E and E� satis®es the conditions of
Theorem 4.9 (including (4.5)). The enterprise E has a nonempty core, namely
f�4�g. Consequently, by Theorem 4.9, �4; 0; 5; 0; 2� is a core point of the orig-
inal game.

Tamir's example (Figure 1) shows that allowing for public vertices may
yield enterprises with empty cores. In his example, however, the graph GN

does not pass through all the vertices of the enterprise. We were hoping that if
we impose this requirement (which is obviously met if there are no public
vertices), and require, say, that all costs are nonnegative, we shall be able to
extend the nonemptiness result of Bird [1976], Granot and Huberman [1981]
and Megiddo [1978a]. This, unfortunately, is not the case as was pointed to
us by H. Reijnierse,14 who created an example based on a construction of
Kuipers [1994]:

13 This is done in order to achieve condition (4.5).
14 Written communication.

Fig. 4. Does this game have a nonempty core?

Fig. 5. A derived 1-person enterprise with a nonempty core
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Example 4.11. Consider the network of Figure 6. It contains the root v0 and
four public vertices. Three vertices are occupied by players 1, 2, 3, respec-
tively. The costs of the edges are given in the ®gure. The vertices have zero
costs. The graph of GN is denoted by bold lines. Its cost is 140. Note that it
passes through all the vertices. Every 2-person coalition costs 93. This is
enough to prove that the core is empty, as 2 � c�123� > c�12� � c�13� � c�23�.

Looking again at Figure 6, we notice that GN contains adjacent public
vertices. We subsequently show that if there exists an optimal network GN

which is a tree that spans all the vertices, such that no two public vertices are
adjacent therein, then the core is not empty. Before presenting this result, we
need the following Lemma which demonstrates that the assumption that there
exists an optimal network, GN , which is a tree spanning all vertices implies
that there exists a GS which is a tree for every S.

Lemma 4.12. Let E � �V;E; a; b;N� be a SNE for which it is known that
GN � �VN ;EN� is a tree that spans all the vertices. Then, GS can be assumed to
be a tree for every S, S JN.

Proof. Every edge in EnEN has a nonnegative cost, because, otherwise it
could be added to GN to generate a cheaper network. Let GS � �VS;ES� be
an optimal network for S. If GS contains a cycle, then at least one edge in this
cycle does not belong to GN , because GN is a tree. The cost of such an edge
is nonnegative and it could therefore be removed from GS to bring about a
network spanning V S, whose cost is not higher.15 Continuing to eliminate
edges as long as there are cycles, we ®nally obtain a tree spanning VS, whose
cost is not higher than the cost of GS. 9

Theorem 4.13. Let E � �V;E; a; b;N� be a SNE. Suppose, that there exists an
optimal network GN which is a tree that spans all the vertices and such that no
two public vertices are adjacent therein. Suppose, further, that a�v� � b�ev�V 0
for all v in V.16 Under these conditions the core of GE is not empty.

Fig. 6. A network with an empty core, even though GN passes through all the vertices.

15 It could remain the same only if the cost of the deleted edge was zero.
16 See Notation 4.4 for the de®nition of ev.
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Proof. Without loss of generality we can assume that all the edges in the
complete graph on V, which are missing in �V;E� are not really missing
therein. Rather, they have been added to �V;E�, each with a large enough
cost,17 M, so that GN remains an optimal tree for the grand coalition. Indeed,
any core point in this modi®ed game will remain a core point in the original
game, where these new edges cannot be used and thus their cost is in®nity.

The proof will be carried out in several steps. As in Theorem 4.5, we can
assume that b�v0� � 0.

Step 1. Place a virtual player at each public vertex other than the root. This will
create a new SNE, E� � �V;E; a; b;N��, where N� � N W fvirtual playersg,
generating a game18 GE� :� �N�; c�.

Step 2. Show that C�GE� � contains a payo¨ vector �xi�i AN� , in which all vir-
tual players pay zero. The execution of this step will take place subsequently.

Step 3. Consider the reduced game representing E� on N at x. The core has the
reduced game property, therefore �xi�i AN belongs to the core of the reduced
game. However, by Theorem 3.3, the reduced game represents precisely the
original enterprise, because the players that were removed paid zero at x.
This shows that �xi�i AN A C�GE�, which concludes the proof once Step 2 is
established.

Step 4. De®ne a new cost function ~c : 2N� ! RW fyg, by

~c�S� :� least cost needed to connect all members of S to the root,
without passing through vertices not inhabited by
members of S. �4:7�

Note that ~c�q� � 0, because b�v0� � 0.
The game ~GE� :� �N�; ~c� is called the nonmonotonic representation of E�.
Note that for S JN�,

c�S� � minf~c�R� : RKSg; �4:8�

from which it follows that

C�GE� � � C� ~GE� �XRN�
� : �4:9�

Thus, the proof needed in Step 2 will be established once we show that C� ~GE� �
contains a nonnegative payo¨ vector in which each virtual player pays zero.
This will be established in the subsequent steps.

Note that the optimal network GN in GE is also an optimal network, de-
noted19 ~GN� , in ~GE� , because we assumed that GN spans all vertices, including
the public vertices of E.

17 E.g., M > c�N�.
18 We use the same letter c as for the original �N; c�, because the original one is merely a
restriction of this cost function to N.
19 Note that GN � GN� � ~GN� , because GN was assumed to span all nodes, including the public
nodes.
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Step 5. Consider again E� � �V;E; a; b;N��. By construction, it has no public
vertices. Also each original public vertex is inhabited by exactly one player.
Let i be the virtual player, who resides at vertex vi. Denote by F�i� the set of
vertices v adjacent to vi and such that vi lies between v0 and v. By removing the
edges �vi; v�, for v A F �i�, we obtain jF�i�j � 1 disjoint connected components
of ~GN� , rooted at v A F �i� and at v0. Denote the last subtree by R�v0� and any
other, rooted at v in F �i�, by R�v�.

Denote F �i� � fv1; v2; . . . ; vkg and let M1 be a number larger than the cost
of any edge (including the added edges whose cost is M ). It is known (see,
e.g., Tarjan (1979)) that if the cost of an edge e belonging to an optimal
spanning tree T increases su½ciently, so as to render the tree non-optimal,
then a new optimal tree can be found by adding just one new edge to T, to
replace e.

Let T1 � �V;E1� be an optimal network for the grand coalition in20 ~GE� ,
where E� is modi®ed by increasing the cost of �vi; v1� to M1. It follows that T1

is a tree and E1 � �EN nf�vi; v1�g�W u1, where u1 is a new edge not in ~GN� .
Similarly, if we increase �vi; v2� to M1, an optimal tree T2 � �V;E2� is ob-
tained from T1 by deleting �vi; v2� and adding a new edge u2. Continuing in
this fashion, we ®nally reach an optimal tree Tk for the grand coalition in ~GE� ,
where E� is modi®ed by increasing the costs of �vi; vj�, j � 1; 2; . . . ; k, to M1.
This tree is obtained from ~GN� by deleting all the edges �vi; vj�, j � 1; 2; . . . ; k,
and adding the new and distinct edges u1; u2; . . . ; uk. Since vi is a leaf in Tk, it
follows that by deleting vi and the edge evi

from Tk, we obtain an optimal tree
~GN� nfig for N� nfig in the original game ~GE� . Indeed, it is a tree of least cost in
which members of N�nfig reside, that is not allowed to pass through vi. This
tree has the following properties:

(1) R�v0� and R�v�, v A F �i�, are subgraphs of ~GN� nfig,
(2) exactly one edge, denoted ev, emanates from each R�v�, in the direction of

the root. It connects R�v� either to another R�v0�, or to R�v0�. Denote
its cost by dv; i.e., dv � a�ev�. (See Figure 7, where the various ev's are
indicated.)

Note that dv V a�ev�, where ev :� �vi; v�; otherwise, GN� would not be an
optimal tree for N�.

Let x be an arbitrary imputation for ~GE� , satisfying the following
requirements:

(i) Each one of the inhabitants at the same vertex pays the same amount.
(ii) Inhabitants at a vertex v in F�i� pay together the cost of their vertex plus

the cost a�ev�.
(iii) Player i, the single resident in vi, pays b�vi� � a�evi�.

Next, we extend the weak demand operation, introduced by Granot and
Huberman [1984] for a SNE in which b � 0 and a single resident at each
vertex. Formally, for an imputation x in ~GE� , satisfying (i), (ii) and (iii), the
imputation derived from x by a weak demand operation performed by i, de-

20 Which is, of course optimal also in GE� .
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noted wdi�x�, is given by21

wdi
j �x� �

b�v� � dv

jNvj ; if j A v A F�i�,
b�vi� � a�evi� ÿPv AF�i��dv ÿ a�ev��; if j � i,

xj; otherwise.

8>>><>>>: �4:10�

A weak demand operation by player i, increases the payments allocated to
each member of each v in F �i� by �dv ÿ a�ev��=jNvj, while reducing player i 's
payment appropriately.

We outline the next few steps: Starting from the tree-vector22 t for the
game ~GE� , we perform recursively weak demand operations, each coupled
with an appropriate convex combination with the previous payo¨ vector. We

thus arrive at vectors z1 � wdi1�t�, ẑ1 � a1z
1 � �1ÿ a1�t, z2 � wdi2�ẑ1�, ẑ2 �

a2z2 � �1ÿ a2�ẑ1, z3 � wdi3�ẑ2�, ẑ3 � a3z3 � �1ÿ a3�ẑ2; . . . , where i1; i2; i3 . . .
are the virtual players added in Step 1.

We achieve it in such a way that ẑk A C� ~GE� �, ẑk V 0, and more and more
virtual players' coordinates ẑk

i vanish as k gets larger. Eventually we arrive at
a vector satisfying all the requirements of Step 4, which was required to com-
plete Step 2. This will therefore conclude our proof. Note that the order in

Fig. 7. The graphs of ~GN� and ~GN� nfig

21 jAj denotes the number of elements in a set A.
22 For the terminology, see the section after the proof of Theorem 4.5.
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which we choose i1; i2; . . . is not important, because the vertices containing the
virtual players are not adjacent.

Weak demand operations, performed consecutively, starting from the tree-
vector, bring about core points, as was shown in Granot and Huberman
[1984]. However, they do not necessarily yield core points if the starting core
point is not the tree-vector. A counter example is given in the same paper. To
show that combining the weak demand operations with convex combinations
does not spoil the core inclusion requires a proof. This is provided in Steps 6
and 7 below.

Step 6. Let ~GE� be the game associated with an arbitrary E that satis®es the
conditions of Theorem 4.13. Starting from the tree-vector for an optimal
network for N�, we assume by induction that up to k ÿ 1 consecutive weak
demand operations coupled with appropriate convex combinations, lead to a
nonnegative core point for ~GE� , whose coordinates (if any) at virtual players
for which these operations were already performed, vanish. k � 1; 2; . . . : This
is true for k � 1, because the tree-vector is a nonnegative core point.

We ®rst apply this hypothesis to our given game ~GE� . Thus, starting from
the tree-vector t, we obtain a payo¨ vector ẑkÿ1, k � 1; 2; . . . , which is a non-
negative core point of ~GE� , whose coordinates (if any) at virtual players for
which we already performed weak demand operations, coupled with convex
combinations, vanish. ẑ0 :� t satis®es this assumption.

We now perform an additional weak demand operation to obtain zk �
wdi�ẑkÿ1�, where i is a virtual player not treated earlier. The payo¨ vector
ẑkÿ1 satis®es requirements (ii) and (iii), because the ``hat operations'', done so
far, did not change the payments of player i and players residing at vertices of
F �i�, and t also satis®es these requirements. Also (i) is satis®ed, because t sat-
is®es (i) and neither weak demand operations nor convex combinations alter
the property that players at each vertex pay equal amounts.

Clearly, zk
n V 0 for n0 i, because, compared to ẑkÿ1, all payments at these

coordinates did not decrease. The payment zk
i , however, is nonpositive! In-

deed, if zk
i > 0, then the players in N could have connected themselves to the

root in the original enterprise E, using the tree ~GN� nfig. By (4.10), that would
have been cheaper than the cost of GN .

Consequently, an appropriate convex combination azk � �1ÿ a�ẑkÿ1 �: ẑk

exists for which ẑk
i � 0. Coordinates for players not residing in vi and F�i� do

not change and remain nonnegative. Those of them that vanished earlier,
vanish also at ẑk. In order to show that ẑk is a core point of ~GE� , it remains to
prove that zk is a core point of the same game. This proof, which is similar to
the proof in Granot and Huberman [1984], who demonstrated that a sequence
of weak demand operations would yield a core point if the starting vector is
the tree-vector, is described below.

For a coalition S containing neither i nor residents of vertices in F �i�,
zk�S� � ẑkÿ1�S�U ~c�S�. For a coalition S containing i, zk�S�U ẑkÿ1�S�U
~c�S�, because the decrease in the i-th coordinate compensates any possible
increases in coordinates of S XN�F�i��, where N�F �i�� denotes the set of
players residing at F �i�. The remaining case will be dealt with in the next step.

Step 7. Construct an auxiliary enterprise E� � �V;E; a; b;N�� that di¨ers from
E� only in some costs of edges as follows: If a component R�v�, v A F�i�, was
connected directly to R�v0� in ~GN� nfig, change the cost of edge �vi; v� to become
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dv. For other components R�v�, v A F �i�, change the cost of �vi; v� to be M1,
i.e., e¨ectively deleted from the optimal tree. If R�v� was connected in ~GN� nfig
to another component R�v0�, in the direction of the root, where v0 A F �i�,
change the cost of edge �v; v0� to become dv. (Compare Figure 7 with Figure 8,
where these changes are indicated). These modi®cations imply that an optimal
network GN� , for N� in E�, can be obtained from GN by replacing edges �vi; v�
by edges �v; v0� for those R�v�'s not connected directly to R�v0� in ~GN� nfig. The
cost of GN� now becomes equal to the cost of ~GN� nfig � a�evi� � b�vi�. Notice
that the tree-vector associated with GN� in E�, denoted t, di¨ers from t only at
coordinates j for players residing in vertices of F�i�. For a player j residing in
v, v A F �i�, tj � �b�v� � dv�=jNvj.

Let us denote by ukÿ1 the nonnegative core vector for ~GE� , derived by
performing in GN� �k ÿ 1� weak demand operations followed by convex com-
binations, recursively, for players j � i1; i2; . . . ; ikÿ1, starting from the tree-
vector t. In ukÿ1, players i1; i2; . . . ; ikÿ1 pay zero. This is true because of our
induction hypothesis. Notice that un and ẑn, n � 1; 2; . . . ; k ÿ 1, are equal at all
coordinates except coordinates j, j A F �i�. However, ukÿ1 and zk are equal at
all coordinates except coordinate i. This is due to the changes made while

passing from ~GN� to ~GN� .
Comparing �N�; ~c�, the nonmonotonic representation of E�, with �N�; ~c�,

the nonmonotonic representation of E�, one realizes that ~c�S�U ~c�S� for
every coalition not containing i. Indeed, such coalition cannot make use of
edges �vi; v�, v A F�i� and a�e�U a�e� for all e A Enf�vi; v� : v A F �i�g. As pre-
viously observed, zk :� wdi�ẑkÿ1� and ukÿ1 di¨er only at coordinate i. There-

Fig. 8. The auxiliary enterprise in which the edges of the optimal tree are drawn in straight
lines.
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fore, for coalition S not containing player i,

zk�S� � ukÿ1�S�U~c�S�U ~c�S�: �4:11�
This completes the proof that zk A C� ~GE� � and concludes the proof of
Theorem 4.13. 9

5. E½cient representation of the core and the nucleolus of spanning network
games

The core of an n-person game is determined by a system of 2n inequalities. In
this section we show that, for a large class of SNEs, much fewer inequalities
need be considered. This class is characterized by the existence of an optimal
network GN which is a tree that spans all the vertices. By Lemma 4.12 it fol-
lows that we can assume, and we will assume, that GS is a tree for every subset
of N. Again, we assume that b�v0� � 0.

Let W be a subset of V. We denote by �W ; Ê�W�� the set of vertices W
and edges Ê�W�, such that Ê�W� � fe A EN : e � �i; j� and fi; jgXW 0qg.

We shall say that �W ; Ê�W�� is a connected component of GN if

(i) v0 B W JV ,
(ii) �W ; Ê�W�� is connected; that is, between any two vertices of W there

exists a path consisting of edges in Ê�W�.

Note that in general �W ; Ê�W�� is not a subgraph, because it may contain
edges with some endpoints not belonging to W. However, �VN nW ;EN nÊ�W��
is a subgraph of �VN ;EN�. If it is connected, we say that �W ; Ê�W�� is an
extreme component of GN ; otherwise, we call it an interior component of GN .

The characterization of coalitions whose corresponding core constraints
can safely be omitted is quite complicated and requires some preparations.

Let GN � �VN ;EN� be an optimal tree for N in a SNE E � �V;E; a; b;N�.
For a nonempty coalition S, let GS � �VS;ES� be an optimal tree for S. In
general, N�VS�Ðthe set of players residing in V SÐmay contain players not
belonging to S. Also, some edges in ES are also edges in EN and some are not.

Remove from GN the root and the vertices in which S resides. The result-
ing network, �V N n�V�S�W fv0g�;EN� will consist of several (maximal) con-
nected components. Denote by PS :� fC1;C2; . . . ;Ck�S�g the set consisting of
those components that contain players. Here, V�S� denotes the set of vertices
occupied by members of S. We also denote by V�C� and by Ê�C� the vertex
set and the edge set of the component C, respectively, and by N�C� ± the set of
players that reside in V�C�.
Example 5.1. Figure 9 demonstrates our analysis. Here, GN is drawn in
straight line segments. S � f1; 2; 8; 9; 11; 12g and GS is drawn in wavy lines.
Note that it spans also a, b and 15.

PS �f�f3g; Ê�f3g��; �f4; b; 5; 6g; Ê�f4; b; 5; 6g�; �f7g; Ê�f7g��;

�fc; 10g; Ê�fc; 10g��; �f14g; Ê�f14g��; �f15g; Ê�f15g��;

�fd; 16g; Ê�fd; 16g��g:

�5:1�
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We identi®ed names of vertices with names of players residing in them. Public
vertices are denoted by low case letters.

We are interested in those coalitions for which jPSj � 1. Denote the set of
such coalitions by S�GN�. It turns out that only these coalitions and N need
be considered in order to determine the core of the enterprise:

Theorem 5.2. Let �V;E; a; b;N� be a SNE, for which there exists an optimal
network GN :� �V N ;EN�, which is a tree that spans all the vertices V; i.e.,
V � V N . A nonnegative cost allocation vector x belongs to the core of the
enterprise if x satis®es the core constraints for the coalitions in S�GN�.

A similar result was proved in Granot and Huberman [1984] for the non-
monotonic representation of a SNE, in which all vertices are occupied by a
single player, costs on vertices are zero and the edges-costs are nonnegative.
Other proofs of this theorem, for the same enterprises considered by Granot
and Huberman [1984], were given also by Aarts and Driessen [1992] and by
Kuipers [1994]. The proof of the present theorem follows the spirit of the
proof in Granot and Huberman [1984]. It requires some notation and two
lemmas:

For a set of vertices W and a set of edges E we write k�W ;E� for short,
instead of b�W� � a�E�, and call it the cost of �W ;E�. As before, we denote
by N�W� the set of players in W.

Fig. 9. GN and GS
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Lemma 5.3. Let GN � �VN ;EN� be an optimal subgraph for N in a SNE
�V;E; a; b;N� and let �W ; Ê�W�� be an extreme component of GN . For any cost
allocation vector x, satisfying the core constraint for the coalition23 NnN�W�
in the spanning network game �N; c�,

x�N�W��V k�W ; Ê�W��: �5:2�

Proof. Clearly x�N� � k�VN ;EN�, because x is a cost allocation and
�V N ;EN� is optimal for N. If (5.2) is violated then

x�NnN�W�� > k�V N nW ;EN nÊ�W��: �5:3�

Now, �V N nW ;EN nÊ�W�� is a connected subgraph, which contains the root,
because its complement �W ; Ê�W�� is an extreme connected component of
GN (see (i) and (ii) above); therefore, it is a feasible network for N nN�W�.
Thus, c�NnN�W��U k�VN nW ;EN nÊ�W�� < x�N nN�W��, contradicting the
fact that x satis®es the core constraint for the coalition NnN�W�. 9

The extension of this lemma is somewhat more complicated if �W ; Ê�W��
is not extreme.

Lemma 5.4. Let GN � �VN ;EN� be an optimal subgraph for N in a SNE
�V;E; a; b;N�, and let �W ; Ê�W�� be an interior connected component of GN .
Choose an arbitrary set of vertices and edges �Q;EQ�, disjoint from the com-
plement �V N nW ;EN nÊ�W��, such that its union with this complement is con-
nected.24 For any cost allocation vector x, satisfying the core constraint for
N nN�W� in the spanning network game �N; c�,

x�N�W��V k�W ; Ê�W�� ÿ k�Q;EQ�: �5:4�

Proof. Again, x�N� � k�VN ;EN�. If (5.4) is violated then

x�NnN�W�� > k�V N nW ;EN nÊ�W�� � k�Q;EQ�

� k���VN nW�WQ; �EN nÊ�W��WEQ��: �5:5�

The argument of k on the right side is a connected graph, which contains the
root; therefore, it is a feasible network for �NnN�W��WN�Q�. Thus, by the
monotonicity of c, x�N nN�W�� > c��NnN�W��WN�Q��V c�NnN�W��,
contrary to the fact that x satis®es the core constraint for the coalition
N nN�W�. 9

Proof of Theorem 5.2. Assume ®rst that the core is not empty. Let x be a
nonnegative cost allocation vector satisfying the core constraints for the
coalitions in S�GN� and let S be an arbitrary coalition not in S�GN�. If
jPSj � 0, then c�S� � c�N� and the excess of S at x is nonnegative, because x
is nonnegative.

23 Namely, the excess of this coalition is nonpositive.
24 One possible choice, of course, is �Q;EQ� � �W ; Ê�W��.

Spanning network games 487



The idea of the rest of the proof is this: for an arbitrary coalition S, not in
S�GN�, we replace S by larger and larger coalitions with smaller and smaller
excesses25 at x, which induce fewer and fewer components in PS, until we
arrive at a coalition in S�GN�, whose excess is known to be nonnegative. This
shows that the excess of the original S at x is nonnegative; namely, x satis®es
the core constraint for coalition S.

Step 1. For each coalition S, it is su½cient to consider S0 :� N�V S� instead
of S. Indeed,26 c�S0� � c�S� and x�S0�V x�S� because xV 0, so certainly
c�S0� ÿ x�S0�U c�S� ÿ x�S�. We shall henceforth assume that S � N�VS�.

Step 2. Let C be an extreme component of GN , which is a member of PS.
Since C is connected, it follows that N nN�C� is a coalition in S�GN�.

So, NnN�C� A S�GN� and satis®es the core constraint. Therefore, by
Lemma 5.3, x�N�C��V k�C�. It follows that

c�S� ÿ x�S�V c�S� ÿ x�S� � k�C� ÿ x�N�C��
V c�S WN�C�� ÿ x�S WN�C��; �5:6�

where the last inequality holds, because �VS WV�C�;ES WE�C�� is feasible
for S WN�C� and k�GS� � c�S�. We have shown that we can assume that S is
such that all members of PS are only interior components.

Step 3. Let S be an arbitrary coalition not in S�GN�, such that jPSjV 2 and
N�V S� � S. Let C be an interior component of GN , which is a member of PS.
We claim the existence of a network of vertices and edges �Q;EQ� such that
Q �q, EQ is disjoint from C that satisfy:

(i) ��V N nV�C��WQ, �EN nÊ�C��WEQ� is connected.
(ii) ��V S nQ�WV�C�, �ES nEQ�W Ê�C�� is a feasible network for

S0 :� S WN�C�.

If this claim is established then we can prove that S WN�C� has a smaller
excess than S at x, as follows: The coalition NnN�C� induces a single com-
ponent, namely C � �V�C�; Ê�C��, so x satis®es the core constraint for this
coalition. Consequently, by item (i), and Lemma 5.4,

x�N�C��V k�C� ÿ k�Q;EQ�: �5:7�

Thus, c�S� ÿ x�S� � k�GS� ÿ x�S� � x�N�C�� ÿ x�N�C��V k�GS� � k�C� ÿ
k�Q;EQ�ÿx�S�ÿx�N�C��Vc�SWN�C��ÿx�N�C��ÿx�S� � c�S WN�C�� ÿ
x�S WN�C��. The last inequality follows from item (ii) above.

Thus, it is su½cient to show that S WN�C� has a nonnegative excess. In
this fashion we can add more and more connected components until we reach
a coalition in S�GN�, whose excess is known to be nonnegative.

25 By the excess of a coalition T at x we mean c�T� ÿPi AT xi .
26 S0KS implies c�S0�V c�S� (Theorem 2.2). On the other hand, c�S0�U c�S�, because GS is
feasible for S0.
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Step 4. We now construct the required set �Q;EQ�1 �q;E�. It will turn out
that E JES.

Call the boundary points27 of C that also belong to VS distinguished ver-
tices of GS, and enumerate them 1; 2; . . . ; k. Let GN nC denote the graph GN

after the removal of C. In GN nC there are k connected subgraphs, k ÿ 1 of
which are subtrees of GN rooted at distinguished vertices and one which con-
nects a distinguished vertex to the root. We shall refer to the distinguished
vertices, which were enumerated 1; 2; . . . ; k, as the roots of the subgraphs.

We now operate on two graphs and modify them successively. One graph
is GS and the other graph, called H, consists at ®rst of k isolated vertices that
represent the various subgraphs of GN . They are also enumerated 1; 2; . . . ; k,
in correspondence with the enumeration of the distinguished vertices in GS.
Note that GS is disjoint from C, because S � N�VS�.

Figure 10 shows in a schematic way the graph GN , that contains an interior
component C � �fp; q; r; sg; Ê�fp; q; r; sg�, whose edges are drawn in straight
lines. (Some vertices designated by letters contain players and some are public.)
The distinguished vertices are marked by square boxes. Each of them contains
players and they are enumerated 1; 2; . . . ; k. Other edges of the enterprise, as
well as some vertices not in S which are contained in the various subgraphs
are not indicated. Observe that the connected component of GN nC containing

27 Namely, endpoints of edges in C that do not belong to C.

Fig. 10. GN and GS
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vertex 6 also contains the root. Vertices that belong to the same subtree of
GN , rooted at a distinguished vertex, are drawn vertically and are encircled in
Figure 10. In addition, GS is drawn in wavy lines, where S � f1; a; b; c; d; 2;
x; y; z; 3; u; v; 4; 5; 6g.

Figure 11 shows GS alone, after some manipulations that will be described
subsequently. Figure 12 shows the graph H after all necessary manipulations.
The distinguished vertices of GS are drawn as squares. Their numbers are
1; 2; . . . ; 6.

We continue now in steps, modifying gradually GS and H. The general
idea is this: We delete k ÿ 1 edges from GS, each one of which is on the path
between two distinguished vertices in GS, which correspond to two subgraphs

Fig. 11. GS alone

Fig. 12. The ®nal H graph
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of GN nC. Each deleted edge in GS connects two components of GN nC. When
we delete the edge, we add in H an edge connecting the vertices that represent
these components. We say that a deleted edge in GS gives rise to the added
edge in H. We also say that the edge added in H is is the image of the deleted
edge in GS.

We want to achieve the above in such a way that there will be no cycles in
H , and that at the same time any two adjacent distinguished vertices in GS

will eventually be separated by exactly one deleted edge.
Figures 11 and 12 show one such example. The deleted edges in GS are

marked e1; . . . ; e5. Their ``images'' are drawn in Figure 12. Note that our task
has been achieved in this example. If we can always achieve this task then the
proof continues as follows:

We claim that �Q;EQ� :� �q;EQ�, where EQ � fe1; e2; . . . ; ekÿ1g is the
requested set described in Step 3.

Proof of item (ii) in Step 3. The graph therein is precisely the graph GS from
which the edges of E were deleted and C was added. It is feasible for S.
Indeed, every edge in EQ lies on the path between two distinguished vertices in
S, and it is the only edge on the unique path between these two distinguished
vertices that was removed from ES (i.e., contained in EQ). Thus, the removal
of EQ from ES decomposed GS to k connected subgraphs, each one of
which containing precisely one distinguished vertex. The addition of C to
�V S;ES nEQ� connects all these distinguished vertices, and since one of them is
connected to the origin, we conclude that �V S WV�C�; �ES nEQ�W Ê�C�� is
feasible for S. 9

Proof of item (i) in Step 3. In H we have k vertices and k ÿ 1 edges and it has
no cycle. So, H is a tree, spanning all its vertices. In terms of the original tree
that means that all the connected components of GN nC are connected to each
other via edges in EQ that were added to GN nC. Since the root is contained in
GN nC, GN , from which C was removed and EQ added, is connected. 9

Step 5. We have to exhibit a process of eliminating edges that will achieve the
task described in Step 4. This will be done in stages. The general idea is this:
Call a distinguished vertex in GS a leaf if it does not lie on the path in GS

between the root and another distinguished vertex. (In Figure 11 the leaves are
vertices 1, 2, and 4). At each stage we separate one leaf from the rest of the
tree, by deleting a suitable edge. We choose an edge in such a way that its
image in H does not overlap a previously drawn edge, nor does it form a cycle
with previously drawn edges.

Stage i, i � 1; 2; . . . ; k ÿ 1. We assume that up until now we have deleted
i ÿ 1 edges from GS, added i ÿ 1 di¨erent edges to H and plucked i ÿ 1 leaves
from GS. We also assume that so far there are no cycles in H. Pick a leaf in
the remaining part of GS, starting, say, at a distinguished vertex r. Along the
path from this leaf to an adjacent distinguished vertex ®nd the ®rst edge join-
ing two connected components in GN nC, which contain distinguished verti-
ces, say, p and q, so that H neither contains already the edge �p; q�, nor the
addition of �p; q� creates a cycle in H with existing edges (we shall later show
that such an edge always exists) and whose deletion separates the leaf from the
remaining distinguished vertices in GS. (We shall later show that this is always

Spanning network games 491



possible.) Give the deleted edge the name er and add its image �p; q� to H,
giving it the same name. Pluck the leaf that was separated from the rest of GS.
The process continues until i � k ÿ 1. Figures 11 and 12 demonstrate this
procedure.

Step 6. We have to show that the process is well de®ned. For this we have
to show the existence of a leaf and an adjacent distinguished vertex, and the
existence of an edge on the path in GS between that leaf to its adjacent dis-
tinguished vertex, satisfying the above requirements. We assume that this was
the case up to Stage i and we are now at the beginning of Stage i. The fol-
lowing lemma will prove useful.

Lemma 5.5. Let K be a connected component of H, drawn until Stage i. This
component K contains precisely one vertex q, whose corresponding edge eq was
not created yet in H.

Proof. K is connected and contains no cycles. Thus, it contains, say, m vertices
and mÿ 1 edges. By construction, every edge er in K is connected to vertex r
either because vertex r is an endpoint of er, or, because edges drawn pre-
viously connect er to vertex r in H. Thus K must contain all vertices having the
indices of the edges as names, and since there are mÿ 1 di¨erent edges, there
are mÿ 1 di¨erent vertices connected to them and precisely one vertex q re-
mains whose corresponding edge eq was not constructed yet. 9

Continuation of Step 6. We now prove that at Stage i, along the path in GS

between any pair of adjacent distinguished vertices, di¨erent from the pairs
treated previously, there is an edge whose image in H does not overlap a pre-
viously drawn edge nor does it form a cycle with previously drawn edges.
Indeed, if that were not the case for a pair of adjacent vertices q1 and q2, then
there would exist a component K in H, drawn before Stage i, that contains
both q1 and q2. However, neither q1 nor q2 created any edge before Step i,
because adjacent distinguished vertices are chosen after leaves were plucked.
Yet, both belong to K. This contradicts Lemma 5.5.

Finally, we have to show that there always exists a leaf and an adjacent
distinguished vertex such that when the edge on the path between them is de-
leted in accordance with the requirements, that leaf is separated out. This is
certainly true if the leaf has a single distinguished adjacent vertex, so we can
continue and pluck leaves until each remaining leaf has more than one adja-
cent leaf. (Figure 13 is such an example). Proceed as follows: De®ne a junction
between two adjacent leaves to be the furthest vertex from the root which is
common to the paths between the root and these vertices in GS. (The vertices
a and b are such junctions in Figure 13.) Consider a pair whose junction is
highest in the sense that it does not lie on a path between another junction and
the root. Call this vertex a (as in Figure 13). Pick up a pair of leaves whose
junction is this vertex. Say the leaves are p and q (as in Figure 13). Starting at p
in the direction of q, eliminate an edge on the path between p and q according
to the above procedure. If this edge, call it e, is between p and a you have
succeeded to separate vertex p out. If it is between q and a go in the reverse
direction; namely starting from q in the direction of p, along the path between
q and p. This time the edge you delete will be e, or an earlier edge. Indeed, you
already know that e joins two disjoint components in GN and its image does
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not overlap an existing edge in H, nor does it form a cycle with the existing
edges. You have succeeded to separate leaf q out.

We have proved that the process of eliminating an edge, as described
above, separates either leaf p or leaf q out. Thus we completed the proof that
the process is well de®ned, thereby ®nishing the proof of Theorem 5.2 for the
case where the core is not empty.

Step 7. If the core is empty, we claim that there does not exist a nonnegative
cost allocation vector satisfying the constraints in S�GN�. Indeed, otherwise,
if such a vector x existed, then, by the proof above, we would have concluded
that x also belongs to the core of GE, contradicting the emptiness of the
core. 9

The essence of the proof of Theorem 5.2 was to show that if a coalition S
gives rise to several components then, for every cost allocation x that satis®es
the constraints of the theorem, the excess of S does not increase if we add to S
all members of a component that contains players. This result is handy also if
one computes the nucleolus of the game.

In fact, with this result one can prove that under the conditions of Theo-
rem 5.2, if the core is not empty,28 the nucleolus of a SNE depends only29 on
the coalitions in S�GN�. We omit the proof since it is quite similar to a proof
given in Granot and Huberman [1984, Theorem 5] even though it is given
there for a di¨erent coalition function de®ned on the SNE.

Fig. 13. A possible remain of GS

28 Example 4.11 shows that this requirement is not redundant. See also Theorem 4.13.
29 Namely, to compute it, it is su½cient to successively minimize the excesses of these coalitions.
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We ®nd this result interesting, because in general the nucleolus is not a
locus of the core; i.e., in general there exist games having the same core and
di¨erent nucleoli (see Maschler, Peleg and Shapley [1979]). The above result
shows that this cannot happen if the games are induced by SNEs as described
above, and having nonempty cores.

We conclude this section by only stating the following results:

Theorem 5.6. Let E � �V;E; a; b;N� be a SNE and assume that there exists
an optimal network GN � �V N ;EN�, which is a tree that spans all the vertices;
i.e., V N � V . Under these conditions, if the core is not empty,30 then x is
the nucleolus point i¨ spq�x� � sqp�x� for every pair of adjacent players p
and q in GN and xp � xq whenever players p and q reside in the same vertex.
Here, by adjacent we mean that the path between the two players in GN

contains only public vertices (if any). Also, spq�x� is a short notation for
minfc�S� ÿ x�S� : S C p;S J qg.

Corollary 5.7. Under the conditions of the previous theorem, if the core is not
empty, the nucleolus of the corresponding game is the intersection of the core
and the kernel of this game; i.e.,

N�GE� � C�GE�XK�GE�:

The proofs are based on the previous results of this section and are similar
to the proofs given in Granot and Huberman [1984]. Therefore they will be
omitted.

6. Decomposition

It is well known (see e.g., Megiddo [1978b]) that if the SNE is a tree and the
tree has several branches emanating from the root then the core/nucleolus
is a cartesian product of the cores/nucleoli of the subgames de®ned on the
branches. These results were generalized by Granot and Huberman [1981] to
the core and the nucleolus of a monotonic and nonmonotonic representations
of a SNE which is not necessarily a tree but GN is a tree of the above type. It
was shown there, under the assumption that aV 0, b � 0, no public vertices
and a single player at each vertex, that the core/nucleolus is still a cartesian
product ± not of the cores/nucleoli of the subgames, but of some modi®cation
thereof.

In this section we show that the above decomposition results still hold for
more general monotonic representation of a SNE. Our proofs in the case of
the core are similar to those given in Granot and Huberman [1981], but our
decomposition proof for the nucleolus is di¨erent.

Consider a SNE E � �V;E; a; b;N�, in which there may be public vertices,
several players residing in a vertex, and where it is assumed that b�v0� � 0. In
this section we also assume that GN � �V N ;EN� is a tree that spans all the
vertices and for all vertices of31 VN , a�ev� � b�v�V 0.

30 Example 4.11 shows that this requirement is not redundant.
31 See Notation 4.4 for the de®nition of ev.
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We state the decomposition results when the tree, GN , has two branches.
The extension to more branches can be done recursively. Suppose that GN �
�V N ;EN� is a union of two subtrees32 GNi :� �VNi ;ENi�, i � 1; 2, where
�N1; N2� is a partition of N, N�V Ni� � Ni and these subtrees have only the
root in common.

We now modify E by replacing each edge-cost33 av;v0 by

av;v0 � minfav;v0 ;minfav;w : w A V N2gg; if v A VN1 ,

av;v0 � minfav;v0 ;minfav;w : w A V N1gg; if v A VN2 :

�
�6:1�

All other edge-costs remain unchanged; that is, av;w � av;w. Here, regard every
nonexisting edge as an edge whose cost is y. We denote the modi®ed enter-
prise by E. Let �N; c� be its game, and let �Ni; ci� be the restriction of �N; c� to
Ni, i � 1; 2.

Lemma 6.1. The optimal graph GN � �VN ;EN� is an optimal network also for
the modi®ed enterprise E.

Proof. Let v be an arbitrary vertex for which av;v0 < av;v0 , and let C denote the
unique cycle34 in �V N ;EN W f�v; v0�g�. The proof will follow if we show that
av;v0 V a�e� for all e A C, (see Ford and Fulkerson [1962]). Now, suppose,
without loss of generality, that v A V N1 and let w A VN2 be such that av;w �
av;v0 . Consider the unique cycle C0 in �VN ;EN W f�v;w�g�. Then, since GN is
optimal for E and �v;w� B EN , av;w V a�e� for all e A C0. However, all edges in
Cnf�v; v0�g are contained in C0, and we conclude that av;w � av;v0 V a�e� for
all e A C. 9

Let Ei, i � 1; 2, denote the subenterprise of E, determined by
�V i;Ei; a; b;Ni�, where V i � VNi , Ei � f�u; v� A E : u; v A V ig and a and b are
restricted to Ei and V i, respectively.

Corollary 6.2. GNi is optimal for the subenterprise Ei, i � 1; 2.

Proof. If GNi is not optimal for some i, then GN is not optimal for E, which
would contradict Lemma 6.1. 9

We have seen (Lemma 4.12) that the assumption that GN � �V N ;EN� is
a tree spanning all vertices implies that for every S JN, GS � �V S;ES� can
be assumed to be a tree. Here we shall show that if, in addition, we assume
that a�ev� � b�v�V 0, then the characteristic function c is nonnegative.

Lemma 6.3. Let E � �V;E; a; b;N� be a SNE and let �N; c� be its monotonic
representation. If GN is a tree spanning all vertices and a�ev� � b�v�V 0, for all
v in V, then cV 0.

32 There is no danger of confusion in this notation, because if GN is optimal for N, then GNi is
optimal for Ni.
33 For the sake of better visibility, we omit the parentheses in the subscripts, when we denote
edges.
34 Edge �v; v0� cannot belong to GN , since, otherwise, there would have been a spanning tree
cheaper than GN .
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Proof. Suppose that c�S� < 0 for some S. Consider the network �VN ; Ê�,
where Ê � ES W fev : ev A EN nESg. Just as in the proof of Theorem 4.5,
�V; Ê� is a connected network spanning V, whose cost, k�VN ; Ê�, satis®es
k�V N; Ê��c�S��a�EN nES��b�V NnVS�<a�ENnES��b�VN nV S�Ua�EN��
b�V N� � c�N�, because a�ev� � b�v�V 0. This contradicts the optimality of
GN . 9

Corollary 6.4. Under the conditions of Lemma 6.3, any connected subnetwork
Ĝ � �V̂; Ê� for which v0 A V̂ , satis®es k�Ĝ� � a�Ê� � b�V̂�V 0.

Proof. Let S be the set of players (possible empty) residing in V̂ , then a�Ê� �
b�V̂�V c�S�V 0. 9

Lemma 6.5. The game GEi
, that represents the SNE Ei � �V Ni ;ENi ; a; b;Ni�, is

precisely �Ni; c
i�.

Proof. We have to show that for each S in Ni, there is an optimal network GS,
made of edges and vertices contained in �Vi;Ei�. If S �q, it follows from
Corollary 6.4 that the root is optimal for GE as well as for GEi

, i � 1; 2. Let
S 0q and suppose, without loss of generality, that S JN1. By Lemma 4.12,
we can assume that GS is a tree. Now, for every edge �p; q� in GS, where
p A VN1 nfv0g and q A VN2 nfv0g, such that p (resp. q) is on the unique path
between q (resp. p) and v0 in GS we can replace the edge �p; q� in GS by an
edge �q; v0� (resp. �p; v0�). By (6.1), ap;q V av0;p and ap;q V av0;q. We then obtain
a tree ~GS which is decomposable into two subtrees ~GS1 � � ~V S1 ; ~ES1� and
~GS2 � � ~VS2 ; ~ES2� such that S JN� ~V S1�. They have only the root in common.
Now, k�GS�V k� ~GS� � k� ~GS1� � k� ~GS2�V k� ~GS1�. The last inequality fol-
lows from Corollary 6.4. Thus, we obtained an optimal network ~GS1 for
S HN1, which is contained in �V1;E1�, and this completes the proof. 9

Lemma 6.6. The game �N; c� is decomposable over N1 and N2; i.e., if S1 JN1

and S2 JN2 then c�S1 WS2� � c�S1� � c�S2�.

Proof. By Lemma 6.5, we can assume that an optimal network GSi in E is
contained in �V i;Ei�, i � 1; 2. Thus, the union of GS1 and GS2 is feasible for
S1 and S2, and c�S1� � c�S2�V c�S1 WS2�. Let GS1WS2 be an optimal sub-
graph for S1 WS2 in the game GE. For each edge �p; q� in this subgraph, where
p A VN1 nfv0g and q A VN2 nfv0g, such that p (resp. q) is on the unique path
between v0 and q (resp. p) in GS1WS2 , replace the edge �p; q� in GS1WS2 by an
edge �q; v0� (resp. �p; v0�). Note that by (6.1), ap;q V av0;q and ap;q V av0;p. We
obtain an enterprise ~GS1WS2 which is decomposable into two enterprises
~GS1 and ~GS2 , over S1 and S2. They have only the root in common. Now,

c�S1 WS2� � k�GS1WS2�V k� ~GS1WS2� � k� ~GS1� � k� ~GS2�V c�S1� � c�S2�. The
last inequality follows from the fact that ~GSi is feasible for Si, i � 2. 9

Corollary 6.7. For every S1 JN1 and S2 JN2, c1�S1� � c2�S2�U c�S1 WS2�.

Proof. By Lemma 6.6, c1�S1� � c2�S2� � c�S1 WS2�U c�S1 WS2�, because
�N; c� was obtained from �N; c� by reducing costs of some edges. 9
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Lemma 6.8. For S1 JN1 (resp., S2 JN2�, c1�S1� � c2�N2� � c�S1 WN2�
(resp., c1�N1� � c2�S2� � c�N1 WS2�).

Proof. By Corollary 6.7, c1�S1� � c2�N2�U c�S1 WN2�. Consider now the
enterprises E1 and E2. Let GS1

1 and GN2

2 � GN2 be optimal networks for S1 and
N2 in these enterprises, respectively (see Lemma 6.5). Connect the two
networks by replacing each edge �v; v0�, v A GS1

1 , such that av;v0 < av;v0 with
edge �v;w�, w A GN2

2 , for which av;v0 � av;w (see (6.1)). Denote by ~G the
resulting graph.

Since GS1

1 and GN2

2 are feasible for S1 and N2, respectively, it follows that ~G
is feasible in E for S1 WN2. Thus, c1�S1� � c2�N2� � k�GS1

1 � � k�GN2

2 � �
k� ~G�V c�S1 WN2�. We conclude that c1�S1� � c2�N2� � c�S1 WN2�. In a
similar fashion we prove the other part of the lemma. 9

We are now ready for the main results of this section.

Theorem 6.9. With the above notation, C��N; c�� � �2
i�1C��Ni; ci��.

Proof. Suppose ®rst that C�N; c�0q.
Let x � �xN1 ; xN2� be a core point of �N; c�. As such, it satis®es xNi�Ni� �

c�Ni�, i � 1; 2. Moreover, for any S1, S1 JN1,

x�S1 WN2� � xN1�S1� � xN2�N2�U c�S1 WN2� � c1�S1� � c2�N2�; �6:2�

by Lemma 6.8. Therefore, xN1�S1�U c1�S1�. This proves that xN1 A
C��N1; c1��. In a similar fashion, xN2 A C��N2; c2��. Note that consequently
C��Ni; ci��0q, i � 1; 2.

Conversely, let xi A C��Ni; ci��, i � 1; 2. Let x � �x1; x2�. Clearly, x�N� �
x1�N1� � x2�N2� � c1�N1� � c2�N2� � c�N1 WN2�, by Lemma 6.8. Moreover,
for any S, S JN, let S � S1 WS2, where Si JNi, i � 1; 2. Then, x�S� �
x1�S1� � x2�S2�U c1�S1� � c2�S2�U c�S1 WS2�, by Corollary 6.7. This shows
that x A C��N; c��.

If C��N; c�� �q then necessarily C��Ni; ci�� �q for i � 1, or for i � 2.
Therefore, the theorem is satis®ed also in this case. 9

We now turn to the nucleoli N and Ni of GE and GEi
, i � 1; 2. If the cores

of these SNGs are not empty (Theorem 4.5), their nucleoli and prenucleoli
coincide.35 Our purpose is to show that in this case the nucleolus of GE is a
cartesian product of the nucleoli of GEi

. To achieve this we need a few lemmas.

Lemma 6.10. Let x A C�N; c��, let x � �xN1 ; xN2� and let S � S1 WS2, where
S1 JN1, S2 JN2. With this notation,

c1�S1� ÿ xN1�S1� � c�S1 WN2� ÿ x�S1 WN2�;
c2�S2� ÿ xN2�S2� � c�S2 WN1� ÿ x�S2 WN1�

�
�6:3�

35 It is proved in Maschler, Peleg and Shapley [1979] that the intersection of the kernel and
prekernel with the core coincide. The nucleolus and the prenucleolus are obtained from these by
appropriate lexicographic minimization. Therefore they too coincide.
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and

c�S1 WS2� ÿ x�S1 WS2�V c1�S1� ÿ x1�S1�;
c�S1 WS2� ÿ x�S1 WS2�V c2�S2� ÿ x2�S2�:

�
�6:4�

Proof. Since x A C�N; c�, it follows that x�Ni� � ci�Ni�, i � 1; 2. By Lemma
6.8, c�S1WN2�ÿx�S1WN2� � c1�S1��c2�N2�ÿxN1�S1�ÿxN2�N2� � c1�S1� ÿ
xN1�S1�. The other part of (6.3) is proved in a similar fashion. By a similar
reasoning one ®nds from Corollary 6.7 that c�S1 WS2� ÿ x�S1 WS2�V
c1�S1� ÿ xN1�S1� � c2�S2� ÿ xN2�S2�V ci�Si� ÿ xNi �Si�, i � 1; 2, becausexNi A
C�Ni; ci�. 9

The following theorem was proved in Sobolev [1975], extending Kohlberg
[1971].

Theorem 6.11. A necessary and su½cient condition that a cost allocation x is
the prenucleolus of a cost game �N; c� is that for every real number a,

fS : c�S� ÿ x�S�U ag �6:5�

is a balanced collection, whenever it is not empty.

Theorem 6.12. Suppose that C��N; c��0q. With the above notation, the
nucleolus N��N; c�� satis®es N��N; c�� � �2

i�1�Ni��Ni; ci��.

Proof. Let x be a core point of �N; c�. Denote x � �xN1 ; xN2�. Let a be a real
number and consider the coalitions in the collection satisfying (6.5). By (6.3),
if S � S1 WS2 is in this collection, where Si JNi, i � 1; 2, then S1 WN2 and
S2 WN1 are also in this collection. Moreover, by (6.4),

Si A fS A Ni : ci�S� ÿ xNi�S�U ag; i � 1; 2: �6:6�

Conversely, if Si satis®es (6.6) for some i, then, by (6.3), Si WNj satis®es (6.5),
i; j A f1; 2g, i 0 j. Thus, the restriction of the incidence matrix of the collection
(6.5) to the columns that represent the players in Ni, becomes identical to the
incidence matrix of the collection (6.6), after removing duplications and rows
of 1's.

Let x be the nucleolus point of �N; c�, then the incidence matrix of (6.5) is
balanced for every a. Its restriction to the columns corresponding to Ni,
i � 1; 2, remains balanced. Indeed removing duplications and rows of 1's
from the restricted matrix does not spoil balancedness. Consequently xNi A
N�Ni; ci�, i � 1; 2.

The other direction follows from the fact that the nucleolus consists of a
unique point. 9

Example 6.13. Consider the 3-person enterprise E, given in Figure 14. Its cost
function is:

c�q� � 0; c�1� � 4; c�2� � 6; c�3� � 2;

c�12� � 7; c�13� � 6; c�23� � 7; c�123� � 9:
�6:7�
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The tree GN is obtained by deleting the edges �v0; 2� and �2; 3�. It is indeed a
union of two subtrees, having only the root in common. Its core/nucleolus are
not the cartesian products of the cores/nucleoli of the subgames on f1; 2g and
f3g. Rather they are the cartesian product of the subgames on these players
after we replace the cost of the edge �v0; 2� by 5. Indeed, the core of the orig-
inal enterprise is the line segment ��2; 5; 2�; �4; 3; 2�� and the nucleolus point is
�3; 4; 2�.

References

Aarts H, Driessen Th (1992) On the core-structure of minimum cost spanning tree games. Mem-
orandum No. 1085, Faculty of Applied Mathematics, University of Twente, The Netherlands

Aumann RJ, DreÁze JH (1974) Cooperative games with coalition structures. International Journal
of Game Theory 3:217±237

Bird CG, (1976) On cost allocation for a spanning tree: A game theoretic approach. Networks 6:
335±350

Claus A, Granot D (1976) Game theory application to cost allocation for a spanning tree.
Working paper no. 402, Faculty of Commerce and Business Administration, University of
British Columbia, Vancouver

Claus A, Kleitman DJ (1973) Cost allocation for a spanning tree. Network 3:289±304
Davis M, Maschler M (1965) The kernel of a cooperative game. Naval Research Logistics Quar-

terly 12:223±259
Ford LR Jr, Fulkerson DR (1962) Flows in networks. Princeton University Press, Princeton, New

Jersey
Granot D, Huberman G (1981) Minimum cost spanning tree games. Mathematical Programming

21:1±18
Granot D, Huberman G (1984) On the core and nucleolus of minimum cost spanning tree games.

Mathematical Programming 29:323±347
Kohlberg E (1971) On the nucleolus of a characteristic function game. SIAM Journal of Applied

Mathematics 20:62±66
Kuipers J (1994) Combinatorial methods in cooperative game theory. Ph.D. Dissertation,

Rijksuniversiteit Limburg te Maastricht, The Netherlands
Littlechild SC (1974) A simple expression for the nucleolus in a special case. International Journal

of Game Theory 3:21±29

Fig. 14. The decomposition requires modi®cation

Spanning network games 499



Littlechild SC, Owen G (1973) A simple expression for the Shapley value in a special case. Man-
agement Science 20:370±372

Littlechild SC, Owen G (1977) A further note on the nucleolus of the `Airport Game'. Inter-
national Journal of Game Theory 5:91±95

Littlechild SC, Thompson GF (1977) Aircraft landing fees: a game theory approach, The Bell
Journal of Economics 8:186±204

Maschler M, Peleg B, Shapley LS (1979) Geometric properties of the kernel, nucleolus, and
related solution concepts. Mathematics of Operations Research 4:303±338

Megiddo N (1978a) Cost allocation for Steiner trees. Networks 8:1±6
Megiddo N (1978b) Computational complexity and the game theory approach to cost allocation

for a tree. Mathematics of Operations Research 3:189±196
Nouweland van den A, Tijs S, Maschler M (1993) Monotonic games are spanning network games.

International Journal of Game Theory 21:419±427
Peleg B (1985) An axiomatization of the core of cooperative games without side payments.

Journal of Mathematical Economics 14:203±214
Peleg B (1986/87) On the reduced game property and its converse. International Journal of Game

Theory 15:187±200, Correction, International Journal of Game Theory 16:290
Peleg B (1992) Axiomatization of the core. Handbook of Game Theory with Economic Applica-

tions, In: Aumann RJ, Hart S (eds.), vol. 1, Elsevier Science Publishers B.V., North Holland,
Amsterdam-London-New York-Tokyo, pp. 397±412

Sobolev AI (1975) The characterization of optimality principles in cooperative games by
functional equations. In: Vorobjev NN (ed.) Mathematical Methods in the Social Sciences,
Proceedings of a Seminar, Issue 6, Vilnius, Institute of Physics and Mathematics, Academy of
Sciences of the Lithuanian SSR, pp. 94±151 (Russian, English Summary)

Tamir A (1991) On the core of network synthesis games. Mathematical Programming 50:123±135
Tarjan RE (1979) Applications of path compression in balanced trees. Journal of Association of

Computing Machinary 26:690±715

500 D. Granot, M. Maschler


