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1. Introduction

Bees and flowers are an ecological example of a
two-sided natural market (Heinrich, 1979; Peleg &
Shmida, 1992). Bees and flowers may be viewed as
engaging in an exchange of nectar for pollination
service that is analogous to exchanges in human
economic markets. In each natural community there
are many species of bee and many species of flower.
Each flower tries to obtain more effective visits (Selten
& Shmida, 1991) in order to obtain more fertilization
and to deliver more of its pollen to other flowers.

How many flower species will coexist in the same
community? How will the learning policy of the
foragers influence the characteristics of flowers (e.g. the
nectar production and display size)? In a previous
study, Peleg & Shmida (1992) analyzed the interactions
of bees and flowers in a model with several species of
each and described the equilibrium pattern with which
the several bee species visited the flower species (the

equilibrium behavior of the bees and flowers).
However, there were no dynamics in that work; that is,
there was no attempt to describe the way that either the
flower species or the bee species would adjust their
behavior over time if they were not at equilibrium.

In the present paper, we describe a dynamic
competitive interaction on one side of the market—
among the flower species—in a model having only one
species of bee. Bees are modeled as being able to
learn from experience and to adjust their foraging
patterns so that flower species providing more nectar
are visited more frequently. Our focus is on the
adaptation of the flower species. We model (i) bee
behavior that changes over a season in response to
changes in the nectar standing crops of the several
flower species, (ii) the pollination activity of the bees,
and (iii) the effect of bee behavior on the reproductive
success of the flowers from season to season. A
distribution of flower species that has no tendency to
change over time is a steady state of the model. Such
a steady state is dependent upon the nectar production
rate of each flower species and their respective displays
(i.e. their corollas). Conditions are shown under which
deceptive flowers can coexist with high nectar
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producers. Overall, the model explains two contra-
dictory aspects of pollination markets observed in
nature: On one hand, bees forage in a way that directs
their efforts toward flower species offering nectar
rewards, but, on the other hand, we observe steady
state equilibrium behavior in which bees continue to
visit flowers that provide relatively small nectar
rewards.

We develop a model of pollination having one
species of bee and several species of flower. Each
flower species is distinguished by its rate of nectar
production and the resources it devotes to display. The
flowers and bees are assumed to have identical lifetimes
that comprise a number of days within a single year.
At the start of the year the bees, lacking experience and
being in their naı̈ve phase, are attracted to flowers
according to the relative sizes of the flowers’ displays;
however, the bees soon become experienced and
continually monitor the nectar standing crops of each
species, altering their visiting habits over time so that
they always tend to visit most frequently the flower
species having the largest nectar standing crop. This,
in turn, tends to equalize the nectar standing crops
across species. From one year to the next the relative
abundance of the flower species can change in
accordance with the comparative reproductive success
of each species (Roubik, 1989). This, in turn, depends
upon the number of visits by bees to the flowers of each
species, the amount of energy devoted to reproduction,
and the relative abundance of each species in the
preceding year. We make no attempt to model
the absolute number of bees or of flowers, but do
assume the ratio of bees to flowers is the same from
one year to the next. The model described below has
been programmed so that it is possible to run
simulations.

The major result of the paper is to prove that, for a
very large class of models, a steady-state equilibrium
exists. We also compute several simulations with the
model which demonstrate that the dynamic processes
of the model can lead over time to a steady state and
the simulations provide some examples of steady states
that could arise.

The remainder of the paper is divided into five
sections. Section 2 gives some biological background
that influences the design of the model. The model
itself is described in Section 3 where it is seen that the
model is quite ambitious and complex. Then the
existence of steady-state equilibrium flower distri-
butions is proved in Section 4. This is the main
result of the paper. The computer simulations are
presented in Section 5, giving some hint about the
scope and variety of possible equilibria. Section 6
concludes.

2. The Biological Background of the Model

Some basic facts about the foraging activities of bees
should be elucidated. The assumptions of our model
are based upon these biological phenomena; however,
we do not follow these phenomena in every detail. The
ways in which the model diverges, and reasons for
the differences, are given after the biological facts
are presented. (Non-biologists are referred to Selten
& Shmida, 1991; Peleg & Shmida, 1992; Cohen &
Shmida, 1993; Kadmon et al., 1992; and Shmida et al.,
1993.)

1. Most wild bees are solitary, particularly in the
Mediterranean region and in the desert. Each
individual lives between four and six weeks. Each
female has her own nest and raises her brood alone.
There is no exchange of information about foraging
between bees; hence, each solitary bee can be
regarded as a ‘‘rational Darwinian individual.’’
(Hammerstein & Selten, 1992).

2. Field observations reveal, on the one hand, a strong
preference of bee species for specific flower species,
but, on the other, that the same bee species visits
several different flower species (Teras, 1985).
Individual bees show similar patterns; within short
periods of time, an individual sometimes shows a
strong preference for one species and sometimes
switches frequently among species (Heinrich, 1979).

3. Bees appear to lack any innate preference for
particular flowers (Menzel, 1985; Waser, 1983) and
their foraging patterns appear to be influenced by
experience (i.e. ‘‘learning by doing’’: Real, 1991).
The bees could learn by doing in either or both of
two respects. The first is that they learn from
experience which flowers will yield more nectar per
unit time that they expend (Heinrich, 1979). The
second is that, by specializing on a particular
species, a bee can reduce its handling time (the time
it takes the bee to land on the flower and to suck the
nectar: Laverty, 1980).

4. Bees visit flowers to collect nectar andpollen as food
resources. Each round trip of a female bee from its
nest is called a bout. The female bee leaves its nest
with an empty nectar tank (crop) and visits many
flowers from few individuals in order to fill its crop
with nectar and to collect pollen (O’Toole & Raw,
1991). Male bees spend most of their time looking
for females and during this process they visit many
flowers for nectar.

5. The individual flowers of many of the species we
investigated live for between 3 and 5 days (A.
Shmida, unpublished data). An individual plant
may have many blooming flowers and the total
blooming time of a plant is between 8 and 15 days.
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The population of one plant species will bloom for
3 to 5 weeks.

6. Plants produce nectar only to attract pollinators.
Pollen is produced for the fertilization of other
plants, but it is also collected by female bees as a
protein resource primarily for raising their young
(Waser, 1983).

7. During its lifetime a flower produces nectar only
while blooming (i.e. when the sex organs are
functional). We will assume that nectar is produced
continuously at a constant rate through the daytime
and at a lower constant rate through nighttime
(Kadmon & Shmida, 1992).

8. Flowers are the only nectar source for bees; however,
the nectar is hidden from view so that the bee can
learn about different flowers’ nectar standing crops
only by sampling. At the beginning of a bee’s life,
before experience is gained from sampling flowers,
the display of a flower attracts a bee’s attention.

Our model conforms to the preceding specifications
in many, but not all, ways. The model is based upon
solitary bees with no distinction being made between
male and female bees and no account taken of the
mating activities of bees (Shmida et al., 1993). Field
observation suggests that, even when bees change
flower species frequently, they typically remain within
one flower species during each bout. Our model
conforms to this visitation practice; however, we
assume that each plant has only one bloom, which is
relevant to the computation of the number of effective
visits to a flower species (Selten & Shmida, 1991). We
totally ignore the value of pollen to bees; rather, we
assume that they are only interested in nectar. In the
model individual plants bloom for three days in each
season. An assumption of the model is that the lifetime
of a bee and the total duration when a flower species
is in bloom are both about the same—roughly 4 weeks.
The foraging activity of a solitary bee is typically
temperature-sensitive; therefore it can vary through
the day according to whether or not it is raining or
whether the sun is behind clouds. We ignore these
within-day variations. While such variations may be
very important, we believe that the elements
incorporated into our model are sufficient to make the
model interesting and we would hope to expand this
research in various ways in the future. We assume no
innate preferences for particular flower species. At
first, the bees in our model are attracted by flowers’
displays. Then, as they gain information on nectar
standing crops by means of sampling, their experience
affects their visitation choices. Their choices are
continually being modified by their experience;
however, no matter how little nectar is found in a given

species, the bees will always minor (that is, they always
spend some time visiting all other species in the field
including those that yield the least nectar) and sample
any species from time to time (Heinrich, 1979).

3. The Model

We start with a fixed number, n, of flower species.
The subscript i refers to a species. These species differ
in the amount of energy they devote to a display (Di )
and the rate at which they produce nectar per daylight
hour (ri ). Time is divided into years, days, and periods.
These are indexed by y, d, and p, respectively. Each
year contains a number of active days (Td ) during
which the flowers bloom and bees forage. We assume
that the Td active days constitute a season during which
all species bloom according to the same pattern. That
is, the individual flowers of all species are assumed to
bloom for 3 days. The number of plants of each species
will change from season to season, but is constant
throughout any single season. The number of
blooming plants of a species is exactly the same on all
days of the season except the first two and the last two.
Thus, the population of plants of a single species is
divided into Td−2 cohorts of equal size. The first
cohort blooms on days d=1, 2 and 3. The second
cohort blooms on days d=2, 3 and 4, and so forth up
to the last cohort (number Td−2) that blooms on days
d=Td−2, Td−1, and Td . Consequently, the first and
last days of the season have only a third the number
of blooming plants as days 3 through Td−2, and days
2 and Td−1 have two-thirds as many. The cohort that
blooms during days d, d+1 and d+2 is referred to as
cohort d. The bees are assumed to be born on the first
day of the season and to live precisely for the duration
of the season. Consequently, any parameters of a bee’s
activity that are determined by the very early stages of
life are learned at the start of the season.

Within the lifetime of the flowers and bees, each day
is 24 hours long and is divided into s active hours and
24−s inactive hours. The active hours constitute
daytime when the bees are active while the inactive
hours are night-time. The flower species i produces
nectar at the hourly rate ri throughout the daytime
hours and at the hourly rate ri /2 throughout nighttime.
As a computational convenience daytime is further
divided into periods. The total energy of a flower is
defined to be one unit per period. Energy is divided
between reproduction, display and nectar production.
The cost per period of display is Di for species i and Di

is also taken as a measure of the size of the display.
With respect to nectar production, the situation is a
little more complicated because ri is naturally
measured in units such as fl (femtoliters) per hour. The
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total nectar production in a 24-hr period is
ri [s+1/2(24−s)]=ri (12+s/2), and it is reasonable to
suppose that the cost to the flower in energy of one
day’s nectar production is strictly proportional to its
total nectar production in the day. Thus if the cost of
nectar production is c per fl for any species, the total
cost for the day is cri (12+s/2). If there are Tp periods
in the active part of the day and we wish to do our
energy bookkeeping on the basis of active periods, then
the cost per active period is cri (12+s/2)/Tp=kri where
k is defined as k=c(12+s/2)/Tp .

3.1.     

The abundance of each flower species at the start of
year y is denoted fy=(f1y , . . . , fny ). The model does
not keep track of the total population of each species;
instead only relative population sizes are computed.
Thus an

i=1 fiy=1 at all times. The fitness of a species
depends on the energy allocated in display, energy
allocated in nectar production, and on the number of
effective visits by bees to flowers of each species during
the year. An effective visit by a bee to a flower of species
i is a visit that is immediately preceded by a visit to a
flower of the same species, so that the visit brings pollen
from one flower of the species to another. The number
of effective visits to cohort d of species i in year y is
denoted Viyd . The flower distribution in year y+1 is
given by eqns (1) and (2).

f*i, y+1= s
Td−2

d=1

fei
iy [1−kri−Di ][miV1/2

iyd

+(1−mi )Viyd ]= s
Td−2

d=1

f*i, y+1, d (1)

fi, y+1=
f*i, y+1

s
n

j=1

f*j, y+1

(2)

The symbol f*i, y+1, d in eqn (1) measures the relative
reproductive success of cohort d of species i in year y.
Equation (1) is the sum of the f*i, y+1, d over all the
cohorts of species i in year y, giving f*i, y+1, the relative
reproductive success of species i in year y. The relative
reproductive success of species i is given by eqn (2) in
the formof a normalization that ensures that the flower
distribution sums to 1. Equation (1) bears more
examination; f*i, y+1, d can be decomposed into three
pieces:

(i) fei
iy ,

(ii) 1−kri−Di ,

and

(iii) miV1/2
iyd+(1−mi )Viyd .

Term (i) is the previous year’s relative population of
species i raised to a power, ei , that is between zero and
one, which gives a slight relative advantage to species
that are not very numerous. Term (ii) is the energy that
remains to flower after deducting the energy expended
on nectar production and on display. As noted above,
total energy is normalized at one, Di is the energy used
for display, and kri is the energy used in nectar
production with k being the cost parameter described
above. Thus the residual energy is what is devoted to
reproduction. Term (iii) gives the effect on fitness that
is due to the number of visits. This term has two parts,
one is miV1/2

iyd representing female fitness, and the other
is (1−mi )Viyd representing male fitness. Generally, male
fitness is proportional to the number of visits, but
female fitness increases at a decreasing rate as the
number of visits rises (Willson, 1990).

3.2.    

Most of the complex interaction between bees and
flowers portrayed in our model is described in this
section. As seen above in eqns (1) and (2), the number
of visits by bees to the flowers of a given species is
important as is the amount of energy remaining
available for reproduction after deducting the energy
used for display and for nectar production. In this
section, we analyze how display and nectar production
influence the visits of bees to flowers, determining the
critical values Viyd .

During each of the Td days of the year when flowers
are open and bees are active, time is further divided
into s hours of daytime when the bees are out foraging
and nectar is being produced at a high rate, and 24−s

hours of night-time when the bees are not foraging and
nectar is being produced at a low rate. The s hours of
foraging are divided further into Tp time periods of
length d=s/Tp . The period length is unimportant as
long as it is sufficiently small. Ideally, we would use
continuous time; however, that appeared too difficult.
Thus our use of a short time period, d, is intended to
give a reasonable approximation to continuous time.
At the start of the first period of the first day we assume
Riy11=2ri ; that is, the initial nectar standing crop (Riy11)
is equal to the amount of nectar that the flower can
produce in two daytime hours. Throughout the active
part of the day bees are visiting the flowers and taking
nectar while the flowers are continually producing
more nectar. The bees distribute themselves at the start
of the first day of each year according to the displays
of the flowers and the relative abundance of each
species. That is, at the start of the first day of the
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year we assume that only the visible display put out by
a species will affect the visits of bees. Thus in the first
period of the first day of a year the proportion of bees
visiting flowers of species i is piydp where d=1 and p=1

piy11=
Difiy

s
n

j=1

Djfjy

(3)

The bees change their foraging habits according to
their experience at gathering nectar through the
periods of the day. The more nectar a species yields, the
more the bees favor it, but the bees always minor
(Heinrich, 1979). The extent to which the bees minor
is affected by the size of the species’ display. The
specific process is described in eqn (4). Let RM

ydp be the
largest nectar standing crop at time period p of day d
in year y (that is, RM

ydp=maxj Rjydp ). The distribution of
bees among flowers at period p is

p*iyd,p+1=lpiydp

+(1−l)& aDifiy

s
n

j=1

Djfjy

+
(1−a)Riydpfiy

RM
ydp ' (4)

piyd,p+1=
p*iyd,p+1

s
n

j=1

p*jyd,p+1

(5)

In eqn (4) note that the term in square brackets
consists of two terms weighted by a and 1−a,
respectively. The first term reflects minoring with the
extent of minoring depending on both the overall
minoring weight (a) and the relative visibility of the
particular species. The second term, Riydp /RM

ydp ,
weighted by 1−a, reflects the influence of the nectar
standing crop. The ratio of species i nectar standing
crop to the largest of any species, is necessarily between
zero and one; therefore, Riydp /RM

ydp=1 for the species for
which Riydp=RM

ydp and Riydp /RM
ydp is between zero and one

for all other species. Now note that the term in square
brackets is multiplied by 1−l while piydp enters the
determination of p*iyd, p+1 multiplied by l. The
parameter l indicates the speed of adjustment of the
bees to the information that they gather. If l=0 they
totally adjust within a single period. When lQ1, total
adjustment takes 1/(1−l) periods or d/(1−l) hours
(under stationary conditions). Equations (4) and (5)
are an example of a commonly used learning model
(Bush & Mosteller, 1955).

Next we must account for the time path of the nectar
standing crop of an average flower of each species as

the day progresses and also from day to day. To do this
we must first see how much nectar a single bee obtains
from each species during each period of the active part
of the day. The time for a round trip from the bees’ nest
to the flower site is t0, the time to get in and out of
position at a single flower is t1 and the time to extract
Riydp from a flower is t2Riydp (t1+t2Riydp is handling
time). Therefore, a bee that visits flowers of species i
during period p and that can carry a quantity b of
nectar in its crop needs

t0+(t1+t2Riydp )
b

Riydp

(6)

hours to extract an amount b of nectar and make a
round trip to the nest. The average number of visits
to individual flowers of species i that are needed to
collect an amount b of nectar is b/Riydp and the number
of visits of one bee to flowers of species i during
time period p is

V'iydp=
bd

t0Riydp+bt1+bt2Riydp

. (7)

The number of effective visits is less than V'iydp . We
suppose that a bee visits only one species on each bout;
therefore, the number of effective visits on each bout
is precisely one less than the number of visits; that is,
b/Riydp−1 on each bout. The assumption that bees do
not switch species during a single bout is not necessary
for the model, but we believe that it does only minor
violence to bee behavior and, at the same time, affords
a useful simplification of the model. Consequently, the
average number of effective visits during a single time
period by a bee that goes to species i is

Viydp=V'iydp−
V'iydp

b/Riydp

=
d(b−Riydp )

t0Riydp+bt1+bt2Riydp

(8)

Suppose there are NB bees, NF flowers in each cohort
(summed over all species), and that the bee distribution
is pydp=(p1ydp , . . . , pnydp ). There would be NFd=NF

blooming flowers on days d=1 and d=Td , NFd=2NF

on days d=2 and Td−1, and NFd=3NF on all other
days. There would be NBpiydpViydp individual effective
visits by all bees to flowers of species i and, as there are
NFdfiy individual blooming flowers of species i, the
total number of effective visits to a single blooming
flower of species i is viydp=NBpiydpViydp /(NFdfiy ). The
time period d must be made sufficiently short that
NBpiydpViydp /NFdfiyQ1 so that we may think of some
individual flowers of species i being emptied of their
nectar and others not touched. Our experience with
natural flowers and bees suggests that the nectar
standing crop of an unvisited flower does not
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materially change in 20 min or less. In our simulations,
d has values from about 5 to 16 min. The nectar
standing crop in period p+1 becomes

Riyd,p+1=$1−
NBpiydpV'iydp

NFdfiy %Riydp+dri

=$1−
bdNBpiydp

NFdfiy (t0Riydp+bt1+bt2Riydp )%
×Riydp+dri . (9)

After the active part of the day is over, the flowers
produce nectar while bees do not make visits. Thus for
24−s hours nectar is produced at the rate ri /2. By
daybreak the nectar standing crop has risen by
1/2(24−s)ri unless such an addition of nectar would
overflow the capacity of the flower. Thus the nectar
standing crop of an average flower of species i at the
start of a day, Riy, d+1,1, is the smaller of R*i and

Riy, d+1,1=$1−
NBpiydTpV'iydTp

NFdfiy %RiydTp

+1/2(24−s)ri . (10)

In summary, eqn (4) shows how the nectar standing
crop determines the visiting pattern of the bees within
each period. Equations (6) to (9) show how the visiting
pattern of the beeswithin a period determines that path
through the daytime of the nectar standing crop and
eqn (10) shows the further change of the nectar
standing crop at night. Equation (8) shows the total
number of visits made by a single bee, on average, to
all flowers irrespective of species.

3.3.       

    

In this section we show how Viy , the number of
effective visits received during a year by an average
flower of species i, is determined.

Viydp=
NBpiydpViydp

NFdfiy

=
dNBpiydp (b−Riydp )

NFdfiy [t0Riydp+bt1+bt2Riydp ]
(11)

is the number of effective visits to an average flower of
species i during period p of day d. Therefore,

Viyd=s
d+2

l=d

s
Tp

p=1

Viylp (12)

is the total number of effective visits by bees to an
average flower in cohort d of species i during year y.

Now that the model is completely specified, some
additional comments may be usefully made on it. The
bee behavior in eqns (4) and (5) has two implications
that deserve comment with reference to deceptive
flowers; that is, flowers that have large displays, but
that produce little or no nectar. First, the minoring
behavior of the bees will ensure that such flowers
continue to receive some visits even though the flowers
are not very rewarding for the bees. Second, a large
display coupled with a large value of l (slow
adjustment to information) will mean that deceptive
flowers can have a large number of effective visits from
bees. A more realistic model than ours would better
show the opportunities for deceptive flowers. For
example, if there were new bees emerging at a great rate
steadily over the blooming period of a deceptive
species, then these flowers could receive a very large
number of visits because they could take advantage of
the näiveté of the newborn bees (Shmida et al., 1993).
Deceptive orchids are common in the Mediterranean
region in early Spring. They take advantage of the
newly emerging solitary bees. Within our model, a
deceptive species would fare better if its period of
blooming were shorter than that of the other flower
species.

Carrying the preceding argument a bit further, the
larger the bee, the longer the blooming period of each
species, and the less environmental fluctuation, the
smaller the displays are likely to be. Larger bees can
forage in more variable conditions and they can fly
faster; therefore, they visit more flowers per unit time.
Longer blooming periods allow more time to discover
deceptive species, and stable environments make less
minoring and faster adjustment more profitable. If the
foragers are resident and territorial we should expect
the flower to have a smaller display and a larger
reward.

Another aspect of eqns (4) and (5) is the speed of
adjustment, l. Within our model, the interest of an
individual bee is best served by adjusting very quickly,
because the nectar standing crops of the flowers will
not change very rapidly. If all bees adjusted very
rapidly (e.g. if l=0), then the nectar standing crops
would probably oscillate wildly and most bees would
tend to be choosing the same species at any given
moment, leading to very low rewards. Although slow
adjustment does not seem to be in the interest of the
individual bee within our model, it would make
sense in a more sophisticated model. Real bees face
random fluctuation in nectar standing crops due, for
example, to weather patterns. A few days of cold or
rain can greatly alter the absolute and relative
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nectar standing crops of various species, as compared
with continuedwarm, dryweather.A severe stormmay
kill off a large portion of one species while doing little
damage to others. In addition, the personal experience
of one bee will often vary from the mean experience of
bees visiting the same species (Heinrich, 1979). That is,
a bee may visit a low yielding plant species, but may
chance to visit many high yielding individuals. This
experience will incline it to return to the same species
even though that species is not high yielding on
average. All of these considerations suggest that slower
adjustment is likely to benefit the individual in a
stochastic environment.

Related to the preceding, and also related to eqns (4)
and (5), is the observation that there are various forces
at work in our model that tend to prevent the
attainment of the ideal free distribution (IFD). In
addition to the slow adjustment and minoring, present
in our model, random elements that we do not
incorporate would also tend to preserve some
discrepancies from the IFD. Smaller Td , larger l, and
larger a all will increase deviation from the IFD. Field
observation by one of us near Jerusalem confirms that
there are some situations in which flowers with large
nectar standing crops are not visited for the first 6 to
8 days in bloom while flowers with large displays and
small reward are visited frequently.

Field observation also shows that the flower
resources (relative distributions of different flower
species) vary widely from one season to the next and
that certain bee species seem to specialize in different
species in different seasons. All of this supports the
view that learning behavior, such at that portrayed in
eqns (4) and (5), is more advantageous for bees than
is an innate preference of bees for particular species.
While the ability to learn has a cost in complexity, such
cost appears worthwhile due to the gain in
adaptability.

4. Steady State Flower Distributions

Taken together, eqns (1–12) describe a continuous
function that transforms fy into fy+1. That is, starting
from a flower distribution, these equations describe
the activities of bees and flowers through a season.
These activities determine the relative fitness of each
of the flower species which, in turn, determines
the flower distribution for the next season. To see
that this is true requires proceeding through a
recapitulation of the model. At the beginning of
the year fy is known and the nectar standing crops
of the flowers have constant starting values of
Ry11=(R1y11, . . . , Rny11)=2(r1, . . . , rn )=2r. Then
py11=f1(fy ) is specified in eqn (3).All later values ofRydp

and pydp are determined from fy and the earlier values
of Rydp and pydp . More precisely, eqn (9) gives Ry, d,p+1 as
a function of pydp , Rydp , and fy . For simplicity of
notation, this equation can be denoted
Ry, d,p+1=g1(pydp , Rydp , fy ) for p=1, . . . , Tp−1 and
d=1, . . . , Td . Only the overnight values Rydp are
unspecified; they are given by eqn (10) and may be
denoted Ry, d+1,1=g2(pydTp , RydTp , fy ). Equations (4) and
(5) give the values of pydp that follow the initial value.
In particular, py, d,p+1=f2(pydp , Rydp , fy )
for d=1, . . . , Td and p=1, . . . , Tp−1. And
Py, d+1,1=f2(pydTp , RydTp , fy ) for d=1, . . . , Td−1.
Equations (3), (4), (5), (9) and (10) are all continuous
and, starting from fy , they determine the bee
distributions at each period of each day of the season,
denoted py=(py11, . . . , py1Tp , . . . , pyTd1, . . . , pyTdTp ).
They also determine the nectar standing crops
of each species of flower at each period of each
day of the season, denoted Ry=(Ry11, . . . , Ry1Tp ,
RyTd1, . . . , RyTdTp ).

Thus, due to the recursive structure of the model, the
flower distribution fy determines the path of values of
the bee distribution, pydp , throughout the year y and fy

similarly determines the values of the nectar standing
crops, Rydp , at all time periods during the year. To see
this in more detail, note that py11=f1(fy ) and Ry11

depends on the nectar production rates, 2r. Then
py12=f2(py11, Ry11, fy )=f2(f1(fy ), 2r, fy ), so that py12

depends only on fy . It is possible to continue in this
way, one period at a time, to the last period of the last
day showing that each pydp is totally determined by fy .
The same can be done with Rydp . Therefore, we may
write py=f0(fy ) and Ry=g0(fy ) to represent the
relationships developed recursively above. The conti-
nuity of f1, f2, g1 and g2 imply that the functions f0

and g0 are continuous, which permits the following
lemma.

L 1. The functions f0 and g0, determined by
eqns (3), (4), (5), (9), and (10), are continuous.

Turning now to the determination of Vy =
(V1y1, . . . , Vny1, . . . , V1yTd , . . . , VnyTd ), these values are
from eqns (11) and (12) and the relationship may be
denoted Vy=h0(py , Ry , fy ). Using this function
together with f0 and g0 permits us to specify
Vy=h0(f0(fy ), g0(fy ), fy )=h1(fy ). This latter function
is also continuous by construction, permitting the next
lemma.

L 2. The function h1, given by f0 and g0 together
with eqns (11) and (12), is continuous.

Now note that eqns (1) and (2) specify fy+1=
h2(Vy , fy ), which is also continuous.
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L 3. The function h2, given by eqns (1) and (2),
is continuous.

A function transforming fy into fy+1 can now
be determined as follows: fy+1=h2(Vy , fy )=
h2[h1(fy ), fy ]=F(fy ). Thus fy is transformed into fy+1

by a continuous function. This function, F, that
transforms fy into fy+1, has a fixed point; that is, there
is a flower distribution f* that will persist over time if
it is once reached (i.e. a flower distributionf* such that
f*=F(f*)). This is expressed and proved in the
following theorem.

T. A steady-state flower distribution,
f*=F(f*), exists.

Proof. Aflower distributionf is at a steady state if and
only if f is a fixed point of F; that is, if f=F(f). The
function F is continuous and it maps a compact,
convex set, V={x $ Rn

+=an
i=1xi=1} into itself. There-

fore, the Brouwer fixed-point theorem applies and F
has a fixed point.q

This theorem does not inform us whether the
steady-state distribution is unique. Furthermore, the
practical relevance of such a distribution is small
because the actual path of the flower distribution over
time will be affected by elements that are outside of our
model. For example, the extent of cloudy or rainy or
unusually cold weather will affect the foraging time of
bees. More such weather will cut down on foraging
time, tending to reduce effective visits to all plant
species, but the relative sizes of different flowers’ nectar
standing crops will also be affected by weather
variations, causing changes in the bee distribution.
Consequently, some flower species may be hurt
relatively more than others by such conditions.
Weather also has other effects—the ability of plants to
grow will be differentially affected by variations in
weather.

We point these things out because we recognize the
limitations of the steady-state distributions that come
from this model. At the same time, such distributions
give a notion of the direction of forces at work in the
model and, therefore, such distributions have some
interest in spite of their shortcomings. It should be
noted that the role ofminoring is, in reality,muchmore
important than in our model. The steady, reliable
conditions in the model preclude the random
variations that, in nature, are likely to make minoring
a great aid to survival.

A final point about the results in this section is that
they can be generalized considerably beyond the model
considered here. Little else was used about eqns (1–12)
beyond their being continuous. Many modifications
and generalizations could be made to the model

without destroying continuity. We have not sought to
be as general as possible because we also wished to be
able to run computer simulations. Some of these are
reported in the next section.

5. Some Calculations

In Tables 1 through 7 below there appear some
calculations made with the model. Table 1 shows the
baseline parameter values and the long run equilibrium
flower distribution that results from those parameters.
Three flower species are used in all simulations and the
program used a large enough number of years that the
flower distribution converges to a long run steady
state. The parameters appearing in Table 1 provide an
equilibrium distribution in which the three flower
species are not greatly different in size. In each of the
other tables just one parameter, or parameter set, is
changed as compared with Table 1.

The parameters that are varied in the simulations are
the display parameters, Di (Table 2), the nectar
production rates, ri (Table 3), the parameter governing
the importance of the bees’s initial experience, a
(Table 4), and the upper limit of the flower’s nectar

T 1
Benchmark simulation

Parameter Value

n 3
t0 0.3
t1 0.6
t2 0.2
b 0.3
a 0.2
l 0.2

NB/NF 0.4

s 8
k 50
m1 0.8
m2 0.7
m3 0.87
R*1 0.2
R*2 0.1
R*3 0.4

r1 0.003
r2 0.003
r3 0.005
D1 0.2
D2 0.5
D3 0.1
Td 30
Tp 80

e1 0.6
e2 0.6
e3 0.6
f1 0.421
f2 0.222
f3 0.357
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T 2
Display parameter variations

Flower distribution Display parameters
f1 f2 f3 D1 D2 D3

0.421 0.222 0.357 0.2 0.5 0.1
0.448 0.219 0.333 0.15 0.5 0.1
0.387 0.229 0.384 0.25 0.5 0.1
0.394 0.272 0.334 0.2 0.45 0.1
0.448 0.175 0.378 0.2 0.55 0.1
0.399 0.222 0.380 0.2 0.5 0.05
0.446 0.227 0.327 0.2 0.5 0.15

standing crops, R*i (Table 5). Variations of these
parameters gives a sense of the response of the model
to interesting changes in some of their values.
Unreported simulations indicate that the number of
periods per day could vary quite widely without greatly
affecting the equilibrium flower distributions. The
effect of varying the number of days per season is
curious and discussed in conjunction with Table 6.
Lastly, Table 7 reports on variations in the adjustment
parameter, l.

Looking at Table 2 where the display parameters
vary, in all cases more display hurts the species. This,
then, means that each species is putting too many
resources into display (given the values of all other
parameters in the model). Display plays a role at the
start of the season in attracting bees. This attraction,
in turn, determines the initial bee distribution which
affects minoring. In our model the value of minoring
is, in fact, very low because the random elements that
are so important in real life are missing. In addition,
the simulations have, apart from those in Table 5,
the parameter a set to 0.2, a relatively low value.
This parameter is the weight given to first experience,
as compared with recent foraging experience, in
determining the distribution of bees among flowers. If
a were larger, display would be more valuable.

In Table 3 it is clear that as r1 increases species 1
benefits; however, as r2 increases species 2 is worse off.

The experience of species 3 is similar to that of species
2. That species 2 is worse off with higher nectar
production while the other two species are better off is
due to species 2 spending a very small fraction of its
total resources directly on reproduction. The fractions
for the three species are, respectively, 65%, 35%, and
65%. Resources for reproduction are, for species 2,
extremely scarce and increasing them by either
lowering r2 or lowering D2 helps it. If the nectar
production rate is set to zero for one species while it
remains at the benchmark value for the remaining two
species, the fraction for the species producing no nectar
is positively related to the display of the species. Species
2 with the largest display still accounts for 0.159 of all
flowers, while species 3 is reduced to 0.014. The
substantial population of species 2 in these circum-
stances is consistent with the observation that a flower
can do well as a ‘‘deceiver’’ when it has a large display.

The effect of variations in the parameter a is shown
in Table 4. As the parameter rises, the first term in the
square brackets in eqn (4) acquires increasing value.
That is, initial experience based on display increases in
importance for determining the distribution of bees to
flowers and the recent foraging experience shrinks in
importance. Not surprisingly, when a=1 or is close to
1, the flower distribution strongly parallels the relative
display strengths. When a=0, the second species, with
its very large display, suffers badly.

T 3
Nectar production variations

Flower distribution Nectar production rates
f1 f2 f3 r1 r2 r3

0.421 0.222 0.357 0.003 0.003 0.005
0.392 0.235 0.373 0.002 0.003 0.005
0.072 0.349 0.579 0 0.003 0.005
0.426 0.219 0.355 0.004 0.003 0.005
0.414 0.235 0.351 0.003 0.002 0.005
0.460 0.159 0.381 0.003 0 0.005
0.438 0.193 0.369 0.003 0.004 0.005
0.420 0.216 0.364 0.003 0.003 0.004
0.675 0.311 0.014 0.003 0.003 0
0.429 0.231 0.340 0.003 0.003 0.006
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T 4
Minoring variations

Flower distribution
f1 f2 f3 a

0.430 0.155 0.415 0
0.421 0.222 0.357 0.2
0.396 0.316 0.288 0.4
0.357 0.431 0.212 0.6
0.311 0.559 0.130 0.8
0.282 0.667 0.051 1

T 6
Variation in days

Flower distribution
f1 f2 f3 Td

0.421 0.222 0.357 10
0.421 0.222 0.357 20
0.421 0.222 0.357 30
0.551 0.266 0.183 31
0.590 0.283 0.127 32
0.630 0.326 0.044 33
0.617 0.318 0.065 34
0.610 0.315 0.075 35
0.610 0.315 0.075 40
0.610 0.315 0.075 50
0.610 0.315 0.075 60

Variations in the capacity of the flowers to hold
nectar (R*i ) are reported in Table 5. The values used
in simulations reported above are so large that they are
never a source of constraint on the model. Note that
our model has no random weather variations of sun,
cloud, or rain that might affect the bees; instead our
weather is sunny and warm for 8 hours each day and
inhospitable to the bees for 16. Consequently, the
flowers’ nectar standing crops are, through the bulk of
the day, very small. They build up overnight when 8ri

of nectar is produced with no harvesting occurring.
This means that the capacity of a flower must be near
to 8ri before capacity becomes a binding constraint
(i.e. 0.024, 0.024, and 0.04 respectively).

Equilibrium flower distributions are shown in
Table 5 for various values of R*i . Notice first that when
capacities are (0.03, 0.03, 0.05) there is no change in the
flower distribution as compared with (0.2, 0.1, 0.4), the
values used in prior tables, which indicates that the
flowers never carry more than this. When each new
day starts they carry at least (0.024, 0.024, 0.04). To
show the effect of R*i Table 6 shows flower
distributions as R*i is reduced. The fraction of species
1 flowers does not drop greatlywhenR*1 =0.005,which
ismuch below0.024. This indicates that daytime nectar
standing crops generally run well below the overnight
minimum of 0.024. Clearly this is to be expected. At
R*1 =0.002 f1 is still 0.302 and from 0.002 downward
f1 drops quickly. The final row of the table show the
flower distribution for (0.005, 0.005, 0.05). With both
species 1 and 2 at notably reduced capacities, species

2 loses very little and species 1 loses much more. The
obvious explanation is that species 2 derives much
more of its pollination from the effect of its display.

The effect of Td , the number of days in the season,
on the flower distribution is shown in Table 6. From
10 to 30 days, changes in Td appear to have no effect
and from 35 to 60 days changes also have no effect, but
within those two ranges the distributions are different.
In addition over the interval of 30 to 35 the distribution
changes with 33 days looking slightly anomalous. The
fewer the number of days, the better off was the flower
distribution with the largest display.

Changing the rate of adjustment has predictable
effects; when the rate becomes very slow, display takes
on relatively greater importance compared with nectar
production. This is because a larger display attracts
more bees at the start while a slower rate of adjustment
means that the bees take longer to move away from a
flower with low nectar production. Consequently, the
early attraction from display has more scope to aid the
flower than when adjustment is faster. With Tp=80 the
value of l must be very near to one if adjustment is
going to be ‘‘slow’’. For example, consider the extreme
case of a two species model with r1=0, r2q0, D1q0,
D2q0, and f1=f2. Then the initial bee distribution is
p=D1/(D1+D2) at species 1 and 1−p

T 5
Nectar capacity variations

Flower distribution Flower capacity
f1 f2 f3 R*1 R*2 R*3

0.421 0.222 0.357 0.2 0.1 0.4
0.421 0.223 0.356 0.03 0.03 0.05
0.373 0.241 0.386 0.005 0.03 0.05
0.302 0.268 0.430 0.002 0.03 0.05
0.173 0.315 0.512 0.001 0.03 0.05
0.100 0.340 0.560 0.0005 0.03 0.05
0.385 0.221 0.394 0.005 0.005 0.05
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T 7
Adjustment parameter variations

Flower distribution
f1 f2 f3 l

0.421 0.222 0.357 0.2
0.421 0.222 0.357 0.99
0.402 0.262 0.336 0.999
0.296 0.591 0.113 0.9999
0.283 0.660 0.057 0.99999
0.282 0.667 0.051 0.999999

succession of seasons for any finite number of flower
species. The principal result of themodel is the theorem
which proves that, for any parameter selection, a
steady-state flower distribution exists. Then some
simulations based on three flower species are carried
out to give the flavor of the model by illustrating
several equilibrium outcomes.

It is our contention that this model could prove
helpful in describing the field behavior of bees if
sufficient data could be obtained to fit the model. By
manipulating the parameters, many different behavior
patterns and flower distributions could be generated.
It should be emphasized, however, that the steady-
state distributions that our model would predict are
subject to many criticisms. One of the most basic is that
the model implicitly assumes that all influences that are
not explicitly in the model will operate in exactly the
same ways from year to year. Thus, for example,
weather conditionswill actually vary fromyear to year,
but this does not enter our scheme. In practice, some
species whose population is small may thrive in a year
inwhich theweather conditions favoring it occur. If the
bee population were to grow or shrink relative to the
flower population, the behavior of the model would
vary correspondingly. This, of course, could be easily
demonstrated by changing NB/NF.

The model developed here provides a means of
examining the dynamics of the pollination market.
There are various directions in which this effort could
be extended. For example, suppose a bee gains
experience (t1 falls) during a bout and consequently
has lower handling cost if it visits the same species at
the next bout. If the bee switches and then switches
back, it loses some of the skill it picked up. Another
extention would be to add additional bee species, with
each species having some specialization that would fit
it relatively better to a particular flower species.
Random weather patterns that affect the timing and
extent of foraging activity could be added, as could a
cost for nectar storage capacity of a flower (R*).
Finally, and very importantly, flower mutations might
be incorporated into the model and ESS equilibria
examined.
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