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Consider a two-person repeated game, where one of the players, P1, can sow
doubt, in the mind of his opponent, as to what P1’s payoffs are. This results in a
two-person repeated game with incomplete information. By sowing doubt, P1 can
sometimes increase his minimal equilibrium payoff in the original game. We prove
that this minimum is maximal when only one payoff matrix, the negative of the

Žpayoff matrix of the opponent, is added the opponent thus believes that he might
.play a zero-sum game . We obtain two formulas for calculating this maximal

minimum payoff. Journal of Economic Literature Classification Numbers: C7, D8.
Q 1999 Academic Press

1. INTRODUCTION

Repeated games with incomplete information have received consider-
able attention in the last 20]30 years. These games can be seen as
theoretical idealizations of many social and economic situations. A stan-
dard two-player repeated game is a bimatrix game played an infinite
number of times. A game with incomplete information is a game in which
at least one of the players lacks part of the relevant data. A standard
two-person game with incomplete information on one side consists of a
finite set K of states of nature. Each state of nature is described by a
bimatrix game, i.e., one payoff matrix for each player. A state of nature is
chosen according to a probability vector p. Only player 1 is told which
game was chosen.

Repeated games and games with incomplete information are two inde-
pendent classes of games, but the combination of both is particularly
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interesting. In a repeated game with incomplete information, the compli-
cated structure of the repeated game allows the lack of information to
come into play. Depending on the way player 1, the ‘‘informed’’ player, is
playing, all the information he has, part of it, or no information, is revealed
to the other player in the course of the game.

Incomplete information naturally raises the issue of cooperation be-
tween the two players, which is also related to repeated games. Recall the
equivalence between equilibrium points in a repeated game with complete
information and feasible and individually rational points in a one-shot
game when cooperation is allowed, as expressed by the Folk Theorem.

Repeated games with incomplete information were first studied by
Ž . Ž .Aumann and Maschler 1966 ; see Aumann and Maschler 1995, Chap. I .

Their work was mainly concerned with the case of two-person zero-sum
games. The two-person non-zero-sum case was first studied by Aumann,

Ž . Ž .Maschler, and Stearns 1968 ; see Aumann and Maschler 1995, Chap. V .
A complete characterization of the set of equilibria in these games, with

Ž .standard one-sided information, was obtained by Hart 1985 . The general
case of this model assumes that the ‘‘uninformed’’ player monitors the
actions of both players but does not know what his own realized payoffs
are; otherwise he could deduce what state of nature was chosen. The
current work looks at a special case where the uninformed player has the
same payoff matrix in all states of nature. Thus, he knows his own payoffs
but cannot deduce from them what the state of nature is. This kind of a
game is called a repeated game with standard one-sided information and
‘‘known own payoffs.’’

Explicitly, the game consists of a set K of payoff matrices for player 1,
A1 to A < K <, and a single payoff matrix, B, for player 2. A payoff matrix for

Ž .player 1 is chosen according to a probability vector p over K . Only player
Ž .1 is informed which matrix was chosen. Shalev 1994 characterized the set

of equilibrium points for games in this class and proved that every such
game has at least one equilibrium point.

One can build a game of this kind by extending a repeated game with
complete information. Suppose that we have a repeated game with com-
plete information, with payoff matrices A ' A1 to player 1, and B to
player 2. If we allow player 1 to create uncertainty by adding payoff

2 < K < Žmatrices, A to A , and a probability vector p with all components
.strictly positive for choosing among them, then we get a repeated game

with one-sided information and known own payoffs. We will refer to this as
the ‘‘extended game.’’

ŽThe set of equilibrium payoffs for player 1 in the original game i.e., the
.game with payoff matrices A and B is given by the Folk Theorem. It

follows from this theorem that this set has a minimum, a, and a maximum.
Ž .One result of Shalev 1994, Lemma 5 is that, in the extended incomplete
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information game, the minimum equilibrium payoff for player 1 in case
Ž .that the original state of nature is chosen i.e., k s 1 is no less than a, and

can be strictly greater then a. In other words, it is possible that, by adding
new payoff matrices, the payoff guaranteed to player 1 in the case that the
original state of nature is chosen, increases. Another result of Shalev
Ž .1994 is that the increase does not depend on the value of p.

The main question that the present work addresses is the following:
Given A and B, which matrix or matrices should player 1 add if he wants
to maximize the payoff guaranteed to him in the case that the chosen state

Ž .of nature is the original one i.e., in the case that his payoff matrix is A ?
Our main result is that it is optimal for player 1 to add a single matrix,
namely, yB, the negative of player 2’s payoff matrix.

The minimum equilibrium payoff for player 1 in this case is equal to the
payoff guaranteed to him in the one-shot game with payoff matrices A and
B, when player 2’s responses to player 1’s strategy are restricted to those

Žthat yield player 2 a payoff of at least his value i.e., the minmax value of
.B . This is similar, but not identical, to a non-zero-sum static Stackelberg

Ž .games Simaan and Cruz, 1973 .
We can view the addition of matrices as a way of sowing doubt in player

2’s mind. Thus, the main result is interpreted as follows: It is best for
player 1 to make player 2 believe that, with some positive probability, he is
involved in a zero-sum game, namely, that player 1 wants to keep player 2’s
payoff at its lowest. Surprisingly, this is what maximizes the guaranteed
payoff of player 1 in the original game.

Notation. R is the real line. For a finite set L, the number of elements
< < L < <of L is denoted L , and R is the L -dimensional Euclidean space with

Ž .coordinates indexed by the elements of L. Thus, we write x s x forl l g L
L Ž . Ž .x g R . For vectors x s x , . . . , x and y s y , . . . , y , y F x means1 n 1 n

n L �y F x for i s 1, . . . , n. x ? y is the scalar product Ý x y . D s x gi i is1 i i
L 4 LR N x G 0 for all l g L and Ý x s 1 is the unit simplex in R . Forl l g L l

I=J < < < <finite sets I and J, d g D , and matrix M of order I = J , we define
Ž . Ž .M d s Ý Ý d M i, j .ig I jg J i j

2. BACKGROUND

Our work and results are based on a model that was introduced by
Ž .Shalev 1994 . In this section we present this model and some of Shalev’s

results that we are going to use in later sections. Shalev’s model is based
Ž . Ž .on the model of Aumann, Maschler, and Stearns 1968 and Hart 1985
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and it consists of the following:

Ž .i Two players, player 1 and player 2.
Ž .ii A finite set I of actions for player 1, and a finite set J of actions

for player 2. Each set contains at least two elements.
Ž . � 1 2 < K <4iii A finite set K s A , A , . . . , A of payoff matrices of dimen-
< < < < < < < <sion I = J for player 1, and one payoff matrix B of dimension I = J

for player 2.
Ž . Ž . < K <iv A probability vector p s p g D . We assume that p )k k g K k

0 for every k.

A game with incomplete information on one side and known own payoffs
Ž 1 2 < K < . w Ž .xG A , A , . . . , A ; B; p or shortly G p is defined as follows:` `

Ž . Ž .v An element k of K interpreted as the state of nature is chosen
according to the probability vector p; k is told to player 1 but not to player
2.

Ž .vi At each stage t of the game, player 1 chooses an element i in It
and player 2 chooses an element j in J. The choices are made withoutt
either player knowing the choice of the other player. Then, both players

Ž .are told the pair i , j .t t

Ž .vii Both players have perfect recall.

Ž .Next we describe the set of strategies for the players in G p . For`

Ž . ty1 Žt s 1, 2, . . . let H s I = J be the set of histories up to but nott
. Ž .`including stage t. A pure strategy for player 1 is a sequence s s s ,t ts1

where

s : H = K ª I for t s 1, 2, . . . . 2.1Ž .t t

Ž . Ž .Thus, for every k g K the ‘‘true’’ game being played , s h , k is thet t
action taken by player 1 at stage t. Similarly, a pure strategy for player 2 is

Ž .`a sequence t s t , wheret ts1

t : H ª J for t s 1, 2, . . . . 2.2Ž .t t

As usual, a mixed strategy is a probability distribution over the set of pure
Ž .strategies. Since G p is a game with perfect recall, one can restrict the`

Ž .study to beha¨ior strategies Kuhn, 1953; Aumann, 1964 , where players
make independent randomizations at each stage. A behavior strategy is

Ž .defined in the same way as a pure strategy but with 2.1 replaced by

s : H = K ª DI 2.3Ž .t t

Ž .and 2.2 replaced by

t : H ª DJ . 2.4Ž .t t
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In the following, ‘‘strategy,’’ with no qualifier, will always mean ‘‘behavior
strategy.’’

Ž .We have not yet defined payoffs in G p , only payoff streams. Given a`

history h g H and a state of nature k g K, the average payoff fortq1 tq1
player 1 in stages 1 through t is

t
ka s 1rt A i , j 2.5Ž . Ž . Ž .Ýk , t s s

ss1

and the average payoff for player 2 in stages 1 through t is

t

b s 1rt B i , j . 2.6Ž . Ž . Ž .Ýt s s
ss1

Both averages depend on s and on t , and a depends also on k. Letk , t
k Ž . Ž . 1E a and E b , respectively, be their expectations. A pair ofs , t k , t s , t , p t

Ž . Ž .strategies s , t is an equilibrium point of G p if, for every strategy s 9 of`

player 1 and every k g K,

lim inf Ek a G lim sup Ek a 2.7Ž . Ž . Ž .s , t k , t s 9 , t k , t
t t

and for every strategy t 9 of player 2

lim inf E b G lim sup E b . 2.8Ž . Ž . Ž .s , t , p t s , t 9 , p t
t t

w Ž . Ž .x Ž .In particular take s 9 s s in 2.7 and t 9 s t in 2.8 , if s , t is an
Ž .equilibrium point, then there exist a vector a s a and a scalar bk k g K

such that, for every k g K,

lim Ek a s a and lim E b s b . 2.9Ž . Ž . Ž .s , t k , t k s , t , p t
t t

� 4We write a s a for the vector payoff of player 1, and we will callk k g K
Ž . Ž .a,b the equilibrium payoffs at the equilibrium point s , t .

Ž . < K <For a probability vector p s p , . . . , p g D , let p ? A be the matrix1 < K <

Ž . kŽ . Ž .whose i, j th element is Ý p A i, j . The value of the one-shotk g K k
Ž .Ž .two-person zero-sum game with payoff matrix p ? A is denoted val A p .1

1E is the expectation with respect to the probability measure induced by the strategiess , t , p
Ž . Ž . ks and t and by the choice of nature of k according to p . E denotes the expectations , t

conditional on k s k.
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Explicitly,

val A p s max min p ? A x , y s min max p ? A x , y ,Ž . Ž . Ž . Ž . Ž . Ž .1
I J J IxgD ygD ygD xgD

2.10Ž .

Ž .Ž . kŽ .where p ? A x, y s Ý Ý x y Ý p A i, j . Similarly, val B isig I jg J i j k g K k 2
the value to player 2 of the two-person zero-sum game with payoff matrix
B, i.e.,

val B s max min B x , y s min max B x , y , 2.11Ž . Ž . Ž .2
J I I JygD xgD xgD ygD

Ž . Ž . Ž .where B x, y s Ý Ý x y B i, j . A payoff vector a s a gig I jg J i j k k g K
< K < Ž . Ž .R is indï idually rational IR for player 1 in G p if`

q ? a G val A q for every q g DK . 2.12Ž . Ž . Ž .1

Ž .This terminology is based on the fact that 2.12 is a necessary and
� K 4sufficient condition for the set Q s x g R N x F a to be approachablea
Ž .by player 2 in the sense of Blackwell 1956 . A scalar b is an indï idually

Ž .rational payoff to player 2 in G p if`

b G val B. 2.13Ž .2

Ž .Shalev 1994 obtained a characterization of the set of equilibrium points
Ž .in G p and proved its nonemptiness:`

Ž .PROPOSITION 1 Shalev, 1994 . A repeated game with incomplete infor-
mation on one side and known own payoffs has at least one equilibrium point.

Ž . Ž 1 2 < K < .PROPOSITION 2 Shalev, 1994 . Let G A , A , . . . , A ; B; p be a re-`

peated game with incomplete information on one side and known own payoffs.
Ž . K Ž 1 2 < K < .Then, a, b g R = R are equilibrium payoffs in G A , A , . . . , A ; B; p`

if and only if for e¨ery k g K there exists a probability distribution d k g DI=J

such that

Ž . kŽ k .i A d s a for e¨ery k g K,k

Ž . Ž k .ii Ý p B d s b ,k g K k

Ž . Ž .Ž . K Ž .iii q ? a G val A q for e¨ery q g D i.e., a is IR for player 1 ,1

Ž . Ž k .iv B d G val B for e¨ery k g K, and2

Ž . kŽ k . kŽ k 9.v A d G A d for e¨ery k, k9 g K.

We now outline one direction of the proof of Proposition 2 and show how,
given d 1, . . . , d < K < that satisfy the above conditions, one can construct a

Ž .completely revealing equilibrium point with equilibrium payoffs a, b .
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For each k g K, fix a joint plan for achieving the frequencies d k. The
plan will consist of two sequences of actions, one sequence for each player.
The strategy s of player 1 will be the following: Signal k in the first
w < <x Žlog K q 1 stages by converting k to a binary number and signaling2

.digit after digit , and then play according to the joint plan, corresponding
to d k. If player 2 deviates from the plan, then play a mixed strategy that
holds player 2 to val B. The strategy t of player 2 will be the following:2

w < <xPlay arbitrarily in the first log K q 1 stages, and then play according to2
d k. If player 1 deviates from the plan, then play a Blackwell strategy
ensuring that player 1 will get no more than a; the existence of such a

Ž . Žstrategy follows from condition iii Blackwell, 1956; Aumann and
.Maschler, 1966 .

It is clear that neither player can benefit from a detectable deviation.
Player 1 can make an undetectable deviation by signaling k9 / k, but

Ž .condition v ensures that he cannot benefit from such a deviation.

Conclusion. Every equilibrium payoff is achievable by a completely
revealing strategy of player 1.

3. DESCRIPTION OF THE PROBLEM

U Ž .Given payoff matrices A and B, let a game G A, B be defined as`

follows: First, in stage 0 of the game, player 1 chooses a finite set of payoff
� 1 2 < K <4matrices that includes A, say, A ' A, A , . . . , A , and a probability

vector p g DK with all components strictly positive. Then the game
Ž 2 < K < .G A, A , . . . , A ; B; p is played. If player 1 does not add any payoff`

< <matrix, i.e., if K s 1, then by the Folk Theorem the set of equilibrium
�Ž . I=J Ž .payoffs is the intersection of the feasible set a, b N 'd g D s.t. A d

Ž . 4 �Ž .s a and B d s b and the individual rational set a, b N a G val A1
4and b G val B . The guaranteed payoff for player 1 in this case is2

� Ž . I=J Ž . Ž . 4therefore a : s min A d N d g D , A d G val A and B d G val B .1 2
The main issue of this paper is to find an optimal play for player 1 in

U Ž .stage 0 of the game G A, B , i.e., a play that maximizes his minimum`

equilibrium payoff in case that the state of nature is the original one
w Ž .according to proposition 1 in Shalev 1994 the maximum equilibrium

xpayoff does not change .
� 2 < K <4Thus, for a given choice of A , . . . , A let

a A , A2 , . . . , A < K < ; B : s min A d 1 N a, d 1 , . . . , d < K < satisfy i ,�Ž . Ž . Ž .˜

iii , iv , and v in Proposition 2 .2 2.144Ž . Ž . Ž . Ž .

2 Ž .As shown in Shalev 1994 , a does not depend on p, as long as all its coordinates are˜
Ž .positive. Also, note that condition ii is irrelevant here.



EITAN ISRAELI210

Then we are looking for the maximum of these a, that is,˜
2 < K < < < < 2 < K <a : s sup a A , A , . . . , A ; B K G 2, A , . . . , A� Ž .ˆ ˜

< < < <are matrices of order I = J . 2.154 Ž .

Our main goal is to characterize this a.̂

4. THE MAIN RESULT

< < < <THEOREM 1. Let A and B be payoff matrices of order I = J . Then â
satisfies

a s a A , yB ; B , 2.16Ž . Ž .ˆ ˜

a s sup min A x , y , where Y x s y g DJ N B x , y G val B , andŽ . Ž . Ž .� 4ˆ 2
I Ž .xgD ygY x

2.17Ž .

a s a* s sup val A y g B y bE ,Ž .Ž .ˆ 1
gG0

< < < <where b s val B and E is the matrix of order I = J with all entries 1.2

2.18Ž .

The content of Theorem 1 is that an optimal play for player 1 is to add the
single matrix yB. The theorem also suggests two ways for computing a.̂
We now give an example in which a is strictly greater than a.ˆ

EXAMPLE. Consider the two-person repeated game with payoff matrices

L R L R

A s T 0 0 and B s T 0 0

B 1 0 B 0 y10

By the Folk theorem, the set of equilibrium payoffs in this game is
�Ž . 4a, 0 N 0 F a F 1 . However, consider for example the equilibrium payoffs
Ž .0, 0 . The players get these payoffs when player 1 plays T and player 2
plays L. If player 1 deviates and plays B, then player 2 ‘‘punishes’’ him by
playing R. But, in this case player 2 gets y10 and player 1 still gets 0, as
before.

The addition of the payoff matrix yB for player 1 eliminates this
Ž .‘‘problematic’’ equilibrium point. According to 2.17 in Theorem 1, a canˆ
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Žbe calculated by looking at the original game the game with payoff
.matrices A and B and assuming that player 2 is ‘‘individually rational,’’ in

the sense that he always plays in a way that ensures him at least val B.2
If player 1 plays B, then player 2 must play L. Therefore the only

Ž .equilibrium payoffs after the addition of yB are 1, 0 ; so player 1 gets a
Ž .payoff of 1. Note that 2.18 implies the same result:

L R

A y g B s T 0 0

B 1 10g

Ž . � 4 Ž .val A y g B s min 1, 10g , and sup val A y g B s 1.1 g G 0 1

Ž .Proof of Theorem 1. Let b s val B. By definition, a A, yB; B is the˜2
Ž 1 2 I=J .solution of the following minimization problem where d , d g D :

Ž 1.Minimize A d , subject to the constraints

Ž . Ž 1.i B d G b ,
Ž . Ž 2 .ii B d G b ,
Ž . Ž 1. Ž 2 . Ž .iii A d G A d , 2.19
Ž . Ž .Ž 2 . Ž .Ž 1.iv yB d G yB d , and
Ž . Ž 1. Ž .Ž .Ž 2 . Ž Ž . .v pA d q 1 y p yB d G val pA y 1 y p B for all 0 F1

p F 1.

Ž . Ž .Ž 2 . Ž .Taking p s 0 in v , we get yB d G val yB s yb. In conjunction1
Ž . Ž 2 . Ž .with ii , this gives B d s b. Condition v therefore takes the form

Ž 1. w Ž .Ž .xpA d G val pA y 1 y p B y bE , for all 0 F p F 1, which is equiva-1
Ž 1. Ž Ž ..lent to A d G sup val A y g B y bE s a*. We therefore con-g G 0 1

clude that

a A , yB ; B G a*. 2.20Ž . Ž .˜

Ž 1 2 < K < .Next we show that a* G a A , A , . . . , A ; B for every set of payoff˜
� 1 2 < K <4 Ž .matrices K s A ' A, A , . . . , A ; This together with 2.20 completes

Ž . Ž .the proof of 2.16 and 2.18 . We prove this by constructing an equilibrium
Ž 1 2 < K < . Ž .point for G A , A , . . . , A ; B; p for arbitrary p in which the equilib-`

rium payoff to player 1 in state of nature k s 1 is less than or equal to a*.
For m g K, define

a s max Am d N d g R I=J, A d F a*, B d G b , and E d s 1Ž . Ž . Ž . Ž .� 4m q

2.21Ž .
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Ž Ž .the set on the right-hand side of 2.21 is nonempty because taking g s 0
Ž . .in 2.18 assures that a* G val A, and recall the Folk Theorem , and let1

m Ž . md be such that the maximum in 2.21 is attained at d . It is clear from
1 < K < Ž . Ž .the definition that d , . . . , d satisfy conditions iv and v in Proposition

Ž .2. It remains to show that condition iii in Proposition 2 is satisfied too,
i.e., that

val S p Am F S p Am d m for every p g DK . 2.22Ž . Ž .Ž .1 mg K m mg K m

Ž . < I <=< J <It follows from 2.21 that, for every m g K and every d g R ,q

mB y bE d G 0 and a*E y A d G 0 « a E y A d G 0.Ž . Ž . Ž . Ž . Ž .Ž .m

2.23Ž .

Therefore, by Farkas Lemma, for every m g K there exist non-negative
constants, r and s , and a non-negative matrix C such that a E y Am

m m m m
Ž . Ž .s s a*E y A q r B y bE q C . Rearranging terms and using them m m

monotonicity of the ‘‘val ’’ operator, we conclude that, for every p g DK,1

val S p AmŽ .1 mg K m

F S p a q val S p s A y r B y bEŽ .Ž .mg K m m 1 mg K m m m

y S p s a*. 2.24Ž .mg K m m

Ž .It follows that 2.22 is satisfied if

S p s a* G val S p s A y S p r B y bE . 2.25Ž . Ž ..mg K m m 1 mg K m m mg K m m

Ž .If S p s s 0, then 2.25 holds. Otherwise, setting g sm g K m m
Ž . Ž . Ž . w ŽS p r r S p s , 2.25 can be written as a* G val A y g Bmg K m m mg K m m

.xy bE , which is true by definiton of a*.
Ž .It remains to prove 2.17 .

Ž .IFirst direction: a F sup min A x, y . For every « ) 0, thereˆ x g D y g Y Ž x .
Ž . Ž . Iexist g « g R and x « g D such that

sup val A y g B y bE y «Ž .1
gG0

F val A y g « B y bEŽ . Ž .1

s min A y g « B y bE x « , yŽ . Ž . Ž .Ž . Ž .
JygD

F min A y g « B y bE x « , y N B x « , y G b� 4Ž . Ž . Ž . Ž .Ž . Ž . Ž .
JygD

s min A x « , y F sup min A x , y . 2.26Ž . Ž . Ž .Ž .
Ž Ž .. Ž .ygY x « I ygY xxgD
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Ž .ISecond direction: a G sup min A x, y . For every « ) 0, thereˆ x g D y g Y Ž x .
Ž . I Ž . Iexists x 9 « g D such that min A x 9, y G supy g Y Ž x 9. x g D

Ž . Jmin A x, y y « , and therefore, for every y9 g R ,y g Y Ž x . q

B x9 « , y9 y b S yX G 0Ž .Ž . jg J j

« A x9 « , y9 y sup min A x , y y « S yX G 0.Ž . Ž .Ž . jg J jž /Ž .I ygY xxgD

It hence follows from Farkas Lemma that there exist a scalar g G 0 and a
vector c g R J such that, for every y9 g DJ,q

A x9 « , y9 y sup min A x , y q «Ž . Ž .Ž .
Ž .I ygY xxgD

s g B x9 « , y9 y b q c ? y9Ž .Ž .Ž .
G g B y bE x9 « , y9 . 2.27Ž . Ž . Ž .Ž .

Therefore,

a q « G val A y g B y bE q « G sup min A x , y . 2.28Ž . Ž . Ž .ˆ 1
Ž .I ygY xxgD

Ž . Ž . Ž .Since « is arbitrary, Eqs. 2.26 and 2.28 together imply 2.17 . B

5. GEOMETRICAL INTERPRETATION

Ž .Equation 2.18 in Theorem 1 can be interpreted geometrically. This
equation implies

pa q 1 y p yb G val pA y 1 y p B for all 0 F p F 1, andŽ . Ž . Ž .Ž .ˆ 1

2.29Ž .

p a q 1 y p yb s val p A y 1 y p B for some 0 - p F 1.Ž . Ž . Ž .Ž .ˆ0 0 1 0 0 0

2.30Ž .

Ž .Thus, the graph of the affine function of the variable p on the left-hand
Ž .side of 2.29 lies above the graph of the function on the right-hand side of

Ž .2.29 and intersects it at p s 0 and at p s p . The former graph inter-0
sects the p s 1 line at the point a. The latter graph intersects it at theˆ
point val A. This suggests the following geometrical way for computing a:̂1

Ž Ž . .Plot the graph of val pA y 1 y p B , and then draw the line with1
minimum slope that lies above this graph and passes through the point
Ž . Ž .0, yb . This line passes through 1, a . Here is an example, whereˆ

w Ž . x Ž .val A s y1, val B s 1, val pA y 1 y p B s min p y 1, yp .1 2 1
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Ž .A B pA y 1 y p B

L R L R L R

T 0 y1 T 1 0 T p y 1 yp

B y1 y1 B 1 0 B y1 yp

6. LEADER AND FOLLOWER INTERPRETATION

Ž .Equation 2.17 in Theorem 1 is similar but not identical to a non-zero-
sum static Stackelberg game. According to this equation, the minimum
equilibrium payoff for player 1 is equal to the payoff guaranteed to him in
the one-shot game with payoff matrices A and B, when player 2 knows
player 1’s strategy and replies in such a way that his own payoff is at least
the minimax value of B. Player 1 is the leader, because he is first to play.
Player 2 is the follower.

ŽIn a non-zero-sum static Stackelberg game, the leader’s strategy called
.also the Stackelberg strategy is optimal with respect to the assumption

that the follower maximizes his objective function, after he knows what the
Ž . Ž .leader did Simaan and Cruz, 1973 . Equation 2.17 represents a more

extreme situation: The follower assumes to be indifferent between strate-
gies when his own payoff is above the value of B, and the leader must be
prepared to the worst case among all those follower’s strategies.

On the other hand, in Stackelberg game, player 1, the leader, actually
Ž .chooses his strategy. Hence he is limited to pure strategies. Equation 2.17

represents a situation where the leader can choose mixed strategies as
well.
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7. RELATED WORK

The work presented in this paper was done in 1989. Since then many
related articles have been published. The interested reader should consult

Ž . Ž .Cripps and Thomas 1995 , Cripps, Schmidt, and Thomas 1996 , and the
references therein.

One possible extension of the work allows incomplete information on
both sides. In this model, each player has a possible set of matrices. A
couple of payoff matrices are chosen, one for each player, but each player

Ž .is told only what his payoff matrix is. Koren 1989 characterized the set of
equilibrium points for this general model. As in the one-sided case, all
equilibrium points are achievable through a completely revealing strate-

Ž .gies. Israeli 1989 explored the special case of ‘‘two-sided sowing doubt,’’
where the possible matrices of the first player are A and yB while the
possible matrices of the second player are B and yA. An example without
equilibrium point is shown.
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