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The di¨erence between common knowledge of formulas
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Abstract. Common knowledge can be de®ned in at least two ways: syntacti-
cally as the common knowledge of a set of formulas or semantically, as the
meet of the knowledge partitions of the agents. In the multi-agent S5 logic
with either ®nitely or countably many agents and primitive propositions, the
semantic de®nition is the ®ner one. For every subset of formulas that can be
held in common knowledge, there is either only one member or uncountably
many members of the meet partition with this subset of formulas held in
common knowledge. If there are at least two agents, there are uncountably
many members of the meet partition where only the tautologies of the multi-
agent S5 logic are held in common knowledge. Whether or not a member of
the meet partition is the only one corresponding to a set of formulas held in
common knowledge has radical implications for its topological and combina-
torial structure.
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1. Introduction

The knowledge of agents has been understood primarily in two ways, syntac-
tically and semantically. Syntactic knowledge is expressed by sentences of a
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language or a logic (for example by the sentence kj f , meaning that agent j
knows that the sentence f is true). Semantic knowledge is expressed by subsets
of a state space. In game theory and economics, the semantic approach has
been the dominant mode to understanding knowledge and common knowl-
edge; for example, witness the semantic de®nition of common knowledge
given by Aumann (1976). Through semantic models for the syntax of a logic,
the two approaches to knowledge can be closely related.

We look at a logic with a corresponding canonical semantic model where
knowledge is de®ned by partitions and for which there is an equivalence be-
tween syntactic and semantic knowledge. We compare syntactic and semantic
common knowledge in direct parallel to the equivalence of syntactic and
semantic knowledge. With regard to common knowledge, we show that, un-
like with knowledge, there is a large discrepancy between the syntactics and
the semantics.

We consider the space of maximally consistent sets of sentences using the
multi-agent epistemic logic S5, implicitly equivalent to what are known in the
literature as the space of ``knowledge structures''; (see Fagin, Halpern, and
Vardi 1991). Because of their simplicity, we will call the sentences used in this
paper formulas. For every agent, we de®ne a partition of the space that we call
its knowledge partition. Two points belong to the same member of the knowl-
edge partition of an agent if and only if the agent knows the same set of for-
mulas at both points. The knowledge partition is a semantic concept de®ned
in syntactic terms (yet we will see later from a completeness theorem that this
de®nitional equivalence of semantic and syntactic knowledge carries deeper
signi®cance).

A formula is common knowledge if all agents know the formula, all agents
know that all agents know the formula, ad in®nitum. We de®ne two partitions
of the space that correspond to syntactic and semantic common knowledge.
For the former partition, two points belong to the same partition member if
and only if they share the same formulas in common knowledge. For the latter
partition, we take the meet of the knowledge partitions for all the agents, the
same de®nition for common knowledge introduced by Aumann (1976).

A member of the meet partition de®ning semantic common knowledge we
call a cell.

Throughout this paper we assume that there are denumerably many
formulas, which includes the case of ®nitely many agents and primitive
propositions.

We prove the following two theorems. Theorem 1: The partition de®ning
semantic common knowledge is ®ner than that de®ning syntactic common
knowledge, with either one cell or uncountably many cells corresponding to
any set of formulas held in common knowledge. Theorem 2: With at least two
agents, there exist uncountably many cells where only the tautologies of the
multi-agent S5 logic are known in common.

We prove Theorems 1 and 2 by introducing a topology on the semantic
state space and applying the Baire Category Theorem. With this topology, a
sequence of points converges to a point if every formula in the syntax true at
this limit point is true at all points in the sequence that come after some ®nite
stage. This topology is equivalent to that used previously; see Samet (1990).

We call a cell centered if and only if there is no other cell with exactly the
same set of formulas held in common knowledge. We de®ne a possibility set to
be a member of any one agent's knowledge partition.
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From any semantic model, there is a canonical map to the state space of
maximally consistent sets of formulas. If x in a semantic model maps to y in
this state space, it has been shown that the agents' knowledge at y may not
represent completely the knowledge of the agents at x; (see Fagin, Halpern,
and Vardi 1991, and especially Fagin 1994). We mean by this that there is a
semantic model with two points x and x� mapping both to the same point y,
yet there is an agent whose knowledge in the semantic model at x and x� dif-
fers in an essential way; the precise meaning of essentially equivalent knowl-
edge in semantic models concerns distinctions of knowledge de®ned using
trans®nite ordinals; (see also Heifetz and Samet 1997). Given there are ®nitely
many agents and primitive propositions, we examine a property of an element
in the state space that is equivalent to its representing completely the knowl-
edge of the agents at its inverse image in any semantic model, namely the
property that every possibility set in the cell containing this element is ®nite;
(see Fagin, et al, 1997). When a cell has this property, we say that it has ®nite
fanout. We consider another property of a cell, namely that every semantic
model that maps to this cell does so surjectively. Such a cell we call a surjective
cell. It is easy to show that all cells with ®nite fanout are also surjective cells.
We prove Theorem 3: given denumerably many formulas, if a cell is surjective
and is either centered or uncountable, then it has ®nite fanout. There is a ex-
ample of a countable, un-centered and surjective cell that does not have ®nite
fanout, (Simon 1998).

In addition to the main results, this paper has four additional contributions.
First, the proofs of the three theorems reveal a radical di¨erence in the

topological and combinatorial structure of cells depending on whether they
are centered or un-centered. As part of Proposition 2, we prove that a centered
cell is an open set relative to its closure. (On the other hand, a uncentered cell
is nowhere dense in its closure.) We say that there is n-mutual knowledge of a
formula f if for every string of agents j1; j2; . . . ; jn, of length n it holds that
agent j1 knows that agent j2 knows . . . that agent jn knows that f is true. Also
as part of Proposition 2, we prove that for every compact cell C, there is an n
such that if there is n-mutual knowledge at any z A C that a formula f is true it
follows that there is common knowledge in C that f is true. For a syntactic
characterization of a compact cell, see Feinberg (1997).

Second, Theorem 1 of this paper introduces two di½cult open problems
(also stated in the 6th section). Without the denumerability restriction on the
number of formulas, we have failed to exclude any cardinality, for example
the number 2, for the number of cells that can hold the same set of formulas in
common knowledge. The denumerability of the formulas is essential to most
of the important arguments in this paper. Also we have found no way to
prove Theorem 1 without the use of Baire Category, and therefore also no
way to strengthen Theorem 1 from a conclusion of uncountably many un-
centered cells to a continuum cardinality of un-centered cells (given that we do
not assume the Continuum Hypothesis).

Third, the main results of this paper bring us to what seems to be a para-
dox. Insofar as our agents have knowledge of their possibility sets, they have
knowledge of a cell. From an intuitive notion of the meaning of knowledge
and common knowledge, it seems that prior to the acquisition of their
knowledge we should be able to identify this cell to our agents without re-
vealing to them the rest of their knowledge; from Theorems 1 and 2 we cannot
do so without at least telling them considerably more than the formulas in
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common knowledge. There is a way to identify a cell without revealing more
information; but some may consider it to be a kind of cheating. Assuming the
axiom of choice, we can well order any set and then identify a cell from a
selection of a representative member point for each cell. However, we would
prefer a more impartial method of identi®cation, one based upon a well
ordering of the formulas and some canonical rule. For example, if a game of
incomplete information has a structure of states similar to that of a cell, we
would prefer to describe the game and its rules without stating explicitly a
possible situation (or all possible situations) which can arise in that game. The
set of formulas held in common knowledge can be identi®ed canonically from
a well ordering of the formulas, simply by listing them. We would like to have
a similarly straightforward method to identify any cell, something which may
be impossible.

Fourth, our discovery of a discrepancy between syntactic and semantic
common knowledge is largely independent of the discrepancies between syn-
tactic and semantic knowledge that have to do directly with cardinality. With
denumerably many formulas of the logic, an agent may have uncountably
many di¨erent possibility sets and some possibility sets with uncountably
many members. First, uncountably many possibility sets implies that the
knowledge of an agent cannot always be implied logically by a single formula
(or equivalently by ®nitely many formulas). Second, if an agent's possibility
set is uncountable, the agent could select alternatively as possible only a
proper subset of this uncountable set without changing the subset of formulas
it considers to be possible; (see for example Heifetz 1999). This second possi-
ble discrepancy is responsible directly for the need to consider hierarchically
constructed semantic models employing trans®nite ordinals to represent the
knowledge of the agents. (See Fagin 1994, Heifetz and Samet 1997, and es-
pecially Fagin, et al, 1999). However, Theorem 1 is a result that has cardi-
nality consequences but is not due to cardinality, since both an element in the
state space and syntactic common knowledge are de®ned by a subset of for-
mulas. There are, however, relations between our topic and the number and
size of possibility sets. Part of this relation ®nds expression in Theorem 3,
mentioned above, and we explore it further in Section 6.1. Some degree of
independence between our topic and the size of possibility sets is demonstrated
by Proposition 1: With denumerably many formulas and at least two agents,
there exists at least one cell with ®nite fanout such that only the tautologies
are held in common knowledge. Because there are other cells containing in®-
nite possibility sets such that only the tautologies are held in common knowl-
edge, Proposition 1 implies that the set of formulas held in common knowl-
edge does not determine whether a cell has ®nite fanout; (see above the
relationship between ®nite fanout and the representation of knowledge in se-
mantic models.) Therefore there is at least one important property of common
knowledge that is determined by membership in a cell yet not determined by
the set of formulas held in common knowledge.

The rest of this paper is organized as follows. In the second section, we
introduce the background de®nitions and results that allow us to state pre-
cisely and prove the main result, Theorem 1. In the third section, we prove
Theorem 1. The fourth section is devoted to the proof of Proposition 1 and
Theorem 2. The ®fth section explores the radical di¨erence in structure be-
tween centered and un-centered cells. In this section we prove Proposition 2
and Theorem 3. The sixth section examines possibilities for further research,
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and also contains a short survey of how the centered property relates to other
well known properties of cells, including properties concerning cardinality.

2. Background

Construct the set L�X ; J� of formulas using the denumerable sets X and J in
the following way:

1) If x A X then x A L�X ; J�,
2) If g A L�X ; J� then �: g� A L�X ; J�,
3) If g; h A L�X ; J� then �g5h� A L�X ; J�,
4) If g A L�X ; J� then kjg A L�X ; J� for every j A J,
5) Only formulas constructed through application of the above four rules are

members of L�X ; J�.

We write simply L if there is no ambiguity. We de®ne g4 h to be
: �: g5: h� and g! h to be : g4 h. For every ®nite subset K J J EK� f � �
E1

K� f � is de®ned to be 5
j AK

kj f , E0
K� f � :� f , and for iV 1, E i

K� f � :�
EK�E iÿ1

K � f ��.
A formula f A L�X ; J� is common knowledge in a subset of formulas

AJL�X ; J� if E n
K f A A for every n <y and every ®nite subset K J J.

Throughout this paper, the multi-agent epistemic logic S5 will be assumed.
For a discussion of the S5 logic, see Cresswell and Hughes (1968); and for the
multi-agent variation, see Halpern and Moses (1992) and also Bacharach, et
al, (1997). Brie¯y, the S5 logic is de®ned by two rules of inference, modus
ponens and necessitation, and ®ve types of axioms. Modus ponens means that
if f is a theorem and f ! g is a theorem, then g is also a theorem. Neces-
sitation means that if f is a theorem then ki f is also a theorem for all j A J.
The axioms are the following, for every f ; g A L�X ; J� and j A J:

1) all formulas resulting from theorems of the propositional calculus through
substitution,

2) �kj f 5 kj� f ! g�� ! kjg,
3) kj f ! f ,
4) kj f ! kj�kj f �,
5) : kj f ! kj�: kj f �.

A set of formulas AJL�X ; J� is called complete if for every formula
f A L�X ; J� either f A A or : f A A. A set of formulas is called consistent if
no ®nite subset of this set leads to a logical contradiction, meaning a deduc-
tion of f and : f for some formula f. We de®ne

W�X ; J� :� fS JL�X ; J� jS is complete and consistentg:

Any consistent set of formulas can be extended to a complete and consistent
set of formulas, a property we call the Extension Property, proven by applying
Lindenbaum's Lemma. A tautology of W�X ; J� is a formula f in L�X ; J� such
that f is contained in every member of W�X ; J�. A formula is possible if its
negation is not a tautology.
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For every agent j A J we de®ne its knowledge partition Q j�X ; J� to be
the partition of W�X ; J� generated by the inverse images of the function
b j : W! 2L�X ;J�, the set of subsets of L�X ; J�, de®ned by

b j�z� :� f f A L�X ; J� j kj f A zg:

Due to the ®fth set of axioms b j�z�J b j�z 0� implies that b j�z� � b j�z 0�. We
will write Q j if there is no ambiguity. A possibility set is de®ned to be a
member of Q j for some j A J and a cell is de®ned to be a member of the meet
partition Q :�5

j A J
Q j.

All the components of the proof of the following lemma can be found in
other papers (Lemma 4.1 of Halpern and Moses 1992, Aumann 1989):

Lemma 1. For any cell C of W�X ; J� ff A L�X ; J� j f is common knowledge in z
for some z A Cg � f f A L�X ; J� j f is common knowledge in z for all z A Cg �
f f A L�X ; J� j f A z for all z A Cg.

Proof: The di½cult direction is that starting with the assumption that f A z for
all z A C. By induction, it su½ces to show for a given z A C that kj f A z for all

j A J. By the Extension Property and the property that b j�z�J b j�z 0� implies

b j�z� � b j�z 0� we need only that f B b j�z� implies that f: f gW fkjg j g A
B j�z�g is consistent. We leave the rest as an exercise. The key step is to use
that �kj f �5�kjg� ! kj� f 5 g� is a theorem. r

For any subset LJ J the L-adjacency distance between any two points z; z 0
of W is de®ned to be rL�z; z 0� :� minfd j there is a sequence z � z0; . . . ; zd �
z 0; a function a : f1; . . . ; dg ! L and sequence of sets Di A Qa�i� such that zi

and ziÿ1 both belong to Dig, with rL�z; z� � 0 and rL�z; z 0� �y if there is
no such sequence from z to z 0. The adjacency distance is de®ned to be the
J-adjacency distance.

We de®ne a topology for W, the same as in Samet (1990). For every f A L
de®ne a� f � :� fz A W j f A zg. Let fa� f � j f A Lg be the base of open sets of
W. (A topology is de®ned by the fact that a� f �X a�g� � a� f 5 g�.) The to-
pology of a subset A of W will be the relative topology for which the open sets
of A are fAXO jO is an open set of Wg. For any subset DJW, D will stand
for the closure of D.

Due to Lemma 1, we have a map F from the meet partition Q to subsets of
formulas de®ned by F �C� :� f f j f is common knowledge in any (equiv-
alently all) members of Cg. Now we investigate this map.

For any subset of formulas T JL de®ne Ck�T� :� f f A L j there exists
a ®nite LJ J; an i <y and a ®nite set T 0JT with �5t AT 0E

i
L�t�� ! f

a tautologyg. We de®ne T�X ; J� �fCk�T� jT JL�X ; J�gnfL�X ; J�g, and
we say that T generates Ck�T�. If there is no ambiguity, we can write simply
T. Ck�T� is the set of formulas whose common knowledge is implied by the
common knowledge of the formulas in T.

Lemma 2. Ck is a closure operator on the subsets of L, meaning that Ck�T� �
T if T is already a member of T. Furthermore, the image of F : Q! 2L is a
subset of T.
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Proof: That it is a closure operator follows from the ®niteness of the i, T 0 and
L. For the rest, we need only to show for any S which is the set of formulas in
common knowledge at any point of W that Ck�S� � S. This follows directly
from the axioms and rules of inference of the S5 logic. r

A cell is centered if the mapF : Q!T is one-to-one at this cell. The map
F : Q!T is not surjective. Consider the set of formulas T � fkjx4
kj�: x� j j A J; x A Xg. Ck�T� does not include any x A X , however for every
member of W�X ; J� with T in common knowledge and every x A X either x or
: x will be in common knowledge. If T A T is in the image of F, we say that T
has actual common knowledge. Since we de®ned T so that L is not a mem-
ber, by the Extension Property all maximal members of T have actual com-
mon knowledge.

For every set of formulas T JL de®ne the set

Ck�T� :� fz A W j every member of T is common knowledge in zg:
For any T JL, Ck�T� is a closed set, since the Ck�T� is the intersection of
the sets a�E l

K f � for all l <y, ®nite K J J, and all formulas f in T.

Lemma 3. If C is a cell and S � F �C�, then C � Ck�S�.
Proof: Suppose that the cell C has an empty intersection with a� f � for some
formula f A L such that a� f �XCk�S� is not empty. Then we can conclude
by Lemma 1 that : f is common knowledge in the cell C, : f A S and : f is
true everywhere in Ck�S�, a contradiction. r

By Lemma 3 one would get the equivalent correspondence to F by de®ning
T� :� fCk�T� jT JL;Ck�T�0qg and for a cell C de®ning F ��C� to be
C. T� and T are in one to one correspondence, but in reverse containment
order, with Ck : T!T� de®ning the bisection. By Lemma 1 and the above,
T� is the set of non-empty closed subsets of W that are also unions of cells.

3. The central result

For every d <y, ®nite subset LJ J and z A W de®ne Rd
L�z� :� fz 0 j

rL�z; z 0�U dg. Notice that the cell containing z is the union of the Rd
L�z� for

all ®nite LH J and d <y.
The following lemma is a direct corollary of Lemma 2 of Samet (1990).

Lemma 4. For every z A W, ®nite subset LJ J, and 0U d <y, Rd
L�z� is a

closed set.

Recall that a set is de®ned to be meagre if its closure contains no nonempty
open set.

Theorem 1. The map F : Q!T is everywhere either one-to-one or
uncountable-to-one.

Proof: Let us assume that S A T;Fÿ1�S� is not empty, and that for some
z A C A Fÿ1�S�, some ®nite LJ J and some d > 0 the set Rd

L�z� is not meagre
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in Ck�S� and therefore contains a� f �XCk�S�0q for some formula f. Let
us assume that z 0 is a point in Ck�S�nC. It follows that a� f �XRe

M�z 0� �q
for every e <y and every ®nite M J J, since otherwise z 0 would be in
Rd�e

LWM�z�JC. By Lemma 1 we conclude that : f is common knowledge at z 0
and therefore z 0 cannot belong to any member of Fÿ1�S�.

Now we assume that Fÿ1�S� is not empty and for every z A C A Fÿ1�S�,
every d and every ®nite LJ J that the set Rd

L�z� is meagre in Ck�S�. Since
every member of Fÿ1�S� is dense in Ck�S�, if g B S then the closed set
Ck�S W fgg� is either empty or meagre in Ck�S�. Since L is countable,
6

g ALnSCk�S W fgg� � Ck�S�n�6
C AFÿ1�S�C� is a countable union of meagre

closed sets of Ck�S�. By Lemma 4 and our assumption, every C A Fÿ1�S� is a
countable union of meagre closed sets of Ck�S�. Therefore the Baire Category
Theorem implies that Fÿ1�S� is uncountable. q.e.d.

4. Existence

Before we prove Theorem 2 we need some preliminaries concerning the
semantic models for our logic, called Kripke structures.

In this paper, a Kripke structure is a quintuple m � �S; J; �P j j
j A J�; X ; c� where J is a set of agents, for each j A J P j is a partition of the
set S, X is a set of primitive propositions, and c : X ! 2S is a map from X to
the subsets of S, such that for every x A X the set c�x� is interpreted to be the
subset of S where x is true. (The usual de®nition of a Kripke structure is more
general, but this more restricted usage applies to the S5 logic.) We de®ne a
map am : L�X ; J� ! 2S inductively on the structure of the formulas in the
following way:

Case 1: f � x A X : am�x� :� c�x�.

Case 2: f � : g : am� f � :� Snam�g�,

Case 3: f � g5 h : am� f � :� am�g�X am�h�,

Case 4: f � kj�g� : am� f � :� fs j s A P A P j ) PJ am�g�g.

We de®ne a map fm : S ! W�X ; J� (see Fagin, Halpern, and Vardi 1991) by

fm�s� :� f f A L�X ; J�� j s A am� f �g:

We are justi®ed in using again the notation a for the following reason.
Consider the map c : X ! 2W de®ned by c�x� :� fz A W j x A zg. We have a

Kripke structure W � �W; J;Q1; . . . ;Qn; X ; c�. (Due to its canonical nature,
we index this Kripke structure with W.)

Theorem. For every f A L�X ; J�, f is a theorem of the multi-agent S5 logic if
and only if f is a tautology. Furthermore, fW�z� � z for every z A W.

For a proof of the ®rst part of this theorem, see Halpern and Moses (1992)
and Cresswell and Hughes (1968), and for how the second part follows from
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the ®rst part see Aumann (1999). We will call this result the ``Completeness
Theorem.''

We de®ne the depth of a formula inductively on the structure of the for-
mulas. If x A X , then depth �x� :� 0. If f � : g then depth � f � :� depth �g�; if
f � g5 h then depth � f � :� max �depth �g�; depth �h��; and if f � kj�g�
then depth � f � :� depth �g� � 1.

For a Kripke structure m � �S; J; �P j j j A J�; X ; c�, if s A am� f �, or equiv-
alently f A fm�s�, we say that f is true at s with respect to m. We say that f is
valid with respect to the Kripke structure m if f is true at s with respect to m for
every s A S. The Kripke structure is connected if the meet partition 5j A JP

j is
a singleton (equal to fSg). We de®ne a connected component of the Kripke
structure to be a member of this meet partition. Two points s; s 0 A S are adja-
cent if they share some member of P j for some j A J. We de®ne the adjacency
distance between any two points s and s 0 in S as minfd j there is a sequence
s � s0; . . . ; sd � s 0, a function a : f1; . . . ; dg ! J and sequence of sets
D1 A Pa�1�; . . . ;Dd A Pa�d� such that for all 1U i U d si and siÿ1 both belong
to Dig, with zero distance between any point and itself and in®nite distance if
there is no such sequence from s to s 0. By Lemma 4.1 of Halpern and Moses
(1992), the truth of any formula of depth d at a point s A S is determined by
the mapc and the agents' partition members that are of adjacency distance of
no more than d from s.

Lemma 5. a) Let m � �S; J; �P j j j A J�; X ; c� be a Kripke structure. If P is a
member of P j for some j A J then fm�P� is a dense subset of F for some F A Q j.

b) If additionally the Kripke structure m is connected, then fm�S� is con-
tained and dense in a cell of W.

Proof:
a) By the de®nition of fm; fm�P� must be contained in a single member F

of Q j. Let us suppose for the sake of contradiction that there is a formula
f with a� f �XF 0q and a� f �X fm�P� �q. The former implies that
: kj: f A z for every z A F and the latter implies that PX am� f � �q and
kj: f A z for every z A fm�P�, a contradiction.

b) The containment in a cell follows directly from the de®nition of the
map fm, since two points adjacent in m must also have adjacent images. As-
sume that the cell C contains fm�S� and that there exists a formula f with
q0C X a� f �JCnfm�S�. This means that : f is valid with respect to m, and
hence by Lemma 4.1 of Halpern and Moses (1992) that : f is common
knowledge in fm�s� for every s A S, a contradiction to Lemma 1, because it
would imply that : f is common knowledge in C. r

We say that a cell has ®nite fanout if every possibility set contained in the
cell is a ®nite set.

Proposition 1. With at least two agents there exists a cell of ®nite fanout that is
dense in W.

Proof: Since the set of formulas is denumerable, list all of the possible for-
mulas f f1; f2; . . .g in L�X ; J�. We leave as an exercise that one can create
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®nite connected Kripke structures m1; m2; . . . de®ned on sets S1;S2; . . . such
that for every i <y fi is true with respect to mi at some point si A Si and
there is a point ti A Si of adjacency distance from si of at least depth
� fi� � 2. We assume that all the sets Si are mutually disjoint, and we de®ne
the disjoint union S :�6y

i�1Si. We choose any two agents ji and j2 and

create a new connected Kripke structure m with the set S. For all j A J let F
j

i
be the member of P j

i containing ti, where P j
i is the agent j's partition of Si.

We de®ne

P j1 � 6
y

i�1
P

j1
i nfF j1

i g 6
i is odd

fF j1
i WF

j1
i�1g

and

P j2 � P j2
1 W 6

y

i�2
P j2

i nfF j2
i g 6

i is even

fF j2
i WF

j2
i�1g:

For j not equal to j1 or j2, we de®ne P j �6y
i�1P

j
i . We let c : X ! 2S be

de®ned by c�x� �6y
i�1ci�x�. Due to the fact that within an adjacency

distance of depth � fi� from si nothing has changed from the Kripke structure
mi, fi remains true at si with respect to m; therefore our connected Kripke
structure m is mapped to a cell that intersects am� fi� for every i, and hence this
cell is dense in W. We must show that m maps to this cell surjectively. By
Lemma 5a, every possibility set intersecting the image of fm is ®nite and is
mapped to surjectively. The rest follows by the de®nition of a cell as a member
of the meet partition. r

For ®nite X and J, one can observe that the dense cells de®ned by the
in®nite repetition of the ``no-information extension'' of Fagin, Halpern, and
Vardi (1991) have some possibility sets that are topologically equivalent to
Cantor sets. Therefore, in the context of ®nite X and J, we have shown already
that there exists are least two distinct dense cells, and therefore, by Theorem 1,
uncountably many. However, we prefer to have a proof of Theorem 2 that
does not make use of the ``no-information extension'' and is valid for count-
ably many agents or primitive propositions.

Proof of Theorem 2: By Proposition 1 there exists at least one cell dense in W.
By Theorem 1, suppose for the sake of contradiction that there is only one
such cell C. By the proof of Theorem 1 C must contain an open set of W,
hence also a� f � for some possible f. Since for every possible formula f A L
there is a ®nite Kripke structure such that f is true at some point of this Kripke
structure, (Halpern and Moses 1992), by Lemma 5b there is a ®nite cell
intersecting a� f �. By assumption, this ®nite cell must be C; and by the
density of C in W, W must be ®nite and equal to C ! This can be contra-
dicted in several ways, the easiest being a demonstration that there must be
at least two cells in W, for example the one resulting from the common
knowledge of x for all x A X and another resulting from the common
knowledge of : x for all x A X . q.e.d.
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5. Related results

5.1. The structure of cells

In this subsection, we expand on the topological and combinatorial charac-
terizations of centeredness and un-centeredness.

Corollary 1. A cell C is centered if and only if there exists some d <y, ®nite
subset LJ J, and z A C such that Rd

L�z� is not meagre relative to C.

Proof: By the proof of Theorem 1, it su½ces to prove for d <y and ®nite
LJ J that Rd

L�z� is not meagre in C if and only if it is not meagre in C. This

follows directly from the fact that C is dense in C and Rd
L�z� is a closed set

contained in C. r

Notice from the ®nite adjacency distance between any two points of a cell
that if C is a cell and Rl

L�z� contains an open set of C for some z A C, ®nite
LJ J and l <y then for all z 0 A C there exists an l 0 <y and a ®nite subset
M J J with Rl 0

M�z 0� containing this open set of C.
If one wants to show that a cell is centered, Corollary 1 is easier to use than

Theorem 1. If we want to apply Theorem 1, the following is useful.

Proposition 2. If C is a centered cell of W then for every z; z 0 A C there exists an
open set O, ®nite LJ J and an l <y such that z 0 A OXC JRl

L�z�. In par-
ticular C is open relative to C.

Furthermore, given that S � F�C�, consider the following properties:
(1) C is compact
(2) C is centered and S is maximal in T,
(3) the adjacency diameter of C is ®nite.
(1) and (2) are equivalent and they both imply (3). If there are ®nitely many
agents, then (3) implies both (1) and (2).

Proof: Let z be a ®xed member of C, a centered cell. Let LJ J and d <y be
such that Rd

L�z� contains a� f �XC 0q for some formula f in L�X ; J�.
Letting z 0 be any other member of C, by the Completeness Theorem there
is a ®nite subset K J J, an m and a sequence of agents j1; j2; . . . ; jm in K such
that : kj1: �� � � �: kjm: f � � � �� is in z 0. Considering any other z� A C X a
�: kj1: �� � � �: kjm: f � � � ����, we have q0Rm

K �z��X a� f �JC, and therefore
r�z; z��Um� d.

Due to Lemma 4 and the de®nition of centeredness, the only di½cult di-
rection to prove is ((1) and (2))) (3), which follows directly from the above
and compactness. q.e.d.

If a cell C is not centered, then from the proof of Theorem 1 and the Baire

Category Theorem CnC must be dense in C. Furthermore, for some S A T
with actual common knowledge it is possible that 6

C AFÿ1�S�C is meagre in

Ck�S�; from the proof of Theorem 2 we see this is true for the cells dense in W.
If a cell C is centered but not compact, from Proposition 2 we know that

CnC is closed and a non-empty union of cells, and therefore, by Lemma 1, is
equal to Ck�S� for some S A T, a fact that may prove to be very useful. This
S A T may, however, fail to be a member of actual common knowledge.
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5.2. Unique extension and surjectivity

We say that a point in W has unique extension if it has a unique extension to all
canonical semantic models associated with the trans®nite ordinals, (see Fagin,
1994. Unique extendibility is what we referred to in the introduction as the
ability of an element in W to represent completely the knowledge of the agents
at any point in a semantic model that maps to this element.) For ®nitely many
agents and primitive propositions, Fagin, et al, (1999) proved that a point of
W has unique extension if and only if the cell containing this point has ®nite
fanout.

Since the property of unique extension is a property of cells, hence that of
some form of common knowledge, it is natural to formulate a question con-
cerning common knowledge in parallel to what has been proven with regard
to knowledge. Given that a cell C does not have ®nite fanout, we know from
Fagin, et al, (1999) that there is a z A C, a Kripke structure m � �S; J; �P j j
j A J�; X ; c�, and a P A P j for some j such that fm�S�JC and fm�P�J
Fnfzg, where z A F A Q j. Does this imply also that there exists a Kripke
structure m̂ � �Ŝ; J; �P̂ j j j A J�; X ; ĉ� with fm̂�Ŝ�JCnfzg? We call this
Question 1, for which the general answer is no, (Simon 1998). However, if the
cell is either uncountable or centered, the answer is yes, and this is proven
by Theorems 3a and 3b, together composing Theorem 3, (stated in the
introduction). First we must characterize those Kripke structures that map
injectively into W.

We de®ne a Kripke structure m :� �S; J; �P j j j A J�; X ; c� to be small if
the map fm : S ! W�X ; J� is injective. From now on, when we say that a
Kripke structure m is small we mean that S is a subset of W, that the P j are
partitions of S ®ner than or equal to Q jjs :� fF XS jF A Q j; F XS 0qg
and that fm�z� � z for every z A S. By Lemma 5a we know that every member

of such a P j is dense in the member of Q j containing it.

Lemma 6. Any subset S JW�X ; J� and partitions �P j j j A J� of S with the
property that for every j and every A A P j A is a dense subset of some member
of Q j de®ne a small Kripke structure. (The proof is similar to the main proof in
Heifetz 1999)

Proof: We de®ne m :� �S; J; �P j j j A J�; X ; cjS�, where cjS�x� � c�x�XS. It
su½ces to show that am� f � � aW� f �XS for every f A L. We proceed by in-
duction on the structure of formulas. From c�x� � fz j x A zg the claim is true
for the formulas x A L with x A X , and from the de®nition of am if the claim is
true for f A L and g A L then it true for f 5 g and : f . We assume the claim
is true for f A L and consider kj f . We assume that z A F A Q j and z A A A P j.
If z A a�kj f �XS then F is contained in a� f �. AJF and the induction
hypothesis implies that AJ am� f � and z A am�kj f �. On the other hand, if

z A Sna�kj f � then F X aW�: f � is not empty, and by the density of A in F also

AX aW�: f � is not empty ± therefore AX am�: f � is not empty by the induction
hypothesis and z B am�kj f �. r

A. Heifetz (1999) has proven that, as long as the number of agents is at
least two, there are 2c distinct small Kripke structures for which the map into
W is also surjective, where c is the cardinality of the continuum. With the
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characterization of Lemma 6, one can obtain his result by re®ning only the
partition of one agent at only one possibility set F that is topologically equiv-
alent to a Cantor set. This follows because there will be 2c di¨erent ways to
partition this set F into two disjoint dense subsets.

Given a Kripke structure m � �S; J; �P j j j A J�; X ; c� and a subset AJS,

we de®ne the Kripke structure Vm�A� :� �A; J; �P j jA j j A J�; X ; cjA� where
for all j A J P jjA :� fF XA jF XA0q and F A P jg and for all x A X
cjA�x� � c�x�XA. If there is no ambiguity concerning the Kripke structure
m, we can replace Vm�A� by V�A�.

We de®ne a subset AJW to be good if for every j A J and every F A Q j

satisfying F XA0q it follows that F XA is dense in F. By Lemma 5a and
Lemma 6 A is good if and only if for every z A A fV�A��z� � z. By Lemma 5b
we know that a good subset of a cell must also be a dense subset of the cell.

The following lemma shows that to answer Question 1 we can equivalently
ask for the existence of some good subset A of C such that AJCnfzg.

Lemma 7. If m � �S; J; �P j j j A J�; X ; c� is a Kripke structure then A :� fm�S�
is a good subset.

Proof: If F A Q j intersects fm�S� let s A S be any point of S such that fm�s� is
in F and let s A P A P j. fm�P� is dense in F by Lemma 5a, hence fm�S� is dense
in F. r

Now we answer Question 1 for uncountable cells by combining Lemma 7
and Theorem 3a.

Theorem 3a. For every cell C there is a countable good subset AJC.

Proof: Letting F A Q j for some j A J and F JC, we choose any countable
dense subset F 0JF and let A1 :� F 0. We de®ne inductively a sequence of
countable sets A1;A2; . . . in the following way. For any ®xed k > 1; j A J, and
z A Akÿ1, let F � be the member of Q j containing z and let A

j
k�z� be any

countable subset of F � such that A
j
k�z�W �F �XAkÿ1� is a dense subset of F �.

We de®ne Ak to be Akÿ16j A J; z A Akÿ1
A

j
k�z�. The countable set A �6y

k�1Ak

satis®es the necessary conditions. r

Now we answer Question 1 for countable centered cells.

Lemma 8. Let C be a cell with no isolated points, let F�C� � S, and for every
formula f A L with a� f �XCk�S�0q assume that there is at least one
countable cell C 0JCk�S� with a� f �XC 00q, (necessarily the case if there is
at least one countable cell in Fÿ1�S�). It follows that C is not centered.

Proof: Let us assume, for the sake of contradiction, that C is centered, so that
by Theorem 1 there is a formula f such that C K a� f �XCk�S�0q. By the
hypothesis of the lemma, we must assume that C has countably many mem-
bers. Therefore C is a countable union of closed meagre sets of Ck�S�. By the
Baire Category Theorem, C could not have contained a� f �XCk�S�. r
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Theorem 3b. The subset of isolated points of a centered countable cell is a good
subset.

Proof: Let A be the subset of isolated points of the cell C. By Lemma 8 we know
that A is not empty. Assume that F A Q j contains some a A A. Let g A L be
a formula such that C X a�g� � fag. Let e A L be any formula such that
a�e�XF 0q. Since a�e�XF is a countable closed set, it has an isolated
point. Let f be a formula such that z is the only point of a� f �X a�e�XF .
Consider the formula h :� e5 f 5 �: kj: g�: It follows that z is the only
point of a�h�XC and thus is also a member of A. q.e.d.

Lemma 9. If A is a good subset of a cell C such that for every possibility set F
AXF 0q implies that AXF is closed, then A � C.

Proof: If F is a possibility set and F XA0q then AXF � F by the hy-
pothesis. The rest follows from the de®nition of a cell as a meet partition
member. r

Corollary 2. A centered cell of ®nite fanout contains only isolated points. In
particular, an in®nite centered cell of ®nite fanout cannot hold in common
knowledge a set of formulas that is maximal in T.

Proof: It follows directly from Theorem 3b and Lemma 9. r

Proposition 1 shows that the centered condition cannot be dropped from
the ®rst half of Corollary 2. The same holds for the second half of Corollary 2;
see the next section.

6. Related problems

6.1. Cardinalities

In this subsection, we survey the relations between various properties of cells.
We restrict ourselves in this subsection to a ®nite number of agents and
primitive propositions.

A possibility set F A Q j is expressible if there exists some formula f such
that the formulas held in common knowledge in any point of F together with
kj f are su½cient to imply kjg for all the formulas g that agent j knows in F;
(see Samet 1990 and Maruta 1997). It is not hard to show (given the S5 logic)
that if C is the cell containing F then F is expressible if and only if it contains
an open set of C if and only if F is an open set of C, (Maruta 1997).

Consider the following properties of a cell C:

(a) C is centered,
(b) at least one possibility set of C is expressible,
�b 0� all possibility sets of C are expressible,
(c) F�C� is maximal in T,
(d) C has ®nite fanout,
(e) F�C� � Ck�f f g� for some single formula f
(f ) C is ®nite.
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If (e) holds, then (a), (b), �b 0�, (c), and (f) are all equivalent, (Simon 1997).
(e) and (d) but none of the others can hold, as witnessed in Proposition 1.
(e) can be interpreted to be the common knowledge parallel to expressibility
for knowledge.

(b) implies (a), but the converse does not hold, even if one also assumes
(c); a counter-example is in Simon (1997). By Lemma 8, such a counter-
example must be an uncountable cell topologically equivalent to a Cantor set
and by Proposition 2 it has ®nite adjacency diameter.
�b 0� implies (d): A point in W is determined by the truth assignments for

the primitive propositions and the possibility sets of the agents containing the
point. As long as the agents and primitive propositions are ®nite, �b 0� implies
that all points of C are isolated. With the compactness of possibility sets, this
implies (d).

(c) and (d) together fail to imply (a); a counter-example is in Simon (1998).
�b 0� does not imply (c), as is demonstrated by any in®nite centered cell of

®nite fanout and Corollary 2.
The counter-example demonstrating (a) and (c) but not (b) used three

agents, (Simon 1997). The counter-example demonstrating (c) and (d) but not
(a) used four agents; and this counter-example has the additional property
that the cardinality of every possibility set in C is no more than 2, (Simon
1998). There is a counter-example demonstrating (c) but not (a) with three
agents, such that all the possibility sets in C for one special agent are topo-
logically equivalent to Cantor sets, (Simon 1997). We do not know if such
counter-examples can be found demonstrating the same principles but with
fewer agents.

6.2. Extending the central result

One can try to go further than Theorem 1, and ask the following question.

Question 2: If one does not assume the continuum hypothesis, can one prove
for every S A T that if Fÿ1�S� is uncountable then it has the cardinality of the
continuum?

Question 3: Does the conclusion of Theorem 1 hold for either arbitrary X
or J?

Conjecture 1: The answers to Questions 2 and 3 are no.

If the number of agents, but not the number of primitive propositions,
is countable, either yes or no as an answer to Question 3 seems plausible
to us.

Question 2 and Question 3 are related: if one must use Baire Category to
prove Theorem 1 then its generalization suggested by Question 3 is unlikely if
there are uncountably many formulas. Without assuming the continuum hy-
pothesis, a cover of a compact subset of real numbers by meagre closed sets
need not have the cardinality of the continuum; see Bartoszynski and Judah
(1995).
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6.3. Unique extension and surjectivity

In the proof of Theorem 3b we showed that if z is a cluster point of a possibility
set F of a countable centered cell C that there should be a Kripke structure
that maps to Cnfzg. We did not show this in the proof of Theorem 3a.

Question 4: If C is an uncountable cell and z is a cluster point of a possibility
set contained in C, what additional conditions are necessary, if any, for there
to exist a Kripke structure that maps to Cnfzg?

From Lemma 8, it follows that there can be no disconnected Kripke
structure that maps injectively to a countable centered cell.

Question 5: Does there exist a disconnected Kripke structure that maps in-
jectively to a countable un-centered cell?

The following question seems now to be a curiosity, but may prove later to
be important.

Question 6: Given a cell C and a subset AJC is it possible for fV�A��A� to be
contained in either A, C, or the closure of C and dense in the closure of C
without fV�A� � z for every z A A?

6.4. Other canonical models

For every ordinal a, let Ua be the universal semantic model associated with a,
as presented by Heifetz and Samet (1997), and we will assume that the number
of agents and primitive propositions are both ®nite. For pairs of ordinals
b < a de®ne pa

b to be the canonical surjective map from Ua to Ub. For every
j A J, let P j

a be the partition of Ua induced by the knowledge of agent j con-
cerning the subsets of Ub for b < a, as de®ned in Heifetz and Samet (1997).
There are at least three ways to formulate common knowledge in Ua for limit
ordinals a:

1) the meet partition Qa :�5
j A J

P j
a,

2) the equivalence relation @ on Qa de®ned by C @C 0 if and only if for

every b < a and every subset AJUb it follows that C J �pa
b �ÿ1�A� ,

C 0J �pa
b �ÿ1�A�, the analog to common knowledge of formulas for a � o,

3) the join partition 4
b<a
f�pa

b �ÿ1�A� jA A Qbg.
For a � o, the ®rst in®nite ordinal, and at least two agents we have shown
that all three of these types of common knowledge are di¨erent.

For every ordinal number a greater or equal to o we de®ne a correspond-
ing cardinal number f �a� in the following way:

f �o� � c, where c is the cardinality of the continuum,
f �a� 1� � 2 f �a�,
if a is a limit ordinal then f �a� :�Qb<a f �b�.

Conjecture 2: For every a > o, the cardinality of Ua is f �a� and for every
limit ordinal a there is a coset of the equivalence relation of 2) such that there
are f �a� di¨erent members of Qa in this coset.
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Insofar as this paper pertains only to knowledge at the ®rst in®nite level,
there may be an interesting relation between centeredness and subspaces of the
Mertens-Zamir probability spaces (Mertens and Zamir 1985). The most nat-
ural way to de®ne a probability measure on a Kripke structure is to determine
for every formula the probability that this formula is true. In this way, we are
led naturally to Borel measures on W, and we can take comfort in the fact that
all cells are Fs sets, (Samet 1990). However, if a cell C is not centered and
S � F �C� is the set of formulas held in common knowledge in C then some
Borel probability measures on the set of points holding S in common knowl-
edge and giving positive probability to every formula not in contradiction to S
may have little or nothing to do with the probability measures on C. (An
analogous comparison may be that between the Lesbesgue measure on R and
measures de®ned on the set of rational numbers). On the other hand, if a cell
C is centered then by Proposition 2 it is open in its closure, and hence any
Borel probability measure on the set of points holding S in common knowl-
edge and giving positive probability to every formula not in contradiction to S
generates naturally a probability measure on the cell C. However, a full in-
vestigation of the Mertens-Zamir spaces along these lines would require an
independent investigation of these spaces parallel to as not as an extension of
the results presented here.

One can investigate other logics for similar distinctions in the content of
common knowledge. For this paper, the multi-agent epistemic logic S5 was
chosen because this logic involves a topology and a partition concept of
knowledge that are relatively easy to work with. It would be interesting to
know if similar results can be obtained in other logics, with or without using
the same mathematical tools. Of special interest would be logics that allow for
explicit statements of common knowledge.
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