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We investigate the asymptotic behavior of the maxmin values of repeated
two-person zero-sum games with a bound on the strategic entropy of the maxi-
mizer’s strategies while the other player is unrestricted. We will show that if the

Ž .bound h n , a function of the number of repetitions n, satisfies the condition
Ž . Ž . nŽ Ž .. Ž .Ž .h n rn ª g n ª ` , then the maxmin value W h n converges to cav U g ,

the concavification of the maxmin value of the stage game in which the maximizer’s
actions are restricted to those with entropy at most g . A similar result is obtained
for the infinitely repeated games. Journal of Economic Literature Classification
Numbers: C73, C72. Q 2000 Academic Press

1. INTRODUCTION

We introduced the concepts of strategic entropy for repeated games in
Ž .Neyman and Okada 1999 for the purpose of studying some strategic

complexity issues involving finite automata and bounded recall. Specifi-
nŽ Ž ..cally, we considered the repeated game G c n , the n-fold repetition of a

two-person zero-sum stage game G, where player 1, the maximizer, is
Ž .restricted to strategies of complexity at most c n , a function of n, while

Ž .player 2 is unrestricted. The complexity of a pure strategy is either the
minimum number of states of an automaton or the minimum length of
recall required to implement the strategy. Our interest was in how the
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value of such a game depends on the complexity bound, and, in particular,
the relationship between the number of repetitions and the complexity
bound so that the unrestricted player can take advantage of the other
player’s strategic limitation. Mathematical formulation of the problem is

nŽ Ž .. nŽ Ž ..the asymptotics of the value of G c n , denoted by V c n , under
Ž .some condition on the order of magnitude of c n . The work thus follows

the line of research dealing with models of repeated games with exoge-
Ž .nously given strategic complexity bound, e.g., Ben-Porath 1993 , Neyman

Ž . Ž . Ž1985, 1997, 1999 , Papadimitriou and Yannakakis 1994, 1998 finite
. Ž . Ž .automata , and Lehrer 1988, 1994 bounded recall .

Ž .We answered in the affirmative the conjecture in Neyman 1997 for the
case of automata

c n log c nŽ . Ž .
nlim s 0 « lim V c n s U# G , 1Ž . Ž . Ž .Ž .

nnª` nª`

Ž .where U# G is the maximin value in pure actions of the stage game G.
Ž .The key observation leading to the proof of 1 is that the number of pure

strategies, up to the equivalence, implementable by automata of size
Ž . OŽm.number of states m is of the order m . Thus any probability distribu-
tion, i.e., mixed strategy, over such pure strategies has entropy at most
Cm log m for some constant C. This led us to examining repeated games
in which there is a direct restriction on player 1’s mixed strategies in terms

Ž .of strategic entropy again, there is no restriction on player 2’s strategies .
Strategic entropy of a mixed strategy is the maximum entropy of the play
generated by that strategy where the maximum is taken over the other
player’s pure strategies. We showed that if the strategic entropy bound
Ž . Ž Ž . . 1h n satisfies the condition lim h n rn s 0, then the maxmin valuenª`

nŽ Ž .. Ž .of the repeated game G h n converges to U# G . We also showed that
strategic entropy of a mixed strategy never exceeds its entropy. Hence the

Ž . Žcondition on the left-hand side of 1 implies that the strategic entropy in
nŽ Ž .. Ž Ž . .the automata game G c n satisfies lim h n rn s 0, which, by whatnª`

nŽ Ž ..we have proved, implies that the maxmin value of G c n converges to
Ž . nŽ Ž ..U# G . But the minimax theorem does apply to the game G c n , hence

Ž .the right-hand side of 1 .
Above we used strategic entropy as a technical tool. However, there is a

sense in which this concept is of an independent interest. Suppose that one
Žtries to encode the possible realizations of a mixed strategy or any random

.variable into sequences of 0s and 1s. Entropy of the mixed strategy is
then, roughly, the minimum number of bits required for this task. If one

1 The set of mixed strategies with bounded strategic entropy is not convex and thus the
minimax theorem does not apply.
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associates a unit cost to each bit used, the entropy can be considered the
Ž .expected cost of randomization. The strategic entropy in this context is a
measure of the cost of randomization in the play generated by the mixed
strategy.

nŽ Ž ..In this paper we study the asymptotics of the minimax value, W h n ,
nŽ Ž ..of G h n under the condition that the per stage strategic entropy bound

Ž .h n rn converges to an arbitrary fixed nonnegative number g . We will
nŽ Ž ..give a characterization of lim W h n as a continuous function of g .nª`

This function is derived from the underlying stage game. To be specific, we
will look at the stage game in which player 1 is allowed to use mixed
actions with entropy at most g . Then one computes the maxmin value of

Ž .such a game for each g G 0, and thus obtains a function U g . Our main
nŽ Ž .. Ž .Ž . Ž .theorem states that W h n converges to cav U g whenever h n rn

ª g , where cav U is the concavification of the function U, i.e., the
smallest concave function at least as large as U pointwise. We will give a
similar characterization of the maxmin value of the infinitely repeated
games in which there is a restriction on player 1’s strategies in terms of

Ž .strategic entropy rate, a concept introduced in Neyman and Okada 1998 .
In the next section, the basic notations and terminologies for the stage

game and the repeated games are introduced. We review information
theoretic concepts in Section 3 and the concepts of strategic entropy in
Section 4. Section 5 contains the main results.

2. THE STAGE GAME AND REPEATED GAMES

Ž .Let G s A, B, r be a two-person zero-sum game in strategic form,
where A and B are finite sets of pure actions for players 1 and 2,
respectively, and r : A = B ª R is the payoff matrix of player 1, the
maximizer. A mixed action is a probability distribution on the set of pure

Ž . Ž .actions. Let D A and D B be the sets of mixed actions of the two
players. We denote the maxmin ¨alue in pure actions and the ¨alue of G by

Ž . Ž . Ž . Ž .U# G and Val G , respectively. That is, U# G s max min r a, bag A bg B
Ž . w Ž .xand Val G s min max E r a, b . By the minimax theorem web g DŽB . ag A b

Ž . w Ž .xcan also write Val G s max min E r a, b .a g DŽ A. bg B a

Ž .Given a game G s A, B, r , we next describe a new game in which G is
Ž .played repeatedly with complete information and standard signaling .

Ž .`A play of a repeated game is an infinite sequence v s v , wherek ks1
Ž .v s a , b g A = B. We denote the set of all plays by V , i.e., V sk k k ` `

Ž .`A = B . This will be our basic space throughout the paper.
Ž .` Ž X .`Two plays v s v and v9 s v are said to be n-equivalent ifk ks1 k ks1

v s vX for k s 1, . . . , n. The n-equivalence is clearly an equivalencek k
relation on V . Denote by HH the finite partition of V into the n-equiv-` n `
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alence classes. Each n-equivalence class of plays is called an n-history and
it represents an information available to the players at the end of stage n.
We sometimes represent an n-history by exhibiting the first n coordinates,

Ž .e.g., v , . . . , v . We denote by AA the algebra on V induced by HH . Set1 n n ` n
� 4AA s f, V . Clearly, AA ; AA for every n s 1, 2, . . . . The s-algebra0 ` ny1 n

generated by D AA is denoted by AA .nG 0 n `

Ž .Denote by S and T the sets of measurable mappings from V , AAn n ` ny1
to A and B, respectively. Each element of S and T represents an n

Ž .‘‘strategy at stage n.’’ For each s g S , since s v depends only onn n n
Ž .`the first n y 1 coordinates of v s v , we sometimes writek ks1

Ž . Ž .s v , . . . , v . Similarly for t g T . A pure strategy of player 1 resp. 2n 1 ny1 n n
Ž .` Ž Ž .` .is a sequence s s s with s g S resp. t s t with t g T .n ns1 n n n ns1 n n

Thus the sets of pure strategies of the two players are S s = S andnnG1
T s = T . We consider S and T to be endowed with the productnnG1
topologies with the discrete topology on each factor. Denote by SS and TT

the Borel s-algebra of S and T , respectively. A mixed strategy of player 1
Ž . Ž . Ž Ž ..resp. 2 is then a probability on S, SS resp. T , TT .

Ž . Ž .`A beha¨ioral strategy of player 1 resp. 2 is a sequence s s sn ns1
Ž Ž .` . Ž .resp. t s t , where s resp. t is a measurable mapping fromn ns1 n n
Ž . Ž . Ž Ž ..V , AA to D A resp. D B . By a slight abuse of notation we denote` ny1

Ž . Ž .by D S and D T the sets of all mixed and behavioral strategies of players
1 and 2, respectively. A pure strategy is considered to be a special
Ž .degenerate case of mixed and behavioral strategies.

Ž . Ž .`Every pair of pure strategies s, t induces a play v s v g V ,k ks1 `

where v is defined inductively ask

s , t for k s 1Ž .1 1
v s a , b sŽ .k k k ½ s v , . . . , v , t v , . . . , v for k ) 1.Ž . Ž .Ž .k 1 ky1 k 1 ky1

Note that s and t , being AA -measurable, are constant everywhere.1 1 0
Ž . Ž . Ž .Accordingly, every pair s , t g D S = D T induces a probability Ps , t

Ž . Ž .on V , AA . Equivalently, s , t induces a sequence of random actions, or` `

Ž .` Ž . Ž .a random play, X , where X s a , b is a A = B -valued randomk ks1 k n n
variable. The expectation operator with respect to P is denoted by E .s , t s , t

For each positive integer n, we define the n-average payoff function
Ž . Ž . n Ž .r : S = T ª R by r s, t s 1rn Ý r a , b . Its bilinear extension ton n ks1 k k

Ž . Ž . Ž . wŽ .D S = D T is also denoted by r , i.e., r s , t s E 1rnn n s , t
n Ž .xÝ r a , b .ks1 k k
In this paper we study two classes of repeated games:

Finitely repeated game Gn with n-average payoff r .n
` Ž .Undiscounted Game G , where the payoff to player 1 from s, t is

evaluated by the Cesaro limit, if it exists, of the induced sequence of stage`
Ž .payoffs, i.e., lim r s, t .nª` n
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For the undiscounted game G`, the above Cesaro limit does not neces-`
sarily exist. We will supplement this loose end by being explicit in the
description of the solution concepts in Section 5.2.

For each positive integer n, two pure strategies of a player are said to be
n-equivalent if, against any pure strategy of the other player, they induce
n-equivalent plays. If two pure strategies induce the same play against any
strategy of the other player, they are said to be equï alent. Extending this
notion to mixed and behavioral strategies, we say that two strategies of a
player are n-equivalent if, against any strategy of the other player, they

Ž .induce the same probability on V , AA . The equivalence of two strategies` n
is similarly defined by replacing AA by AA above. Perfect recall implies thatn `

every mixed strategy has an equivalent behavioral strategy and vice versa
Ž .Kuhn’s theorem .

3. INFORMATION THEORETIC CONCEPTS

Let X be a random variable which takes values in a finite set Q and
Ž . Ž . Ž .whose distribution is p g D Q , i.e., p u s Prob X s u for each u g Q.

Ž .DEFINITION 3.1. The entropy H X of X is defined by

H X s y p u log p u s yE log p X ,Ž . Ž . Ž . Ž .Ý X
ugQ

where 0 log 0 is defined to be 0.

To fix the unit, we take the logarithm to the base 2, and we say that
entropy is measured in bits. The entropy of a random variable depends
only on its distribution and not on the particular values it takes. Thus we

Ž .also write H p for the quantity in the above definition and regard H as a
Ž .function on D Q .

Entropy possesses a number of desirable properties as a measure of
uncertainty of a random variable or a probability distribution.

� 4 Ž . Ž .EXAMPLE 3.1. Let Q s 0, 1 . Then for each p s p , 1 y p in D Q0 0
Ž .or any random variable X with this distribution ,

H p s H X s yp log p y 1 y p log 1 y p .Ž . Ž . Ž . Ž .Ž . 0 0 0 0

Ž .Figure 1 shows the graph of H p which is parameterized by p .0
Note that if p s 0 or 1, then there is no uncertainty involved, and the0

entropy is indeed 0. On the other hand, the highest value of the entropy,
1 Ž .log 2 s 1, is achieved at p s . Also observe that H p is strictly concave0 2

and continuous.
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FIG. 1. The graph of an entropy function.

The next proposition summarizes the properties of the entropy. They are
Ž .easily verified. See, e.g., Cover and Thomas 1991, Chap. 2 .

PROPOSITION 3.1. Let X be a random ¨ariable with a finite range Q. Then

Ž . Ž . < <1 0 F H X F log Q ,
Ž . Ž . Ž .2 H X s 0 if and only if Prob X s u s 1 for some u g Q;

Ž . < < Ž . < <H X s log Q if and only if Prob X s u s 1r Q for e¨ery u g Q,
Ž . Ž .3 H is continuous and strictly conca¨e as a function on D Q .

Ž .Let X s X , . . . , X be a vector of finite random variables with the1 n
range =n Q . Then by Definition 3.1,kks1

H X , . . . , X s y ??? p u , . . . , u log p u , . . . , u ,Ž . Ž . Ž .Ý Ý1 n 1 n 1 n
u gQ u gQ1 1 n n

Ž . Ž .where p u , . . . , u s Prob X s u , . . . , X s u .1 n 1 1 n n
Ž .Given a pair of random variables X , X taking values in Q = Q1 2 1 2

Ž . Ž < .with the joint distribution p u , u , denote by p u u the conditional1 2 2 1
probability that X s u given X s u . Define2 2 1 1

< < <h X u s y p u u log p u u .Ž . Ž . Ž .Ý2 1 2 1 2 1
u gQ2 2

Ž < .Thus h X u is the entropy of X when the realization X s u is2 1 2 1 1
Ž < .known. Consider h X ? as a random variable on Q equipped with the2 1

Ž . Ž .marginal distribution of X , p u s Ý p u , u .1 1 u g Q 1 22 2
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Ž .DEFINITION 3.2. The conditional entropy H X N X of X given X is2 1 2 1
defined by

< < <H X X s E h X X s p u h X u .Ž .Ž . Ž . Ž .Ý2 1 X 2 1 1 2 11
u gQ1 1

Ž < . Ž .The conditional entropy H X X measures the ex ante average2 1
uncertainty of X when the realization of X is observable.2 1

Ž . Ž . Ž < .Since log p u , u s log p u q log p u u , we have1 2 1 2 1

<H X , X s H X q H X X .Ž . Ž . Ž .1 2 1 2 1

Ž .An application of this equality to X , . . . , X and X yields1 ny1 n

<H X , . . . , X s H X , . . . , X q H X X , . . . , X .Ž . Ž . Ž .1 n 1 ny1 n 1 ny1

Hence by induction we have the following equality.

Ž . Ž . n Ž <PROPOSITION 3.2. H X , . . . , X s H X q Ý H X1 n 1 ks 2 k
.X , . . . , X .1 ky1

An extension of the entropy measure to stochastic processes is called
entropy rate and is defined as follows.

Ž .`DEFINITION 3.3. Let X be a stochastic process where each Xn ns1 n
`ŽŽ .. Ž .takes values in a finite set Q. The entropy rate H X of X isn n ns1

defined by

1
H X s lim sup H X , . . . , X .Ž . Ž .Ž .n 1 kkkª`

Thus the entropy rate is the upper limit of the average uncertainty per
bit of the process. For example, for an i.i.d. process the entropy rate
coincides with the entropy of the common distribution. This follows
immediately from Proposition 3.2 with the i.i.d. assumption. Since

kŽ . < < Ž . ŽŽ ..H X , . . . , X F log Q by Proposition 3.1 1 , the entropy rate H X1 k n
< <is bounded by log Q .

4. STRATEGIC ENTROPY

We are now ready to define the concepts of strategic entropy and
strategic entropy rate. The following discussion focuses on player 1’s
strategy.
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nŽ . Ž .For each positive integer n, define a function H ? : ? : D S = T ª R
Ž . Ž . Ž .`as follows. Given s , t g D S = T , let X be the random playk ks1

Ž . nŽ .induced by s , t . Then H s : t is defined to be the entropy of this
random play up to stage n, that is,

H n s : t s H X , . . . , X s y P C log P C .Ž . Ž . Ž . Ž .Ý1 n s , t s , t
CgHHn

Recall that HH is the partition of V with respect to actions in the first nn `
nŽ .stages. Thus H s : t is the uncertainty about the play up to stage n that

player 2 faces when player 1 uses s and player 2 uses t. We summarize
nŽ . Ž .the properties of H ? : ? as a proposition. See Neyman and Okada 1999

for the proof.

Ž . nŽ . Ž .PROPOSITION 4.1. 1 H ? : ? is continuous on D S = T.
Ž . nŽ . Ž .2 For each t g T , H ? : t is conca¨e on D S .
Ž . nŽ .3 For each t g T , H ? : t is constant on each n-equï alence class
Ž .of D S .

Ž . Ž . nŽ .4 For each s g D S , H s : ? is constant on each n-equï alence
class of T.
Ž . nŽ . < < Ž . Ž .5 0 F H s : t F n log A for e¨ery s , t g D S = T.

The next lemma follows directly from Proposition 3.2.

Ž .` Ž .LEMMA 4.1. If X is the random play induced by s , t , thenk ks1

n
n <H s : t s H X q H X X , . . . , X .Ž . Ž . Ž .Ý1 k 1 ky1

ks2

Ž .`Suppose that s s s is a sequence of independent mixed actions,k ks1
Ž . Ž .i.e., for each k, there is a g D A such that s v s a for everyk k k

Ž .` Ž .v g V . Let t g T and X be the random play induced by s , t .` k ks1
Ž < . Ž .Then h X v , . . . , v s H a . Hence by the definition of the condi-k 1 ky1 k

Ž < . Ž .tional entropy, H X X , . . . , X s H a for every k. Therefore, byk 1 ky1 k
Lemma 4.1, we have the following lemma.

Ž .`LEMMA 4.2. If s s s is a sequence of independent actions wherek ks1
Ž .s g D A , thenk

n
nH s : t s H aŽ . Ž .Ý k

ks1

for e¨ery t g T.

Ž .For each s g D S , we now define the n-strategic entropy of s to be the
nŽ .maximum of H s : t , where the maximum is taken over all pure strate-

gies t g T of player 2.
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nŽ . Ž .DEFINITION 4.1. The n-strategic entropy H s of s g D S is defined
by

H n s s max H n s : t .Ž . Ž .
tgT

Ž . nŽ .By Proposition 4.1 1 , H s : ? is continuous on the compact set T , and
Ž .so the above maximum does exist. Alternatively, by Proposition 4.1 4 ,

nŽ .H s : ? is constant on each n-equivalence classes of T , and since there
are only a finite number of the n-equivalence classes, the maximum exists.
The next proposition summarizes the properties of the n-strategic entropy.

Ž . nŽ . Ž .PROPOSITION 4.2. 1 H s is continuous as a function on D S .
Ž . nŽ . nŽ .2 If s and s 9 are n-equï alent, then H s s H s 9 .
Ž . nŽ . < < Ž .3 0 F H s F n log A for e¨ery s g D S .
Ž . nŽ .4 H s s 0 if and only if s is n-equï alent to a pure strategy.

Ž .` Ž .If X is the random play induced by s , t , we denote its entropyn ns1
`Ž . nŽ .rate by H s : t . By the definition of entropy rate and that of H s : t

we have

1 1
` nH s : t s lim sup H X , . . . , X s lim sup H s : t .Ž . Ž . Ž .1 nn nnª` nª`

`Ž .The strategic entropy rate of s is defined to be the supremum of H s : t
over t g T.

`Ž . Ž .DEFINITION 4.2. The strategic entropy rate H s of s g D S is
defined by

H` s s sup H` s : t .Ž . Ž .
tgT

For example, every behavioral strategy that plays pure actions after a
finite number of stages has zero strategic entropy rate. An alternative

ˆ` nŽ . Ž . Ž .definition of strategic entropy rate is H s s lim sup 1rn H s .nª`
` ˆ`Ž . Ž .Clearly H s F H s . This inequality can be strict. See Neyman and

Ž .Okada 1998, Example 4.4 .
To conclude this section we mention an additional concept of strategic

entropy. As we remarked in the Introduction, one can view the strategic
entropy as a cost of randomization in repeated play. As such, the definition
of the strategic entropy in Definition 4.1 has a disadvantage. Recall that

nŽ .H s : t is the entropy of the random play averaged over all histories.
Thus it is possible that after some history with positive, but small, probabil-
ity, the conditional entropy of the play for the rest of the game is quite
large. The definition below would be more adequate if one wishes to
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bound the entropy of the play conditional on any history with a positive
probability.

Ž . Ž . Ž .` Ž .Given s , t g D S = T , let X be the play generated by s , t .n ns1
nŽ .Define h s : t by

n <h s : t s max max h X , . . . , X v , . . . , v .Ž . Ž .kq1 n 1 k
v , . . . , v0FkFn 1 k
Ž .P v , . . . , v )0s , t 1 k

Recall that, for random variables X and Y taking values in sets Q and1
Ž < .Q , respectively, h Y u denotes the entropy of Y given X s u g Q ,2 1 1 1

Ž < . Ž < . Ž < .i.e., h Y u s yÝ p u u log p u u .1 u g Q 2 1 2 12 2

For k s 0,

<h X , . . . , X v , . . . , v s h X , . . . , X N BŽ .Ž .kq1 n 1 k 1 n

s H X , . . . , XŽ .1 n

s H n s : t .Ž .

n nŽ . Ž .Hence h s : t G H s : t for all n. This inequality can be strict.

� 4 Ž .EXAMPLE 4.1. Let A s T , B . Fix an « g 0, 1 and define a behav-
Ž .`ioral strategy s s s asns1

T with probability «
s B sŽ .1 ½ B with probability 1 y « ,

Ž .ny1 Ž .and, for n ) 1 and v , . . . , v g A = B , if v s T , ? , then1 ny1 1

1T with probability 2
s v , . . . , v sŽ .n 1 ny1 1½ B with probability ;2

Ž .otherwise, s v , . . . , v s T with probability 1.n 1 ny1
nŽ . Ž . Ž .It is easy to see that H s : t s H « , 1 y « q « n y 1 while

nŽ . Ž <Ž ..h s : t s h X , . . . , X T , ? s n y 1.2 n
n nŽ . Ž Ž ..In this example h s : t s O H s : t . It is also possible that

n nŽ . Ž .H s : t is bounded uniformly in n while h s : t ª ` as n ª `

EXAMPLE 4.2. Let A as in the previous example. Fix a sequence
Ž .` Ž .« with « g 0, 1 for all n. We divide the stages into two classes, then ns1 n
experimental stages and the rest. An experimental stage is a stage of the

Ž . lform e l s Ý j for some l, i.e., 1, 3, 6, 10, 15, . . . . Note that betweenjs1
Ž .the lth and the l q 1 th experimental stages, there are l nonexperimental
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FIG. 2. The strategy of Example 4.2.

Ž .` Ž .stages. Now we define s s s as follows: if n s e l for some l, thenn ns1

« , 1 y « if v1 s T for all j - lŽ .l l eŽ j.s v , . . . , v sŽ .n 1 ny1 ½ B otherwise,

Ž . Ž .and, for n with e l - n - e l q 1 ,

1 1 1, if v s T for all j F lŽ . eŽ j.2 2s v , . . . , v sŽ .n 1 ny1 ½ B otherwise.

See Fig. 2. Let v , . . . , v be such that v1 s T for all j s 1, . . . , k. Then,1 k j
Ž < .for every positive integer m, h X , . . . , X v , . . . , v s m, and thuskq1 kqm 1 k

nŽ . Ž .h s : t ª ` n ª ` for all t g T.
nŽ . Ž . Ž . Ž .To compute H s : t , note that H X s H « , 1 y « , H X N X s1 1 1 2 1

Ž . Ž . Ž . Ž« , H X N X , X s « H « , 1 y « , H X N X , X , X s H X N1 3 1 2 1 2 2 4 1 2 3 5
. Ž . Ž .X , . . . , X s « « , H X N X , . . . , X s « « H « , 1 y « , and so on.1 4 1 2 6 1 5 1 2 3 3

In general, we have

ly1¡
« H « if k s e l for some lŽ . Ž .Ł i lž /ls1~ ly1<H X X , . . . , X sŽ .k 1 ky1

« if e l - k - e l q 1Ž . Ž .Ł i
ls1¢

for some l.

Ž . nŽ . ` Ž ly1 .Since H « F 1, H s : t is bounded by Ý Ł « l. One canl ls1 is1 i
1 1ly1 ylŽ .choose « inductively so that Ł « l s 2 , i.e., « s , « s ,l is1 i 1 22 4

1 3 nŽ .« s , « s , etc. In this case H s : t F 1.3 43 8

It can be shown that if a mixed strategy s has a finite support, then
nŽ . < Ž . <h s : t F log Supp s . In particular, if s is a mixture over finite au-

nŽ .tomata with m states, then for every n and t g T , h s : t F Km log m,
Ž .`where K is a constant. If s s s is a sequence of independentn ns1

Ž .actions, i.e., for each n there is a mixed action a g D A such thatn
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Ž . nŽ . n Ž .s ? s a , then H s : t s Ý H a . In this case, for any two histo-n n ks1 k
X X Ž < .ries v , . . . , v and v , . . . , v , we have h X , . . . , X v , . . . , v s1 k 1 k kq1 n 1 k

X X nŽ < . Ž . Ž . Ž .h X , . . . , X v , . . . , v s H a q ??? qH a . So h s : t skq1 n 1 k kq1 n
n Ž . nŽ .Ý H a s H s : t . The strategies constructed in the proofs of Theo-ks1 k

rems 5.1 and 5.2 are of this type.

5. REPEATED GAMES WITH STRATEGIC
ENTROPY BOUND

nŽ .5.1. The Finitely Repeated Game G h

n Ž .Given a finitely repeated game G s S, T , r , we consider a modifiedn
version in which player 1’s strategy is restricted to strategies whose
n-strategic entropy does not exceed a prespecified bound. Player 2’s set of

nŽ .strategies will be left intact. For h G 0, define S h to be the subset of
Ž .D S consisting of all strategies whose n-strategic entropy is at most h, i.e.,
nŽ . � Ž . < nŽ . 4 nŽ .S h s s g D S H s F h . Let G h be the n-fold repetition of G

nŽ .in which player 1 is restricted to strategies in S h while player 2’s
Ž .strategy set remains D T .

nŽ . nŽ .The set S h is in general not convex and therefore G h may not
have the value. Consider, for example, the one-shot game of Example 5.1
below. The subsequent discussion will focus on the maximin value of

nŽ . nŽ . Ž .nG h , W h s max min r s , t . Recall that r is continuouss g S Žh . t g T n n
Ž . Ž . Ž .on D S = T. Thus for each s g D S , r s , ? is continuous on then

Ž .compact set T and hence min r s , t is well defined and continuous int g T n
Ž . nŽ .s . Proposition 4.2 1 implies that S h is compact. Therefore, the above

nŽ .expression of the maxmin value of G h is well defined.
We are interested in the asymptotics of this maxmin value when we

Ž .allow the entropy bound h to be the function of n. Let us also write h n
Ž Ž .. Ž .for h n rn. In Neyman and Okada 1999 it has been shown that if

nŽ . Ž Ž .. Ž .h n ª 0 as n ª `, then W h n ª U# G as n ª `. In other words,
if the entropy bound grows more slowly than the number of repetitions,
then the most player 1 can guarantee in the long run is the one-shot game
maxmin payoff in pure actions. In what follows we will provide a full

nŽ Ž .. Ž .characterization of the asymptotics of W h n as h n tends to an
arbitrary nonnegative number.

Ž .In the stage game G s A, B, r , and for g G 0, define

U g s max min r a , b .Ž . Ž .
Ž . bgBagD A

Ž .H a Fg
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FIG. 3. cav U for Example 5.1.

Ž .Thus U g is what player 1 can secure in G using a mixed action of
Ž .entropy at most g . Note that H a F 0 if and only if a is a pure action.

Ž . Ž .So U 0 s U# G . On the other hand, if we allow g to be at least as large
as the entropy of some optimal action of player 1 in G, then he can use

Ž . Ž .that optimal action and achieve Val G . Let us define g s min H a* ,
where the minimum is taken over all optimal actions a* of player 1 in G.2

Ž . Ž .Then U g s Val G for every g G g . We regard U as a function of
nonnegative reals and define cav U to be its concavification, i.e., the
smallest concave function which is at least as large as U at every point of
its domain.

EXAMPLE 5.1. Consider the 2 = 2 game

2 0
0 2

Ž . Ž .Figure 3 a shows the security level min r a , b for player 1 superim-bg B
posed with the entropy of his mixed actions. The horizontal axis measures

Ž .the probability that player 1 chooses the top row, a T . In this game
Ž . Ž .U# G s 0, Val G s 1, and the unique optimal strategy of player 1,

1 1Ž ., , has entropy log 2 s 1.2 2

2 Ž .It is well defined because the entropy H is a continuous function on D A and the
Ž .optimal actions in G form a compact convex subset of D A .
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Ž .To illustrate how one can obtain U, take an antropy level g in Fig. 3 a .0
Drop two vertical lines from the two intersections of the graph of the
entropy function and the horizontal line at the level g . Each of the two0

Ž .vertical lines meets the graph of min r a , b at some level of payoff,bg B
Ž .and the maximum of these two levels is U g . In this example the two0

Ž .levels are the same because min r a , b is symmetric with respect tobg B
1Ž .a T s .2

From this picture one can infer the shapes of U and cav U as depicted in
Ž . Ž .Fig. 3 b : up to g s 1, U g is the inverse image of the concave function H

Ž .along the piecewise linear function, hence it is a convex function for
g F g .

Ž .In general, min r a , b is, as a function of a , piecewise linear andbg B
Ž .concave. Figure 4 a depicts a typical case for a 2 = k game along with the

Žentropy of mixed actions. Player 1 has pure actions, say, T and B, and the
Ž . .probability of choosing T is a T .

Ž .To obtain the picture of U, note that we can write U g s
Ž .max U g , whereis1, 2 i

U g s max min a , bŽ . Ž .1
Ž . bgBa T F1r2
Ž .H a Fg

and

U g s max min a , b .Ž . Ž .2
Ž . bgBa T G1r2
Ž .H a Fg

FIG. 4. cav U for a 2 = k game.
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Ž .In Fig. 4 b , the upper envelope of U and U is U. Thus the graph of U1 2
consists of four pieces of strictly increasing convex parts and a horizontal
part. In general, U is strictly increasing and piecewise convex up to g and

Ž .then becomes a constant, Val G , thereafter. Hence cav U is nondecreas-
ing and piecewise linear.

Ž .`Note that if X is a random play induced by a pair of strategies,k ks1
Ž < .then h X X , . . . , X is AA -measurable. In the proof of the nextk 1 ky1 ky1

Ž < . Ž Ž < ..theorem we denote h X X , . . . , X resp. H X X , . . . , X byk 1 ky1 k 1 ky1
Ž < . Ž Ž < ..h X AA resp. H X AA .k ky1 k ky1

THEOREM 5.1. For e¨ery n,

Val G y U# GŽ . Ž .
ncav U h n y F W h n F cav U h n .Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .

n

Ž .And therefore, for e¨ery g G 0, if lim h n s g , thennª`

lim W n h n s cav U g .Ž . Ž . Ž .Ž .
nª`

Proof. First we describe player 1’s strategy that guarantees him a
payoff at least as large as the left-hand side of the above inequality. Since
U is a continuous function defined on nonnegative reals, there exist

w xg G 0, g G 0, and p g 0, 1 such that0 1

Ž . Ž .1 g F h n F g ,0 1

Ž . Ž . Ž .2 h n s 1 y p g q pg ,0 1

Ž . Ž .Ž . Ž .3 cav U g s U g , i s 0, 1, andi i

Ž . Ž .Ž Ž .. Ž . Ž . Ž .4 cav U h n s 1 y p U g q pU g .0 1
See Fig. 5.

Ž .Let a , i s 0, 1, be player 1’s actions with H a F g that guaranteesi i i
Ž . w Ž .x Ž .him U g , i.e., min E r a, b s U g .i bg B a ii

Ž .FIG. 5. Splitting h n into g and g .0 1
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Ž .`Now let s s s be a behavioral strategy of player 1 such that fork ks1
every k and every v g V ;`

w xa for k s 1, . . . , pn1
s v sŽ .k ½ w xa for k s pn q 1, . . . , n ,0

w xwhere pn is the integer part of pn. Then, the strategic entropy of s is
simply the entropy of the sequence of independent random actions in

w x w xwhich the first pn terms are a ’s followed by n y pn terms of a ’s.1 0
Therefore, s indeed has the strategic entropy within the specified bound
Ž .h n ,

n w x w xH s s pn H a q n y pn H aŽ . Ž . Ž .Ž .1 0

F png q 1 y p ngŽ .1 0

s nh nŽ .
s h n ,Ž .

nŽ .where the first equality follows from the definition of H s and Lemma
Ž .4.2. By playing s , player 1 guarantees himself U g at every stage in the1

w x Ž .first pn rounds and then U g at every stage for the rest of the game,0
and hence for any pure strategy t of player 2,

w x w xpn U g q n y pn U gŽ . Ž .Ž .1 0
r s , t GŽ .n n

Val G y U# GŽ . Ž .
G pU g q 1 y p U g yŽ . Ž . Ž .1 0 n

Val G y U# GŽ . Ž .
s cav U h n y .Ž . Ž .Ž .

n

Next we show that player 2 can prevent player 1 from achieving a payoff
Ž .Ž Ž ..greater than cav U h n . It suffices to consider behavioral strategies of

Ž .` nŽ Ž .. Ž .`player 1. Take s s s g S h n . Define a strategy t s t g Tk ks1 k ks1
of player 2 in such a way that, at every stage k and for every history

Ž . w Ž .xv g V , t v minimizes player 1’s stage payoff E r a, b . Denote the` k s Žv .k
Ž . Ž .`random play induced by s , t by X . By the definition of U and t,k ks1

Ž .Ž . Ž .and since cav U g G U g for every g G 0, we have

< < <E r X AA F U h X AA F cav U h X AA .Ž . Ž .Ž . Ž .Ž . Ž .s , t k ky1 k ky1 k ky1
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Thus by the concavity of cav U and Jensen’s inequality,

<E r X F E cav U h X AAŽ . Ž . Ž .Ž .s , t k s , t k ky1

<F cav U E h X AA . 2Ž . Ž .Ž .Ž .s , t k ky1

Finally, we obtain

n1
r s , t s E r XŽ . Ž .Ýn s , t kn ks1

n1
Ža. <F cav U E h X AAŽ . Ž .Ž .Ý s , t k ky1n ks1

n1
Žb. <F cav U E h X AAŽ . Ž .Ý s , t k ky1ž /n ks1

n1
Žc. <s cav U H X AAŽ . Ž .Ý k ky1ž /n ks1

H n s : tŽ .
Žd.s cav UŽ . ž /n

H n sŽ .
Ž e.F cav UŽ . ž /n

h nŽ .
Ž f .F cav U ,Ž . ž /n

Ž . Ž . Ž .where a is from 2 , b is by the concavity of cav U and Jensen’s
Ž . Ž .inequality, c is from the definition of conditional entropy, d is from the

nŽ . Ž .definition of H s : t and Lemma 4.1, e is from the definition of the
Ž .strategic entropy, and f is by the assumed bound on the n-entropy. This

completes the proof of the theorem. Q.E.D.

`Ž .5.2. The Infinitely Repeated Game G g

`Ž . `The game G g , g G 0, is obtained from G by restricting player 1’s set
`Ž . � Ž . `Ž . 4of strategies to S g s s g D S N H s F g . Again, player 2’s strat-

egy set remains intact.
The next theorem asserts two things which are considered to be natural

Ž .Ž . `Ž .requirements for the payoff, cav U g , to be the maxmin value of G g .
Ž .Ž .First, player 1 can ‘‘guarantee’’ cav U g in a rather strong sense that he

has such a strategy that, regardless of player 2’s strategy, the expected
Ž .Ž .average payoff in the first n stages is at least cav U g for every n.
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Second, for every strategy of player 1, player 2 has a counterstrategy that
Ž .Ž .keeps player 1’s payoff arbitrarily close to cav U g in the long run.

Ž . `Ž .THEOREM 5.2. 1 's g S g such that ; t g T , ;n,

n1
E r a , b G cav U g .Ž . Ž . Ž .Ýs , t k kn ks1

Ž . `Ž . Ž . Ž .2 ;s g S g , ' t g T such that ;« ) 0, 'n « such that ;n ) n « ,

n1
E r a , b F cav U g q « .Ž . Ž . Ž .Ýs , t k kn ns1

Proof. Fix g G 0. As in the proof of Theorem 5.1, let g G 0, i s 0, 1,i
Ž . Ž .Ž .and 0 F p F 1 be such that g F g F g , g s 1 y p g q pg , cav U g0 1 0 1 i

Ž . Ž .Ž . Ž . Ž . Ž .s U g , i s 0, 1, and cav U g s 1 y p U g q pU g . Let a gi 0 1 i
Ž . Ž . w Ž .x Ž .D A , i s 0, 1, be such that H a F g and min E r a, b s U g .i i bg B a ii

Ž .` `Ž .We now define a behavioral strategy of player 1, s s s g S gk ks1
that satisfies the first statement of the theorem. Set s s a . For k ) 11 1
define by induction

ky11¡
a if I s s a G pŽ .Ý0 m 1~ ks sk ms1¢a otherwise.1

That is, at each stage player 1 asks himself, ‘‘If I do not play a at this1
stage, does the average frequency of s s a still exceed p?’’ If them 1
answer is yes, then he plays a , otherwise he plays a . It is easily verified0 1
by induction that for every n s 1, 2, . . . ,

n1 1
p F I s s a - p q . 3Ž . Ž .Ý k 1n nks1

We verify that s has strategic entropy rate at most g . Take t g T
Ž .` Ž .arbitrarily and let X be the random play induced by s , t . Then byk ks1
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the construction of s and Lemma 4.2, we have, for every n,

n1 1
H X , . . . , X s H sŽ . Ž .Ý1 n kn n ks1

n1
s H a I s s a q H a I s s aŽ . Ž . Ž . Ž .Ž .Ý 0 k 0 1 k 1n ks1

n n1 1
F g I s s a q g I s s aŽ . Ž .Ý Ý0 k 0 1 k 1n nks1 ks1

1 1
F 1 y p y g q p q g0 1ž / ž /n n

g y g1 0s g q .
n

Ž .The last inequality follows from the second inequality in 3 . Hence by the
`Ž .definition of strategic entropy rate, H s F g .

Ž .As for the payoff resulting from s , t , we have

n1
E r XŽ .Ýs , t kn ks1

n1
s E r a , b I s s a q E r a , b I s s aŽ . Ž . Ž . Ž .Ž .Ý a k k k 0 a k k k 10 1n ks1

Ýn I s s a Ýn I s s aŽ . Ž .ks1 k 0 ks1 k 1G U g q U gŽ . Ž .0 1n n

G 1 y p U g q pU gŽ . Ž . Ž .0 1

s cav U g .Ž . Ž .

Ž .The last inequality follows from the first inequality in 3 . This completes
the proof of the first part.

The proof for the second part proceeds in the same way as in the second
part of the proof of Theorem 1. We omit the details. Q.E.D.

For the strategy constructed in the above proof the average frequency
that player 1 plays a exceeds p at every stage. As a consequence1

Ž .Ž .the average frequency that he receives at least cav U g exceeds p at1
Ž .Ž .every stage, and hence his expected average payoff is at least cav U g s

Ž .Ž .Ž . Ž .Ž .1 y p cav U g q p cav U g at every stage. Such strategy is permis-0 1
sible because the definition of strategic entropy rate does not place any
bound on the entropy of a play in finite stages. In particular, in the above
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Ž . Ž .proof, 1rn H X , . . . , X may exceed g for every n. By modifying the1 n
Ž .`sequence s , where s s a or a , one can prove a similar resultk ks1 k 0 1

as the first part of the above theorem but with a bound on the entropy
Ž .of the play up to each finite stage. More precisely, for every h ? with

Ž Ž . . Ž .` Ž .lim h n rn s g G 0, there is s s s such that 1 for everynª` n ns1
Ž .` Ž . Ž . Ž .t s t g T and every n, H X , . . . , X F h n , and 2 for everyk ks1 1 n

Ž . Ž .« ) 0 there is n « such that for every t g T and every n ) n « ,
wŽ . n Ž .x Ž .Ž .E 1rn Ý r a , b G cav U g y « .s , t ks1 k k
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