
First{Price Auctions when the Ranking of Valuations
is Common Knowledge�

Michael Landsberger

Department of Economics

Haifa University, Haifa, Israel

Jacob Rubinstein

Department of Mathematics

Technion, Haifa, Israel

Elmar Wolfstetter

Department of Economics

Humboldt{University, Berlin, Germany

Shmuel Zamir

Department of Statistics

Hebrew University, Jerusalem, Israel

August 1996 (revised)

Abstract

We consider an augmented version of the symmetric private value auction model

with independent types. The augmentation, intended to illustrate reality, con-

cerns information bidders have about their opponents. To the standard assump-

tion that every bidder knows his type and the distribution of types is common

knowledge we add the assumption that the ranking of bidders' valuations is

common knowledge.

This set{up induces a particular asymmetric auction model that raises serious

technical di�culties. We prove existence and uniqueness of equilibrium in pure

strategies in the two bidder case. We also show that the model generally has no

analytic solution. If the distribution of valuations is uniform, both bidders bid

pointwise more aggressively relative to the standard symmetric case. However,

this property does not apply to all distributions of valuations. Finally, we

also provide a numerical solution of equilibrium bid functions for the uniform

distribution case.
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1 Introduction

In the literature on private value auctions it is assumed that bidders know their type

whereas information about other bidders' is restricted to the distribution from which

types are drawn; the latter is assumed to be common knowledge. In reality, however,

it is often the case that bidders know more about their opponents. In particular,

bidders often have information about the ranking of their valuations.

For example, in a procurement setting, when engineering or architect �rms bid

for contracts, each of them may know who has the lower cost. This information

may result from experience accumulated from other bidding occasions or industrial

espionage. Firms often spend signi�cant resources to acquire information about their

rivals' cost and technology. Similarly, in art auctions bidders often revise their strate-

gies when they learn that some wealthy collector participates (\Getty factor"). In

privatization or takeover bidding, participants often have access to information about

each others' �nancial resources or other idiosyncratic features that a�ect bidders'

valuations. Finally, the ranking of valuations may also become known when several
identical items are auctioned sequentially and, after each round of bidding, bidders
�nd out who the winner was but do not observe the winning bid.

The present paper modi�es the standard symmetric independent private value auc-

tion model by assuming that the ranking of bidders' valuations is common knowledge.1

Surprisingly or not, this modi�cation raises serious technical di�culties because it
gives rise to a system of di�erential equations with non{standard singularities.

We prove existence and uniqueness of equilibrium in pure strategies in the case of
two bidders. Generally, the di�erential equations do not have an analytic solution.

The equilibrium bid function of the bidder with the lower valuation is always strictly
above that of his rival. In the particular case of uniformly distributed valuations,
the equilibrium bid functions of both bidders are above the equilibrium bid functions
of the standard symmetric case. Consequently, in this environment, the auctioneer
earns higher revenues in a �rst{price auction than in a second{price auction, not

only on average but even pointwise, for each con�guration of valutions. Hence, the
auctioneer should be interested to inform bidders about the rank order of valuations
if he has that information. This result is in the spirit of Theorem 8 in Milgrom

& Weber [1982], that claims, in the context of a common value model, that if the
auctioneer has private information, he can bene�t by making it public. However, as
we also show, the strong pointwise comparison obtained for the uniform distribution

case does not apply to all distributions of valuations.

There are many ways to model the fact that bidders have typically more infor-
mation about each other than assumed in standard auction models. In the present

paper we focus on the one particular case where the ranking of bidders' valuations is
common knowledge. This analysis is indicative of the complications and new results

1For basic results of the standard auction model see the surveys by McAfee and McMillan [1987],
Milgrom [1989], Matthews [1995] and Wolfstetter [1996].
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that may emerge if, to bridge the gap with reality, the standard model is augmented

so that bidders are better informed.

There is an emerging literature on \asymmetric auctions" (see Maskin and Ri-

ley [1994], [1995a], [1995b] and Plum [1992])2. This literature assumes that bidders'

valuations are drawn from di�erent probability distributions that are common knowl-

edge to all bidders. In our model, it is common knowledge that valuations are drawn

from the same distribution, but once bidders learn about the ranking of their valu-

ations, the subsequent conditional distribution functions di�er but are not common

knowledge since valuations which generate the conditional distributions are privately

observed. In that technical sense our model di�ers from the asymmetric auctions

considered in that literature.

2 The Model

Consider a symmetric �rst{price auction where an indivisible good is auctioned to two

bidders. The seller's reserve price is equal to zero. Valuations v are realizations of a
random variable V , independently drawn from a di�erentiable probability distribution
function G(v) with density g := G0 which is strictly positive on the support [0; 1]. We
also assume that G has a Taylor expansion around 0; G(x) = �x + �x2 + : : :, with

� > 0.
Valuations are privately observed, but each bidder knows whether his valuation

is the higher or lower of the two. Furthermore, the ranking of valuations is common
knowledge.

Denote bidders by H and L, where H stands for the bidder with the higher
valuation, and let bH and bL be the respective bid functions (pure strategies). We

restrict the analysis to equilibria in pure and strict monotone increasing strategies.

Equilibrium conditions Suppose bidder H has valuation v and bids x. If the rival

bidder plays the strict monotone increasing strategy bL, the probability that H wins
is

PrfH winsg = PrfbL(V ) < x j V < vg

=
PrfV < minf�(x); vgg

G(v)
; (1)

where � := b�1L . Therefore, the expected payo� of bidder H with valuation v when
he bids x is

�H(x; v) =
PrfV < minf�(x); vgg

G(v)
(v � x): (2)

2Plum [1992] establishes closed{form solutions for some class of parametric probability distri-
butions. Maskin and Riley [1994a], [1994b] address existence and uniqueness issues, and Maskin
and Riley [1995] focus on a comparison of expected revenues when random valuations are ordered
stochastically.
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To compute the best reply of H, note that in equilibrium minf�(x); vg = �(x)

because otherwise H could lower his bid and still win with certainty. Consequently,

the best reply is obtained by solving

max
x

G(�(x))(v � x): (3)

It is readily seen that there is a unique local maximum to this problem thus,

di�erentiating (3) with respect to x, and using the fact that in equilibrium x is equal

to bH(v) (or equivalently, v = �(x)), one obtains the di�erential equation

�0(x)g(�(x)) (�(x)� x)) = G(�(x)): (4)

Next, consider bidder L with valuation v who bids x, and write � for the inverse

of the bidding strategy bH . The probability of winning is

PrfLwinsg = PrfbH(V ) < x j V > vg

=
PrfV > v and �(x) > V gg

1 �G(v)
: (5)

Note that, in equilibrium, the bid xmust satisfy �(x) > v, because otherwise, in order

to have a positive probability of winning, L would have to raise his bid. Therefore,

PrfLwinsg = G(�(x))�G(v)

1�G(v)
: (6)

Computing the best reply, as before, one obtains the di�erential equation

g(�(x))�0(x)(�(x)� x) = G(�(x))�G(�(x)): (7)

Two boundary conditions apply:

�(0) = �(0) = 0 and

�(b) = �(b) = 1 for some b � 1:
(8)

The �rst boundary condition in (8) follows from the fact that in equilibrium a bidder
with v = 0 does not make a positive bid i.e., bH(0) = bL(0) = 0. The other boundary

condition is due to the fact that in equilibrium the maximum bid, b (that of valuation

v = 1), must be the same for both bidders, because if it di�ered, the bidder with
the higher bid could lower it, still win the object with probability 1, and thus strictly

increase his expected payo�. Consequently,

bH(1) = bL(1) = b: (9)
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3 Non-existence of an Analytic Solution

In this section we prove that the model does not have a closed{form solution even if

the distribution of valuations is uniform.

Assume G is uniform on [0; 1]. Rewriting (4), (7) and (8), we obtain

�0(x) =
�(x)

�(x)� x

�0(x) =
�(x)� �(x)

�(x)� x

�(0) = �(0) = 0

�(b) = �(b) = 1 for some b � 1:

(10)

Lemma 1 System (10) does not have an analytic solution.

Proof Evidently, �(x) = 4

3
x and �(x) = 2x is an analytic solution of the two di�er-

ential equations in (10) which satisfy the �rst boundary condition but violates the
second one. We now show that this is the only analytic solution of the system in (10)
without the second boundary condition.

Since both di�erential equations in (10) are singular at x = 0, to obtain �0(0) and
�0(0) we apply L'Hôpital's rule which gives �0(0) = 2 and �0(0) = 4

3
. Since every

solution around 0 can be expressed as an asymptotic expansion in x, the power series
expansions of �(x) and �(x) around 0 are

�(x) =
4

3
x+ �xk + : : : (11)

�(x) = 2x+ �xr + : : : : (12)

where k; r > 1 are the �rst powers whose coe�cients are non{zero.
Substitute (11) and (12) into the �rst di�erential equation in (10), rearrange terms,

and one obtains

4

3
x+ �kxk +

4

3
�xr + ��kxk+r�1 + : : : =

4

3
x+ �xk + : : : : (13)

If r > k > 1 then � = 0, which is a contradiction. If k > r > 1 then � = 0, again a

contradiction. Therefore, k = r which in turn implies

�(k � 1) +
4

3
� = 0: (14)

Applying similar reasoning to (11), (12) and the second di�erential equation in

(10), one obtains

(
k

3
� 1)� + 3� = 0: (15)
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These two linear equations in �, � have a non{trivial solution if and only if the

determinant of coe�cients vanishes, which implies 4� (k � 1)(k
3
� 1) = 0, i.e.

k = 2 +
p
13: (16)

This proves the Lemma since for a solution to be analytic, the exponents must be

integers.

Having proved that there is no analytic solution for the uniform distribution case

does not prove that there is no such solution for other distributions, although we

believe that this is indeed the case.

4 Existence and Uniqueness of Equilibrium

In this section we prove existence and uniqueness of equilibrium in pure strategies for

arbitrary probability distributions. We thus consider the system:

�0(x) =
G(�(x))

g(�(x))(�(x)� x)

�0(x) =
G(�(x))�G(�(x))

g(�(x))(�(x)� x)

9b 2 (0; 1) such that �(b) = �(b) = 1
�(0) = �(0) = 0:

(17)

We prove that this system, to which we refer as the constrained system, has a
unique solution. The proof follows from a sequence of Lemmas.

The main idea of the proof is to start from an arbitrary boundary point b, as
de�ned by the �rst boundary condition in (17), and move along the trajectories
governed by the di�erential equations in (17). In what follows, we refer to this system

as the partially constrained system (that is the system (17) without the boundary
condition at 0). Note, the partially constrained system can be written in the form

dG(�(x))

dx
=

G(�(x))

�(x)� x
(18)

dG(�(x))

dx
=

G(�(x))�G(�(x))

�(x)� x
(19)

�(b) = �(b) = 1: (20)

By a standard property of ordinary di�erential equations3, for every b 2 (0; 1) the

partially constrained system (18){(20) has a unique solution which we denote by �b
and �b. We show that there is exactly one b at which the second boundary condition
in (17) is also satis�ed i.e., �b(0) = �b(0) = 0.

We distinguish between two kinds of solutions to which we refer as 
1, 
2:

3See e.g. Corduneanu, [1971].
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De�nition 1 A solution of the partially constrained system belongs to 
1 if �b(x) > x

for all x 2 (0; b], ; it belongs to 
2 if �b(x) = x for some x 2 [0; b).

Lemma 2 Both sets 
1 and 
2 are not empty.

Proof We shall show that for b su�ciently small (�b; �b) 2 
1, while for b su�ciently

close to 1, (�b; �b) 2 
2.

(i) By our assumption � := minx g(x) > 0. We claim that for b = �=4 we have

(�b; �b) 2 
1. In fact we show that, for this value of b, both functions �b and �b are

above the line ` : y = 1=2 + (2=�)x (see Figure 1). By (17), the derivatives of the

functions are bounded by

�0b(x) � 1=(�b(x)� x)� and �0b(x) � 1=(�b(x)� x)�

In particular �0b(b) � 1=� and �0b(b) � 1=� which is smaller than 2=�, the slope of ` ,

and hence both functions are above ` in the neighborhood of b = �=4 (see Figure 1).

-

6

x10

1

2

1

�; �
�=4

�

�

Figure 1: The solutions of the partially constrained system
for small and large values of b.

x1

�

�

`
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Assume, contrary to our claim, that the functions do not lie entirely above `. Let

x0 be the largest crossing points of one of the two functions, say �b with `. Note that

since � � 1, the slope of ` is at least 2, so �b(x0)� x0 > 1=2 and hence �0b(x0) < 2=�

which means that �b(x) is bellow ` at the right of x0 which is in contradiction to the

fact that x0 is the largest crossing point of �b.

(ii) Let c := min1

2
�x�1

G(x)

g(x)
, then, by (17), �0b(x) > c=(1 � x) for all b > 1=2 and

x > 1=2. Take x1 > 1=2 such that c=(1 � x1) > 2 and b = (1 + x1)=2 (see �gure 1),

then

�b(x1) < �b(b)� 2(b� x1) = x1;

and hence (�b; �b) 2 
2.

For any b 2 (0; 1) de�ne xb 2 [0; b) by

xb =

(
0 if �b(x) > x 8x 2 [0; b)

minfxj�b(x) = xg otherwise.

Lemma 3 �b(x) > �b(x), for all b 2 (0; 1) and for all x 2 (xb; b).

Proof By the two di�erential equations and the �rst boundary condition in (17),
�0b(b) > 0 and �0b(b) = 0. Therefore, �b(x) > �b(x) at least in a neighborhood of b. If
our claim is false then let �x be the largest x in (xb; b) such that �b(x) = �b(x). Then

again �0b(�x) > 0 (since �b(x) > x in (xb; b) by de�nition of xb), and �0b(�x) = 0 and
hence, �b(�x+ �) < �b(�x+ �) for su�ciently small �, in contradiction to the de�nition
of �x.

For b 2 (0; 1) let Ib = fx 2 (0; b]j�b(x) � xg.

Lemma 4 If b0 > b, then �b(x) > �b0(x) and �b(x) > �b0(x), for all x in Ib \ Ib0.

Proof By the di�erential equations, �b(x), �b(x) are strictly increasing in Ib so
�b(b) = 1 = �b0(b

0) > �b0(b), and similarly �b(b) = 1 = �b0(b
0) > �b0(b). Hence,

the assertion is valid in some (left) neighborhood of b. Assume, it does not hold
everywhere in Ib \ Ib0. Then, there exists a largest (closest to b) crossing point z of
either the � functions or of the � functions. If this last crossing is of the � functions
only, we have �b(z) = �b0(z) and �b(z) > �b0(z) and therefore,

�0b(z) =
G(�b(z))

g(�b(z))(�b(z)� z)
<

G(�b0(z))

g(�b0(z))(�b0(z)� z)
= �0b0(z); (21)

implying that in the right neighborhood of z we have �b(x) < �b0(x), in contradiction
to the fact that z is the largest crossing point. Similarly, we can rule out the possibility

that �b(z) = �b0(z), and �b(z) > �b0(z). Finally, we rule out the possibility that z is
the crossing point both of the � functions and of the � functions i.e., �b(z) = �b0(z)
and �b(z) = �b0(z). In fact this means that the two di�erential equations in (17),
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with the boundary condition at z, have two distinct solutions in [z; b] namely (�b; �b)

and (�b0 ; �b0), violating the uniqueness of the solution to such a system (guaranteed

by standard results).

Lemma 5 There exists a unique b� that induces a solution of the partially constrained

system which belongs to both sets 
1 and 
2. This solution satis�es �b�(0) = 0 and

�b�(x) > x 8x 2 (0; b�].

Proof For convenience we shall write b 2 
i for (�b; �b) 2 
i. The monotonicity

properties established in Lemmas 3 and 4 imply that if b 2 
1 and b0 < b, then also

b0 2 
1. Similarly, if b 2 
2, and b0 > b, then also b0 2 
2. Let b
� := supfb j b 2 
1g.

We claim that this is the desired b�. In fact if b� 2 
1 \ 
2, then �b�(0) = 0 and

�b�(x) > x for all x > 0. We have thus to rule out the possibility b� 62 
1 \ 
2 which

(since 
1 [ 
2 = [0; 1]) consists of two cases:

Case 1: b� 2 
1 and b� =2 
2. Then, �b�(x) > x for all x 2 (0; b�], and hence (by con-

tinuity) �b�(0) > 0. Since the solution (�b�; �b�) is C
1, a known result about

stability of smooth solutions to ordinary di�erential equations with respect to

changes in initial conditions, implies the existence of nearby solutions (see Cor-
duneanu [1971], Theorem 3.4). In the present case this implies that there exist
a b > b� and yet b 2 
1, in contradiction to the de�nition b�.

Case 2: b� 2 
2, b
� =2 
1. Then, by de�nition, there exist 0 < xb� < b� where �b�(xb�) =

xb� (recall that, by its de�nition, xb� is the largest value in (0; b�) satisfying

this equality). Hence by Lemma 3, �b�(xb�) � xb� since the opposite inequality
would imply (by continuity) �b�(xb�+�) < �(xb�+�), in contradiction to Lemma
3. We now show that this inequality leads to a contradiction:

(i) If �b�(xb�) > xb� then (by the di�erential equation) �0b�(xb�) is �nite, and
therefore �b�(x) is C

1 on [xb�; b
�], and for x in the neighborhood [xb�; xb� + �], it

can be expressed in the form �b�(x) = xb� + 
(~x� xb�), where ~x 2 [xb�; x]. But
then it follows from the second di�erential equation in (17) that the singularity
of �b�(x) at xb� is not integrable, and therefore �b� cannot attain a �nite value
at xb�, a contradiction.

(ii) The only case that remains to be considered is �b�(xb�) = �b�(xb�) = xb� for
some �xed xb� > 0. We prove that (�b�; �b�) are C0 in [xb�; b

�]: In fact these

functions are smooth in (xb�; b
�], monotone increasing and bounded from below

by xb� in [xb�; b
�]. Therefore, for any monotone sequence xn # xb� we have also

the convergence: �b�(xn) ! �� and �b�(xn) ! ��, with xb� � �� � ��. If

�� > xb�, then we could pass to the limit x # xb� in the di�erential equations
(17) and thus, obtain a solution starting at b� which is di�erent from (�b�; �b�),

in contradiction to the uniqueness theorem. The case �� = bb� < �� is ruled out
by the same argument used in (Case 1), and we conclude that xb� = �� = ��,
establishing the continuity.
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The continuity implies that for a �xed small � > 0 (to be chosen later), there is

a small �(�) > 0 such that �b�(xb� +�)�xb� < �(�), and �b�(xb� +�)�xb� < �(�)

(and hence also �b�(xb�+�)�(xb�+�) < �(�), and �b�(xb�+�)�(xb�+�) < �(�)),

with �(�)! 0 as �! 0.

Consider now the partially constrained system on [xb�+�; b�]. Since the solution

is smooth there, we can �nd b < b� (and very close to it), so that �b(xb� + �)�
xb� < �(�) and �b(xb� + �) � xb� < �(�), with �(�) ! 0 as � ! 0. But then

�0b(xb� + �) > c=�(�) (for some c > 0), and since �b decreases as we move to the

left of xb� + �, the inequality �0b(x) > c=�(�) still holds in some small (but � {

independent) interval to the left of xb�. Since �b(xb�) is �(�){close to the diagonal

y = x, and its derivative is ��1(�) large, it must cross the diagonal at some point

0 < �x < xb� and thus b 62 
1, contradicting the de�nition b� := supfb j b 2 
1g.

Combining the above Lemmas we prove that:

Theorem 1 The auction game has a unique pure strategy equilibrium.

Proof We need to show that the full system in (17) has a unique solution. By Lemma
5 we know already that (�b�; �b�) solve the partially constrained system and satisfy
�b�(0) = 0. It remains to be shown that �b�(0) = 0. Recall that �b�(x) > x for
x > 0. Assume �b�(0) > 0. Then, by the �rst di�erential equation in (17), �0b�(0) = 0
(because G(0) = 0 and the denominator is positive), and therefore �b�(x) < x in

some small interval [0; �), in contradiction with Lemma 5. Therefore, (�b�; �b�) satisfy
also the second boundary condition in (17) as well. Uniqueness follows from the
uniqueness of b�.

5 Strategy Comparison

How does the introduction of common knowledge concerning the ranking of valuations
a�ect equilibrium bid functions? Does the bidder with the lower valuation always bid
more agressively? Does it a�ect the e�ciency of the �rst{price auction? And how

do equilibrium bid functions di�er from those obtained in the standard symmetric

independent private value case?

5.1 Ine�ciency of the �rst{price auction

Although Lemma 3 was established as part of the proof of Theorem 1, it is of inde-
pendent interest. It shows that the low valuation bidder bids higher than his rival

that is, in equilibrium, the bid functions bL and bH satisfy:

bL(v) > bH(v) 8v 2 (0; 1):
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The straightforward intuitive explanation is that otherwise the low valuation bidder

would stand no chance of winning, which cannot be part of an equilibrium. An

important consequence of this relationship between the bid functions is:

Corollary 1 When the ranking of valuations is common knowledge, the object is

awarded to the bidder with the lower valuation with positive probability; therefore, the

�rst price auction is ine�cient.

Proof For any x 2 (0; 1) we have �(x) > �(x). Using the monotonicity of these

functions, this implies that any Low bidder with valuation higher than �(x) bids

more than x while any High bidder with valuation smaller than �(x) bids less than

x. It follow that whenever both valuations are in the interval (�(x); �(x)), which

occurs with positive probability, the low valuation bidder wins the auction and gets

the object.

The ine�ciency is due to the fact that the two bid functions are apart, and hence

the distance between � and � is related to the \degree" of ine�ciency. For example, if
we measure the ine�ciency by the probability that bidder L, with the lower valuation,

gets the object then it can be easily veri�ed that:

PrfThe object is awarded to Lg = 2
Z b

0
(G(�(x))�G(�(x)))�0(x)g(�(x)) dx:

For the uniform distribution case, this measure simpli�es to 2
R b
0 (�(x)� �(x))�0(x) dx.

5.2 Comparison with the standard symmetric model

Does this modi�cation result in more aggressive bidding by one or both bidders,
relative to the standard symmetric independent private value model?

On the intuitive level, there is no indication for an unequivocal prediction. It
seems pretty safe to conjecture that the bidder with the lower valuation will bid more
aggressively. However, the impact of knowing that one has the higher valuation is

ambiguous.
To see why the bidder with the lower valuation should bid more aggressively, start

from the equilibrium of the game where the rank order is not known, and suppose

that one bidder is \secretly" informed that he has the lower valuation. Should he
revise his bid if he assumes that the rival continues to play the symmetric equilibrium

strategy? The answer is that he should bid more aggressively. This is so, because if
he adheres to the symmetric equilibrium strategy he stands no chance of winning. By

slightly raising his bid he can earn a pro�t with positive probability. Of course, the
argument is not yet complete since this information is common knowledge, and the

bidder with the higher valuation should not be expected to stick to the symmetric
information case behavior.
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What about the high valuation bidder? On the one hand, knowing that his rival

has a lower valuation may suggest that he can a�ord to make lower bids and still

have a good chance to win. On the other hand, expecting his rival to bid more

aggressively (by the previous heuristic argument) may lead him to bid higher. It is

not clear, intuitively, which of the two e�ects is stronger. Taking into account higher

levels of knowledge (knowing that the rival knows that he has higher valuation etc.)

makes the intuitive case for more agressive bidding even more problematic and less

convincing.

Propositions 1 and 2 show that both bidders may bid more aggressively but need

not to.

Proposition 1 If valuations are drawn from a uniform distribution, then, both bid

functions of high and the low valuation bidders are above the equilibrium bid function

in the symmetric case b(v)

b(v) < bH(v) < bL(v): (22)

Proof See Appendix.

Note, even though the item is not always awarded to the bidder with the higher
valuation, the winning bid is always higher than in the standard symmetric case, for

each con�guration of valuations. Therefore, the auctioneer's revenue is also higher
for each con�guration of valuations. Since bidding is una�ected by the assumed
common knowledge in a second{price auction, it follows immediately that a �rst{
price auction generates higher revenue to the auctioneer. This is in line with the
observed predominance of the �rst{price auction.

To further characterize the equilibrium bid functions we generated a numerical
solution of the system (10). The numerical integration of this system requires some
care because of the singularity at the origin. We used an asymptotic expansions given
by (11), (12), (15) and (16) to compute the value of � and � at dx > 0 for an arbitrary
choice of the free parameter �. We then divided [dx; 1] into small subintervals of size

dx, and integrated the partially constrained system obtained from (10) by ignoring
the second boundary condition, by a �nite di�erence scheme. We started with a small
positive � and repeated the procedure outlined above with increasing values of this

parameter, until we hit a numerical solution that also satis�es the second boundary
condition in (10). To ensure that the solution obtained is not a numerical artifact, we

performed similar calculations with di�erent choices of dx. The solution is plotted in
Figure 2.

Returning to the main question of this section, the following proposition shows
that this pattern of both players bidding more aggressively is not valid for all distri-

butions of valuations.

Proposition 2 There exists a distribution for which in equilibrium bH(v) < b(v), for

some values of v (i.e. the high valuation bidder bids less than what he would bid in
the symmetric case, somewhere).

11
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Figure 2: Equilibrium bid functions for the uniform distribution case

Proof See Appendix.

6 Conclusions

We have modi�ed the standard symmetric independent private value model by as-
suming that bidders know the rank order of their valuations. We proved existence and
uniqueness of equilibrium in pure strategies for the �rst{price sealed bid auction with

two bidders. In this equilibrium the low valuation bidder always bids higher. Conse-
quently, the �rst{price auction is not e�cient since it occurs with positive probability
that the object is sold to the bidder with the lower valuation. In the case of uniformly
distributed valuations, we showed that both bidders bid higher than in the standard
symmetric case. Therefore, the auctioneer's revenue is higher for all con�gurations of

valuations. Since bidding is una�ected by our modi�cation in a second{price auction,

this indicates that the auctioneer should prefer the �rst{price to the second{price
auction. However, as we also showed, the strong pointwise comparison obtained for
the uniform distribution case does not apply to all distributions of valuations.

A Appendix

Proof of Proposition 1: The proof of the proposition is obtained as part of a
proof of existence of a unique solution of constrained system (10). As a by product

12



we thus have two quite di�erent proofs of existence and uniqueness for the uniform

distribution case.

In general, a system like (10) has a solution if the corresponding partially con-

strained system (i.e., when the second boundary condition is ignored) has in�nitely

many solutions . We will show that this is indeed the case.

Restricting attention to the partially constrained system in (10) we observe the

following:

(i) �2 =
4
3
x; �2 = 2x is a solution.

(ii) every solution must satisfy �0(0) = 2, �0(0) = 4
3
(using L'Hôpital's rule and the

di�erential equations).

(iii) the asymptotic behavior of every solution, near x = 0 , is described by the

following power series expansions which are obtained by inserting k from (16)

into (11), (12)

�(x) =
4

3
x+ �x2+

p
13 + : : : (23)

�(x) = 2x+ �x2+
p
13 + : : : : (24)

Inserting k = 2+
p
13 into (14) and (15) yields two linearly dependent equation

and therefor they have one parameter family of solutions:

�(�) = �3�(
p
13 + 1)

4
; for all � 6= 0: (25)

De�ne the functions g(x) := �(x)=x and h(x) := �(x)=x. Rewriting the two �rst
di�erential equation in (10) in terms of g(x) and h(x) gives

xg0(x) =
g(x)

h(x)� 1
� g(x) (26)

xh0(x) =
h(x)� g(x)

g(x)� 1
� h(x) (27)

and dividing (26) by (27) yields

dg

dh
=

g � 1

h� 1

g(2 � h)

h(2 � g)� g
: (28)

Note that (26) and (27) are invariant to changes in the scale of x, i.e. if (h; g) is

a solution, so is (hc; gc) = (h(cx); g(cx)), for all c > 0. If we interpret the variable x
as `time' then c is the `speed' of motion along the trajectory of the solution in the

(h; g) plane. We shall use this phase{plane to show that there exist in�nitely many
solutions to (10) when the second boundary condition is ignored, and then show that

one and only one of them satis�es the second boundary condition in (10).

13



Although the following argument is self contained, it is based on methods ex-

plained in Boyce and DiPrima [1992, Ch. 9] where more detailed discussion and

examples can be found.

First we make the dynamic system (26) and (27) an autonomous system by chang-

ing variable from x to t; letting x = et, ~g(t) := g(et) and ~h(t) := h(et) we obtain

~g0(t) =
~g(t)

~h(t)� 1
� ~g(t) (29)

~h0(t) =
~h(t)� ~g(t)

~g(t)� 1
� ~h(t) (30)

Since dividing these two equations yield the same di�erential equation (28), the two

dynamic systems f(26), (27)g and f(29), (30)g have the same trajectories in the

phase plane (g; h) or (~g; ~h); they are governed by the di�erential equation. This

phase diagram is given in Figure 3.

-

6

�
��*

g

4

3

1 f� = 1
b 2 h

g = h

�1

Figure 3: Trajectories in the phase plane.

!
tP

PPi

q

�2

The point ! := (2; 4
3
) corresponds to the �rst boundary condition in (10); at

x = 0 in the system f(26), (27)g or t = �1 in the system f(29), (30)g. It is a

critical point of both systems which means that at this point (~h0; ~g0)(�1) = (0; 0)

and (h0; g0)(0) = (0; 0). The local behavior of (28) can be studied by �rst �nding
the possible directions of the trajectories emanating from the critical point ! in the
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phase space. To do this we consider the linear approximation to the dynamic system

around !: Let

� =

 
�1
�2

!
:=

 
g � 4

3

h � 2

!
=

 
~g � 4

3
~h� 2

!
;

be the vector of distance from !, then the linear approximation of the dynamic system

(f(26), (27)g) or f(29), (30)g) yields: 
�01
�02

!
=

 
0 �4

3

�9 2

! 
�1
�2

!
+O(�2):

The matrix of coe�cients in this equation has two eigenvalues:

� r1 = (1�
p
13) � �2:6 which corresponds to the eigenvector �1 =

 
1 +

p
13

9

!
.

� r2 = (1 +
p
13) � 4:6 which corresponds to the eigenvector �2 =

 
1�

p
13

9

!
.

The two directions �1 and �2 are indicated in Figure 3. The trajectory at the
direction of �1 is irrelevant to our dynamic system: Since r1 < 0, a solution of the
form � = �1 exp(r1t) does not satisfy � ! 0 as t! �1 (which is the �rst boundary
condition at x = 0). On the other hand, the trajectory starting at ! in the direction �2
is the \unstable manifold" of the system, that is, this is the solution that \leaves the

critical point ! as t increases from�1 (or as x increases from 0). This corresponds to
a negative value of � in (12) (see also (25)). The slope of this trajectory cannot become
positive before it hits the line g = h, because a reversal requires that it becomes zero
somewhere, which cannot occur as long as h < 2 (see Figure 3). Therefore, the
trajectory must cross the line g = h at some point that we denote by f�. While there

is a unique trajectory of this sort, it corresponds to in�nitely many solutions of the
system f(26), (27)g (or to the two di�erential equations in (10)) that di�er in their
\speed" c. To choose the \right" speed we choose c for which

gc(
1

f�
) = hc(

1

f�
) = f�: (31)

Since other solutions move either faster or slower along the same trajectory, there is

a unique solution that satis�es (31). Taking now b� = 1=f� we have:

�b�(b
�) = b�hc(

1

f�
) =

1

f�
� f� = 1

and

�b�(b
�) = b�gc(

1

f�
) =

1

f�
� f� = 1

Thus, we establish a unique solution to the full system (10) with b� 2 (1
2
; 1) (since

f� 2 (1; 2)).
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As we proved, along the equilibrium trajectory the function h is always smaller

than 2 which implies that h(x) = �(x)

x
< 2, and therefore �(x) < 2x. and by Lemma

3, �(x) < �(x) < 2x. Recalling that 2x is the inverse of the symmetric case bidding

function b(v) = v=2, we conclude that b(v) < bH(v) < bL(v)

Proof of Proposition 2: Consider the constrained system (17) with the class of

distributions for which we proved the existence and uniqueness of solution namely,

distributions G which have a Taylor expansion around 0;

G(x) = �x+ �x2 + : : : ;

with � > 0. This implies that the density g has the expansion (around 0):

g(x) = �+ 2�x+ : : : :

Recall that in the symmetric case, the inverse bidding function � := b�1 is deter-

mined by the following di�erential equation (which can be easily derived directly),

�0(x) =
G(�(x))

g(�(x))(�(x)� x)
with the boundary condition �(0) = 0: (32)

Using the Taylor expansion for G in equation (32), we obtain the following asymp-
totic expansion of �(x) near x = 0,

�(x) = 2x+ Cx2 +O(x3) with C = �4�

3�
:

On the other hand carrying out an asymptotic expansion for �(x) and �(x) (near
x = 0), solving the di�erential equations of the system (17), we obtain:

�(x) =
4

3
x+Ax2 +O(x3)

�(x) = 2x+Bx2 +O(x3)

with

A+
4

3
B = �16�

9�

3A� 1

3
B = �4�

9�
;

implying

B = �44�

39�
;

and therefore for � > 0 we have B > C, and hence �(x) > �(x) at least for some
interval near x = 0 that is, bH(v) < b(v) at least in some interval of valuations near

v = 0.
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