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Consider a two-person repeated game, where one of the players, P1, can sow
doubt, in the mind of his opponent, as to what P1’s payoffs are. This results in a
two-person repeated game with incomplete information. By sowing doubt, P1 can
sometimes increase his minimal equilibrium payoff in the original game. We prove
that this minimum is maximal when only one payoff matrix, the negative of the
payoff matrix of the opponent, is added (the opponent thus believes that he might
play a zero-sum game). We obtain two formulas for calculating this maximal
minimum payoff. Journal of Economic Literature Classification Numbers: C7, D8.
© 1999 Academic Press

1. INTRODUCTION

Repeated games with incomplete information have received consider-
able attention in the last 20-30 years. These games can be seen as
theoretical idealizations of many social and economic situations. A stan-
dard two-player repeated game is a bimatrix game played an infinite
number of times. A game with incomplete information is a game in which
at least one of the players lacks part of the relevant data. A standard
two-person game with incomplete information on one side consists of a
finite set K of states of nature. Each state of nature is described by a
bimatrix game, i.e., one payoff matrix for each player. A state of nature is
chosen according to a probability vector p. Only player 1 is told which
game was chosen.

Repeated games and games with incomplete information are two inde-
pendent classes of games, but the combination of both is particularly
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interesting. In a repeated game with incomplete information, the compli-
cated structure of the repeated game allows the lack of information to
come into play. Depending on the way player 1, the “informed” player, is
playing, all the information he has, part of it, or no information, is revealed
to the other player in the course of the game.

Incomplete information naturally raises the issue of cooperation be-
tween the two players, which is also related to repeated games. Recall the
equivalence between equilibrium points in a repeated game with complete
information and feasible and individually rational points in a one-shot
game when cooperation is allowed, as expressed by the Folk Theorem.

Repeated games with incomplete information were first studied by
Aumann and Maschler (1966); see Aumann and Maschler (1995, Chap. 1).
Their work was mainly concerned with the case of two-person zero-sum
games. The two-person non-zero-sum case was first studied by Aumann,
Maschler, and Stearns (1968); see Aumann and Maschler (1995, Chap. V).
A complete characterization of the set of equilibria in these games, with
standard one-sided information, was obtained by Hart (1985). The general
case of this model assumes that the *“uninformed” player monitors the
actions of both players but does not know what his own realized payoffs
are; otherwise he could deduce what state of nature was chosen. The
current work looks at a special case where the uninformed player has the
same payoff matrix in all states of nature. Thus, he knows his own payoffs
but cannot deduce from them what the state of nature is. This kind of a
game is called a repeated game with standard one-sided information and
“known own payoffs.”

Explicitly, the game consists of a set K of payoff matrices for player 1,
A* to A%l and a single payoff matrix, B, for player 2. A payoff matrix for
player 1 is chosen according to a probability vector p (over K). Only player
1 is informed which matrix was chosen. Shalev (1994) characterized the set
of equilibrium points for games in this class and proved that every such
game has at least one equilibrium point.

One can build a game of this kind by extending a repeated game with
complete information. Suppose that we have a repeated game with com-
plete information, with payoff matrices 4 = A* to player 1, and B to
player 2. If we allow player 1 to create uncertainty by adding payoff
matrices, A2 to A%l and a probability vector p (with all components
strictly positive) for choosing among them, then we get a repeated game
with one-sided information and known own payoffs. We will refer to this as
the “extended game.”

The set of equilibrium payoffs for player 1 in the original game (i.e., the
game with payoff matrices 4 and B) is given by the Folk Theorem. It
follows from this theorem that this set has a minimum, a, and a maximum.
One result of Shalev (1994, Lemma 5) is that, in the extended incomplete
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information game, the minimum equilibrium payoff for player 1 in case
that the original state of nature is chosen (i.e., k = 1) is no less than 4, and
can be strictly greater then a. In other words, it is possible that, by adding
new payoff matrices, the payoff guaranteed to player 1 in the case that the
original state of nature is chosen, increases. Another result of Shalev
(1994) is that the increase does not depend on the value of p.

The main question that the present work addresses is the following:
Given A4 and B, which matrix or matrices should player 1 add if he wants
to maximize the payoff guaranteed to him in the case that the chosen state
of nature is the original one (i.e., in the case that his payoff matrix is A4)?
Our main result is that it is optimal for player 1 to add a single matrix,
namely, — B, the negative of player 2’s payoff matrix.

The minimum equilibrium payoff for player 1 in this case is equal to the
payoff guaranteed to him in the one-shot game with payoff matrices A and
B, when player 2’s responses to player 1's strategy are restricted to those
that yield player 2 a payoff of at least his value (i.e., the minmax value of
B). This is similar, but not identical, to a non-zero-sum static Stackelberg
games (Simaan and Cruz, 1973).

We can view the addition of matrices as a way of sowing doubt in player
2’s mind. Thus, the main result is interpreted as follows: It is best for
player 1 to make player 2 believe that, with some positive probability, he is
involved in a zero-sum game, namely, that player 1 wants to keep player 2’s
payoff at its lowest. Surprisingly, this is what maximizes the guaranteed
payoff of player 1 in the original game.

Notation. R is the real line. For a finite set L, the number of elements
of L is denoted |L|, and R is the |L|-dimensional Euclidean space with
coordinates indexed by the elements of L. Thus, we write x = (x,),., for
x € RE. For vectors x = (x;,...,x,) and y = (y;,...,y,), y <x means
y;<x;, for i=1,...,n. x-y is the scalar product ©7_, x,y,. Al ={x €
REY|x,>0forall /€L and ©,_, x, = 1} is the unit simplex in R-. For
finite sets 7 and J, 6§ € A”*/, and matrix M of order |I] X |J], we define
M(8) =%, ¢, Zje] SijM(ivj)'

2. BACKGROUND

Our work and results are based on a model that was introduced by
Shalev (1994). In this section we present this model and some of Shalev’s
results that we are going to use in later sections. Shalev’s model is based
on the model of Aumann, Maschler, and Stearns (1968) and Hart (1985)
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and it consists of the following:

(i) Two players, player 1 and player 2.

(i) A finite set I of actions for player 1, and a finite set J of actions
for player 2. Each set contains at least two elements.

(iii) A finite set K = {A4%, A2,..., A1} of payoff matrices of dimen-
sion |I| x |J| for player 1, and one payoff matrix B of dimension || X |J|
for player 2.

(iv) A probability vector p = (p,), < ¢ € AXl. We assume that p, >
0 for every k.

A game with incomplete information on one side and known own payoffs
(A A%,..., AKXl B; p) [or shortly T'(p)] is defined as follows:

(v) An element k of K (interpreted as the state of nature) is chosen
according to the probability vector p; Kk is told to player 1 but not to player
2.

(vi) At each stage ¢ of the game, player 1 chooses an element i, in 1
and player 2 chooses an element j, in J. The choices are made without
either player knowing the choice of the other player. Then, both players
are told the pair (i,, j,).

(vii) Both players have perfect recall.

Next we describe the set of strategies for the players in T.(p). For
t=1,2,... let H =(xJ) ! be the set of histories up to (but not
including) stage ¢. A pure strategy for player 1 is a sequence o = (0,)7_,,
where

o HXK->1 fort=12,.... (2.1)
Thus, for every k € K (the “true” game being played), o,(k,, k) is the

action taken by player 1 at stage ¢. Similarly, a pure strategy for player 2 is
a sequence 7 = (1,)7_,, where

T,:H —-J fort=1,2,.... (2.2)

As usual, a mixed strategy is a probability distribution over the set of pure
strategies. Since I(p) is a game with perfect recall, one can restrict the
study to behavior strategies (Kuhn, 1953; Aumann, 1964), where players
make independent randomizations at each stage. A behavior strategy is
defined in the same way as a pure strategy but with (2.1) replaced by

o, :H XK — A (2.3)
and (2.2) replaced by
7, H, — A, (2.4)
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In the following, “strategy,” with no qualifier, will always mean ‘‘behavior
strategy.”

We have not yet defined payoffs in T.(p), only payoff streams. Given a
history h,,, € H,,, and a state of nature k € K, the average payoff for
player 1 in stages 1 through ¢ is

t
a, = (1/t) X A, ) (2.5)
s=1
and the average payoff for player 2 in stages 1 through ¢ is
t
B = (1/t) X B(i,. J,). (2.6)
s=1

Both averages depend on o and on 7, and a, , depends also on k. Let
Ef (a, ) and E, . (), respectively, be their expectations." A pair of
strategies (o, 7) is an equilibrium point of T.(p) if, for every strategy o' of
player 1 and every k € K,

liminfEX (a,,) = limsupE%. (a;,) (2.7)
t

t

and for every strategy 7' of player 2

liminfE, . (B,) = limsupE, .. ,(B,). (2.8)

In particular [take o' = ¢ in (2.7) and 7’ = 7 in (2.8)], if (o, 7) is an
equilibrium point, then there exist a vector a = (a,), . x and a scalar 8
such that, for every k € K,

IiinE(];',T(ak,t) = ai and Ii:nE(r,T,p( Bt) = B (29)

We write a = {a,}, c ¢ for the vector payoff of player 1, and we will call
(a,B) the equilibrium payoffs at the equilibrium point (o, 7).

For a probability vector p = (py,..., pjx) € AXl, let p - A be the matrix
whose (i, j)th element is ¥, . x p, A*(, j). The value of the (one-shot)
two-person zero-sum game with payoff matrix p - A is denoted (val, 4)(p).

1E{,, +,p 15 the expectation with respect to the probability measure induced by the strategies

(o and 7) and by the choice of nature of k (according to p). EX . denotes the expectation
conditional on k = k.
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Explicitly,
(val, A)(p) = max min(p-A)(x,y) = min max(p-A)(x,y),
xeAl yen yeA! xeAl
(2.10)

where (p-AXx,y) = ;. Tjc ) X,9,5; c x r AG, j). Similarly, val, B is
the value to player 2 of the two-person zero-sum game with payoff matrix
B, ie,

val, B = max min B(x,y) = min max B(x,y), (2.11)
yed xeal xeAl yen’!
where B(x,y) =X,c;X;c;x;y;B(, j). A payoff vector a = (a),c g €
R'X1is individually rational (IR) for player 1 in T.(p) if

q-a > (val, A)(q) for every g € AX. (2.12)

This terminology is based on the fact that (2.12) is a necessary and
sufficient condition for the set 0, = {x € R¥ | x < a} to be approachable
by player 2 in the sense of Blackwell (1956). A scalar 8 is an individually
rational payoff to player 2 in T (p) if

B = val, B. (2.13)

Shalev (1994) obtained a characterization of the set of equilibrium points
in I.(p) and proved its nonemptiness:

ProposITION 1 (Shalev, 1994). A repeated game with incomplete infor-
mation on one side and known own payoffs has at least one equilibrium point.

PROPOSITION 2 (Shalev, 1994). Let I'(A*, A4%,..., AXI; B; p) be a re-
peated game with incomplete information on one side and known own payoffs.
Then, (a, B) € RX X R are equilibrium payoffs in T,( A, A%,..., A%l B; p)
if and only if for every k € K there exists a probability distribution §* € A/
such that

(i) A%(8*%) =a, forevery k € K,
(i) Eick peB(Y) =B,
(i) gq-a > (val, A)q) for every g € AX (i.e., a is IR for player 1),
(iv) B(8*) > val, B for every k € K, and
()  A(8%) = A*(8%) for every k, k' € K.
We now outline one direction of the proof of Proposition 2 and show how,

given 8%,..., 8/Kl that satisfy the above conditions, one can construct a
completely revealing equilibrium point with equilibrium payoffs (a, 8).
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For each k € K, fix a joint plan for achieving the frequencies &*. The
plan will consist of two sequences of actions, one sequence for each player.
The strategy o of player 1 will be the following: Signal k£ in the first
[log, K] + 1 stages (by converting k to a binary number and signaling
digit after digit), and then play according to the joint plan, corresponding
to 8. If player 2 deviates from the plan, then play a mixed strategy that
holds player 2 to val, B. The strategy = of player 2 will be the following:
Play arbitrarily in the first [log, |K[] + 1 stages, and then play according to
8. If player 1 deviates from the plan, then play a Blackwell strategy
ensuring that player 1 will get no more than a; the existence of such a
strategy follows from condition (iii) (Blackwell, 1956; Aumann and
Maschler, 1966).

It is clear that neither player can benefit from a detectable deviation.
Player 1 can make an undetectable deviation by signaling k&’ # k, but
condition (v) ensures that he cannot benefit from such a deviation.

Conclusion. Every equilibrium payoff is achievable by a completely
revealing strategy of player 1.

3. DESCRIPTION OF THE PROBLEM

Given payoff matrices 4 and B, let a game [*(A4, B) be defined as
follows: First, in stage 0 of the game, player 1 chooses a finite set of payoff
matrices that includes A, say, {A' = A4, 4%,..., A'X}, and a probability
vector p € AX with all components strictly positive. Then the game
(A, A% ..., AXl; B; p) is played. If player 1 does not add any payoff
matrix, i.e., if |K|= 1, then by the Folk Theorem the set of equilibrium
payoffs is the intersection of the feasible set {(a, 8) | 36 € A/ s.t. A(5)
=a and B(8) = B} and the individual rational set {(a, 8) | a > val, A4
and B> val, B}. The guaranteed payoff for player 1 in this case is
therefore a: = min{A(8) | 6§ € A/, A(§) > val, A4 and B(§) > val, B}.

The main issue of this paper is to find an optimal play for player 1 in
stage 0 of the game I*(A4, B), i.e., a play that maximizes his minimum
equilibrium payoff in case that the state of nature is the original one
[according to proposition 1 in Shalev (1994) the maximum equilibrium
payoff does not change].

Thus, for a given choice of {42,..., A%} let

a(A, A%,..., A%, B): = min{A(8") | a, 8%,..., 8 satisfy (i),
(iii), (iv), and (v) in Proposition 2}.2 (2.14)

%As shown in Shalev (1994), @ does not depend on p, as long as all its coordinates are
positive. Also, note that condition (ii) is irrelevant here.
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Then we are looking for the maximum of these 4, that is,
a:=sup{a(A, A%,..., A%, B)||IK| > 2, 4%,..., A
are matrices of order 1] X [J[}. (2.15)

Our main goal is to characterize this a.

4. THE MAIN RESULT

THEOREM 1. Let A and B be payoff matrices of order |I| X |J|. Then @
satisfies

@=a(A, —B;B), (2.16)

a= sup min A(x,y), whereY(x) = {y € A | B(x,y) > val, B}, and
xeAl yev(x)

(2.17)

a=a*=supval(A4 - vy(B - BE)),
vy>0

where 3 = val, B and E is the matrix of order |I| X |J| with all entries 1.
(2.18)

The content of Theorem 1 is that an optimal play for player 1 is to add the
single matrix —B. The theorem also suggests two ways for computing a.
We now give an example in which @ is strictly greater than a.

ExampLE. Consider the two-person repeated game with payoff matrices

R
A= |T| 0] 0 and B=|T 0
B|1]|0 B| 0| —10

By the Folk theorem, the set of equilibrium payoffs in this game is
{(a,0) 1 0 < a < 1}. However, consider for example the equilibrium payoffs
(0,0). The players get these payoffs when player 1 plays T and player 2
plays L. If player 1 deviates and plays B, then player 2 “punishes” him by
playing R. But, in this case player 2 gets —10 and player 1 still gets 0, as
before.

The addition of the payoff matrix —B for player 1 eliminates this
“problematic” equilibrium point. According to (2.17) in Theorem 1, @ can
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be calculated by looking at the original game (the game with payoff
matrices A and B) and assuming that player 2 is “individually rational,” in
the sense that he always plays in a way that ensures him at least val, B.

If player 1 plays B, then player 2 must play L. Therefore the only
equilibrium payoffs after the addition of —B are (1,0); so player 1 gets a
payoff of 1. Note that (2.18) implies the same result:

L| R
A—yB=|T|0| O
B| 1|10y

val, (4 — yB) = min{1,10v}, and sup,, . ,val,(4 — yB) = 1.

Proof of Theorem 1. Let B = val, B. By definition, a(A4, —B; B) is the
solution of the following minimization problem (where 8%, 62 € A™*/):
Minimize A(8%'), subject to the constraints

(i) B(sY =B,
(i) B(8?) = B,
(i) A(8Y) > A(8?), (2.19)
(iv) (=B)8? > (—BX38"), and
W) pA(SH + (1 — p)(—BX8?) = val,(pA — (1L — p)B) for all 0 <
p <Ll

Taking p = 0 in (v), we get (—B)(8?) > val,(—B) = — 8. In conjunction
with (ii), this gives B(82) = B. Condition (v) therefore takes the form
pA(8Y) = val [ pA — (1 — pXB — BE)], for all 0 < p < 1, which is equiva-
lent to A(8") > sup,,. ,val (A4 — y(B — BE)) = a*. We therefore con-
clude that

@(A,—B;B) > a*. (2.20)

Next we show that a* > a(A*, A%, ..., AKl: B) for every set of payoff
matrices K = {A4' = A4, A%,..., AXI}; This together with (2.20) completes
the proof of (2.16) and (2.18). We prove this by constructing an equilibrium
point for I,(A4Y, A%,..., AXl: B; p) (for arbitrary p) in which the equilib-
rium payoff to player 1 in state of nature k = 1 is less than or equal to a*.
For m € K, define

a,, = max{A™(8) | 6 € R, A(8) <a*, B(8) > B,and E(8) = 1}
(2.21)



212 EITAN ISRAELI

(the set on the right-hand side of (2.21) is nonempty because taking y = 0
in (2.18) assures that a* > val, 4, and recall the Folk Theorem), and let
d™ be such that the maximum in (2.21) is attained at 8. It is clear from
the definition that &%, ..., 8'XI satisfy conditions (iv) and (v) in Proposition
2. It remains to show that condition (iii) in Proposition 2 is satisfied too,
i.e., that

Vali(3,, < x P A”) < 3,0 P, A™(8™) for every p € A, (2.22)
It follows from (2.21) that, for every m € K and every 6 € R!/I*/|
[(B — BE)(8) = 0and (a*E — A)(8) = 0] = (a, E — A™)(8) = 0.
(2.23)

Therefore, by Farkas Lemma, for every m € K there exist non-negative
constants, r,, and s,,, and a non-negative matrix C,, such that a,, E — A™
=s,(a*E — A) + r,(B — BE) + C,,. Rearranging terms and using the
monotonicity of the “val,” operator, we conclude that, for every p € AX,

valy (2, c x P A™)
<3, ckPmlp +Val[2, c xPu(SwA — 1, (B — BE))]
— 3 e kKPS @ (2.24)
It follows that (2.22) is satisfied if
S e k PnSm@ = VAl [S DS A = Sk Pulm( B — BE))]. (2.25)

If 2, ckPnsS. = 0, then (2.25) holds. Otherwise, setting vy =
e kPot)/ G c kPS)s (2.25) can be written as a* > vall4 — y(B
— BE)], which is true by definiton of a*.

It remains to prove (2.17).

First direction: @ < sup,c y Min, ¢y, A(x, y). For every &> 0, there
exist y(¢) € R and x(&) € A’ such that

supval,[A — y(B — BE)] — ¢
v>0

<val,[A4 — y(e)(B — BE)]
y”e‘Tj(A — v(&)(B — BE))(x(#),y)

IA

min (4 = ¥(2)(B = BE))(x(#),v) | B(x().) = B)

min A(x(e),y) < sup min A(x,y). (2.26)
yeY(x(e) re Al YEY(X)
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Second direction: @ > sup, c y» min .y, A(x, y). For every & > 0, there
exists x'(e) € A" such that min _y, A(x’, y) > sup,
min, ¢y, A(x, y) — &, and therefore, for every y’ € RY,

B(x'(2),y') = B2,y =20

=A(x'(e),y") — ( sup min A(x,y) — a)EiEJy; > 0.
re Al YEY(X)

It hence follows from Farkas Lemma that there exist a scalar y > 0 and a
vector ¢ € R’ such that, for every y’' € A/,

A(x'(€),y') — sup min A(x,y) + e
re Al YEY(X)
=v(B(x'(),y") = B) +cy
> y(B - BE)(x'(¢).y"). (2.27)
Therefore,

a+ex>val[A—y(B—-BE)] +&e= sup min A(x,y). (2.28)
re Al YEY(X)

Since & is arbitrary, Egs. (2.26) and (2.28) together imply (2.17). =

5. GEOMETRICAL INTERPRETATION

Equation (2.18) in Theorem 1 can be interpreted geometrically. This
equation implies

pa+ (1—-p)(—B)=val(pd—(1-p)B)forall0 <p <1, and
(2.29)

pod + (1 —po)(—B) =val(pyA — (1 —p,)B) forsome 0 < p, < 1.
(2.30)

Thus, the graph of the affine function (of the variable p) on the left-hand
side of (2.29) lies above the graph of the function on the right-hand side of
(2.29) and intersects it at p = 0 and at p = p,. The former graph inter-
sects the p = 1 line at the point a. The latter graph intersects it at the
point val, A. This suggests the following geometrical way for computing a:
Plot the graph of val,(pA — (1 — p)B), and then draw the line with
minimum slope that lies above this graph and passes through the point
(0, —B). This line passes through (1,a). Here is an example, where
val; A = —1,val, B=1,val[p4 — (1 — p)B]l = min(p — 1, —p).
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val, B = -1 \ /4 val ;A =-1
val; [pA-(1-p)B]
A B pA— 1 —-p)B
R L L R
T| 0 | -1 T T|\p—1|-p
B|-1|-1| | B B| -1 | -p

6. LEADER AND FOLLOWER INTERPRETATION

Equation (2.17) in Theorem 1 is similar but not identical to a non-zero-
sum static Stackelberg game. According to this equation, the minimum
equilibrium payoff for player 1 is equal to the payoff guaranteed to him in
the one-shot game with payoff matrices 4 and B, when player 2 knows
player 1's strategy and replies in such a way that his own payoff is at least
the minimax value of B. Player 1 is the leader, because he is first to play.
Player 2 is the follower.

In a non-zero-sum static Stackelberg game, the leader’s strategy (called
also the Stackelberg strategy) is optimal with respect to the assumption
that the follower maximizes his objective function, after he knows what the
leader did (Simaan and Cruz, 1973). Equation (2.17) represents a more
extreme situation: The follower assumes to be indifferent between strate-
gies when his own payoff is above the value of B, and the leader must be
prepared to the worst case among all those follower’s strategies.

On the other hand, in Stackelberg game, player 1, the leader, actually
chooses his strategy. Hence he is limited to pure strategies. Equation (2.17)
represents a situation where the leader can choose mixed strategies as
well.
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7. RELATED WORK

The work presented in this paper was done in 1989. Since then many
related articles have been published. The interested reader should consult
Cripps and Thomas (1995), Cripps, Schmidt, and Thomas (1996), and the
references therein.

One possible extension of the work allows incomplete information on
both sides. In this model, each player has a possible set of matrices. A
couple of payoff matrices are chosen, one for each player, but each player
is told only what his payoff matrix is. Koren (1989) characterized the set of
equilibrium points for this general model. As in the one-sided case, all
equilibrium points are achievable through a completely revealing strate-
gies. Israeli (1989) explored the special case of ‘“‘two-sided sowing doubt,”
where the possible matrices of the first player are A and —B while the
possible matrices of the second player are B and —A4. An example without
equilibrium point is shown.
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