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Abstract

We analyze the set of equilibria of two-person repeated games with incomplete
information on both sides. We show that each equilibrium generates a martingale
with certain properties. Moreover, for games, satisfying a certain condition that
we call "tightness", it is shown that the converse also holds: each such martingale
generates an equilibrium.
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1 Introduction

A game with incomplete information is a game in which different players have different information
on the structure of the game. Independent incomplete information (see, for example, Myerson 1991
section 2.8) is a situation in which there exists a common prior distribution over the possible set
of games, known to all the players, and in addition, each player might have additional information
which is independent of the information of the other player. Repeated games with incomplete
information were much studied in the last thirty years (see the book of Aumann and Maschler
1995). Aumann, Maschler, and Stearns (Aumann and Maschler 1968 and Aumann, Maschler, and
Stearns 1968) analyzed the two player zero sum case (see also Blackwell 1956) and had the first
results on the non-zero sum case. In particular, they showed that the set of equilibria might be
empty (in the non-zero sum incomplete information on both sides). However, when it is not empty,

it might be a very complex set. Hart (Hart 1985) introduced the concept of bi-martingales and
used it to characterize the set of equilibria in the one-sided information case (see also Aumann and
Hart 1986). Lately Simon, Spiez, and Torunczyk (1995) proved that this set is not empty. In this
work we study games with incomplete information on both sides and show that in this case the
bi-martingales used in the characterization in the one-sided information case can be replaced by
an appropriate class of "admissible martingales". The characterization has a lot in common with
the characterization of the equilibria in the general two player incomplete information cheap talk
games (Amitai 1996) and in particular the admissible martingales were first introduced there.

However, unlike both the one sided information case (Hart 1985) and the general Cheap-Talk
case (Amitai 1996), admissible martingales are not sufficient, in general, to generate equilibria. We
therefore introduce the concept of tightness. In this case admissible martingales and equilibria are
equivalent.

In section 2 we define the model and discuss some properties of repeated games with incomplete
information on both sides and in section 3 we define the notion of admissible martingales. In sections
4 and 5 we state and prove the main result and in section 6 we give an example demonstrating the
difficulties in generalizing the result.

2 The Model

As every repeated game with incomplete information is equivalent to a repeated game with inde-
pendent incomplete information (see Myerson 1991 page 73, Aumann and Maschler 1995 section
4.2, and for a detailed proof, Amitai 1996) we can restrict ourselves to games with independent
incomplete information. We define a class of repeated games with incomplete information on both
sides. The repeated game is played after the players have received their private information and is
defined by the following:

1. Two players: player 1 and player 2.

2. A finite set of actions I for player 1, and a finite set of actions J for player 2.

3. Two finite sets, K and L, such that to each pair (k E K,l E L) there corresponds a pair of
I X J matrices (Ak,Z , Bk,Z). Ak,z = (Ak,Z(i,j))iEI,jEJ, Bk,l = (Bk,Z(i,j))iEI,jEJ'

4. Two probability vectors: p E fl(K), p = (P(k))kEK and q E fl(L), q = (q(l))IEL.
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5. Let n be a natural number or n = 00. We define the game f n(P, q).

6. The game has two phases:

The Information Phase: Nature chooses k E K according to p and IE L according to q.
The choices are made independently, i.e, Prob(k = k and I = l) = p( k )q(l). k is told to
player 1 and I is told to player 2.

The Action Phase: This phase is divided into periods t=1,2,3...,n. For each t, player 1
chooses an action it E I and player 2 chooses an action jt E J. The choices are made
simultaneously. The payoff to player 1 in period t is at := Ak,l( it, jt) and the payoff to
player 2 in period t is bt := Bk,l(it,jt).

7. The players have perfect recall.

8. 1,2,3,4,5,6,7 are common knowledge to both players.

9. For a finite n the payoff of the game is defined by the sum of the payoffs in the n periods of
the game. For the infinite repeated game it will be defined later, together with the definition
of equilibrium (definition 2.3).

The players have perfect recall, hence it and jt are functions of the history of length t - 1,
namely, ht-l := ((i1,jl),(i2,j2),...,(it-l,jt-l))' let hoo := ((i1,jl),(i2,h),...,('it,jt),...) be the
infinite sequence defined by the actions of the players in the game. Let Ht = (I X J)t be the set
of histories of length t. Define H 0 = {4>}. Let H 00 = TI~l(I X J) be the set of infinite histories.
On H 00 , we define for every t, a finite field Ht as follows: h~ , h~ E H 00 are in the same atom
of Ht if and only if h~ (u) = h~(u) for every 1 ::; u ::; t (recall that hoo (u) is the pair of actions
chosen by the players at period u, according to the infinite history hoo). Let Hoo be the a-field
generated by {Ht}~o . Our basic probability space is (n, A) = (K X Lx Hoo , 2J{ Q92£ Q9Hoo). A
point in n is a triple (k, l, hoo), where (k, l) is a possible state of nature and hoo E Hoo is an history
of the game. When defining sequences of random variables, we will use the following notation:

at, bt, Ct,... will usually be random variables measurable with respect to (Ht, Ht), and aht, bht' ChI' .,.

will denote at(ht), bt(ht), ct(ht),... . For x E tl(I) and y E tl(J) we will write Ak,Z(x, y) instead of
LiEI,jEJx(i)y(j)Ak,Z(i,j) and Bk,Z(x,y) instead of LiEI,jEJx(i)y(j)Bk,Z(i,j). Since foo(p,q) is a
game with perfect recall, we can restrict ourselves to behavior strategies (see Aumann 1964). To
shorten the writing, whenever we write 'strategy' we will mean a behavior strategy. Let N denotes
the set of natural numbers {I, 2, 3, ...}.

Definition 2.1: A strategy a of player 1 in f oo(p, q) is a function a : K X UtEN Ht-l -7 tl(I) .
A strategy T of player 2 in f oo(p, q) is a function T : Lx UtEN Ht-l -7 tl(J). For ht E Ht let aht
and Tht be the strategies of playing according to a and T (respectively) given ht, i.e, 1

aht(k,hr):= a(k, (ht, hr))

Tht(l,hr):= T(l, (ht, hr))

l(ht, h,,) E Ht+" is the strategy ht followed by the strategy hr.
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Definition 2.2: A strategy (Jof player 1 in f oo(p, q) is called non - revealing if (J(k, ht) = (J( k', ht)
for all k, k' E K and ht. A strategy r of player 2 in f oo(p, q) is called non - revealing if r(l, ht) =
r(l', ht) for all I, I' ELand ht.

Let L;i be the set of strategies of player i for i - 1,2 and let L;~r be the set of non-revealing
strategies of player i for i = 1,2. Denote:

Z:= . max, {IAk,z(i,j)l, IBk,z(i,j)l} + 1.kEK,ZEL,tEI,]EJ

That is, Z is a strict upper bound of the absolute value of the possible payoffs.
Every 4-tuple ((J,r,k,l) E L;1 X L;z X K X L defines a probability measure 7Ta,r,k,Zon (Hoo,Hoo),

i.e, for an history ht := ((i1,jI),(iz,jz),...,(it,jt)), we denote by 7Ta,r,k,Z(ht) the probability that
the first action played by player 1 is iI, the first action played by player 2 is j1, the second action
played by player 1 is iz, and so on, given that k = k, 1 = I, player 1 plays according to (J and
player 2 plays according to r. We derive from 7Ta,r,k,Z another probability measure on (K X L X Hoo
, 2K 0 2L 0 Hoo) by:

Pa,r,p,q(k, I, ht) := p(k)q(I)7Ta,r,k,z(ht)

Note that Pa,r,p,q(k = k,l = I) = LhtEHt Pa,r,p,q(k,l,ht) = p(k)q(l). Denote by Ea,r,k,l the
expectation with respect to 7Ta,r,k,Z and by Ea,r,p,q the expectation with respect to Pa,r,p,q' Similarly
we derive IKIprobability measures on (L X Hoo, 2L0Hoo) and ILl probability measures on (I( X Hoo

K, 2 0 Hoo) by:
P::r,q(l, ht) := q(I)7Ta,r,k,z(ht)

and
P;~r,p(k, ht) := p(k)7Ta,r,k,l(ht)

Let E~;r,q and E;,r,p be the expectations with respect to P!::r,q and P~~r,p respectively. We will

denote Pa,r,p,q, Ea,r,p,q, P!::r,q, E~;r,q, p~z,r,p, and E;,r,p by P, E, pk., Ek., p'z, and E'z respectively.

Denote by aT and bT the average random payoffs to player 1 and player 2, respectively, up to
period T, i.e,

T T1
" 1" kl.

,

aT:= - L...at = - L...A '(2t,Jt)
T

t=l
T

t=l

and
T T

bT:= ~ Lbt = ~
LBk,l(it,jt)

t=l t=l

Definition 2.3: a E IRK and b E IRLare equilibrium payoffs in foo(p,q) if there exist (J E L;1 and

r E L;z such that:

El : ak = limT--+ooEk'(aT) for all k E K.

E2 : bz = limT--+oogZ(bT) for all I E L.

E3 : ak 2limsuPT--+ooE:;r(aT) for all k E K and (J' E L;1.,
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E4 : b1 2: lim suPT-+oo E;,r,(bT) for alIi ELand 7' E ~2.

Note that if a E IRK and b E IRL are equilibrium payoffs in f 00(p, q) then a E (- Z, Z)K and

bE (-Z,Z)L.

Definition 2.4: a E IRK and b E IRL are non revealing equilibrium vector payoffs in f oo(p, q) if
there exist (I E ~;r and 7 E ~;r satisfying El,E2,E3,E4. Note that (I E ~;r and 7 E ~;r imply
(using induction and Bayes' rule):

E5 : Po-,r,p,q(k = k I hi) = p(k) for all ht such that Po-,r,p,q(ht)> O.

E6 : Po-,r,p,q(l= II hi) = q(l) for all ht such that Po-,r,p,q(ht) > O.

Let

NR:= {(a,b,p,q) E IRK X IRLX ll(K) X ll(L) s.t. (a, b) is a non revealing equilibrium in foo(p,q)}

Definition 2.5: Let (a,b,p,q) E IRK X IRLX ll(K) X ll(L). (a,b,p,q) E NR+ if and only ifthere
exist non-revealing strategies (I E ~;r and 7 E ~~r such that:

El' : ak = limT-+ooEk'(aT) for all k E K such that p(k) > O.

E2' : b1 = limT-+oo gl(bT) for alIi E L such that q(l) > O.

E3 : ak 2: limsuPT-+ooE:;,r(aT) for all k E K and (I' E ~1.

E4 : bl 2: lim sUPT-+oo E; r,(bT) for alIi ELand 7' E ~2.,

We need some notations. Let aq,i,j and bp,i,j be the expected vector payoffs (of player 1 and
player 2 respectively) when the players play the actions i and j (respectively) constantly, i.e,

a~,i,j := 2:q(l)Ak,l(i,j)
lEL

Vk E K

b;,i,j := 2: p(k)Bk,l(i,j)
kEK

Vi E L

Let
Fp,q := U {(aq,i,j, bp,i,j)}

(i,j)ElxJ

conv( Fp,q) is2 the set of (jointly) feasible payoffs in the two sided incomplete information one shot
game with payoff matrices (Ak,l, Bk,l) and probability vectors p and q. For x, y E IRM let x .::; y

denotes xm .::;ym for all m E M. We will use x « y to denote xm < ym for all m E M. Let

F:= U{(a,b,p,q) E [-Z,Z]K X [-Z,Z]L X ll(K) X ll(L) s.t. (a, b) E conv(Fp,q)}
p,q

2conv(X) denotes the convex hull of the set X.
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p+:= {(a,b,p,q) E [-Z,Z]K X [-Z,Z]L X Ll(K) x Ll(L) s.t. there are c ~ a and d ~ b s.t.

(c,d,p,q)EP,

p(k) > 0 implies ak = ck, and

q(Z) > 0 implies bl = i}

We now introduce the concept of Banach limit (see Dunford and Schwartz 1958, page 73). We
will use Banach limits in section 4. Let Zoo be the space of all real bounded sequences. From the
Hahn-Banach theorem (see, for example, Dunford and Schwartz 1958) follows the existence of a
Banach limit which is a real operator £ : Zoo-+ IRwith the following properties (and many more):

1. £(ax + (3y) = a£(x) + (3£(y) for all x,y E Zooand a,(3 E IR.

2. £({xn+d~=l) = £({Xn}~=l) for all {xn}~=l E Zoo.

3.liminfn-+ooxn ~ £({Xn}~=l) ~ limsuPn-+ooxn for all {Xn}~=l E Zoo. (in particular, the
existence of limn-+oo Xn implies limn-+ooXn = £( {xn}~=l)

We will write £[xn] instead of £( {xn}). Let LlHp, q) be the one shot zero-sum game, with payoff
matrix L,kEK L,IELP(k)q(Z)Ak,l. Let Lli(p, q) be the one shot zero-sum game, with payoff matrix

L,kEK L,IELP(k)q(Z)Bk,l. Denote by Ui(p, q) the value of the game Lli(p, q) for i = 1,2. For a two
dimensional function u, Denote by vexl u the convexification of u with respect to the first variable,
and by vex2u the convexification of u with respect to the second variable. Similarly, denote by
cavl u and cav2u the concavification of u with respect the first and the second variables.

Definition 2.6: Let p E Ll(K) and q E Ll(L).

Wi:= {a E IRK s.t. 3T E ~2 s.t. Vk E K and V(7 E ~l limsupE:"Tq(aT) ~ ak}
T-+oo '

,

~ := {a E IRK s.t. 3T E ~2 s.t. V£(Banach limit )Vk E K and V(7 E ~l lim sup E:>,q( aT) ~ ak}
T-+oo

W;:= {b E IRL s.t. 3(7 E ~l s.t. VZELand VT E ~2 limsupE;TP(bT) ~ bl}
T-+oo '

,

W; := {b E IRL s.t. 3(7 E ~l s.t. V£(Banach limit )VZ ELand VT E ~2 lim sup E;,T,P(bT) ~ bl}
T-+oo

That is, a E Wi if and only if player 2 can guarantee that player 1 will not get more than ak for
all k E K simultaneously, and b E W; if and only if player 1 can guarantee that player 2 will not

get more than bl for all Z E L simultaneously. From the study of the zero-sum case if follows that

Wi = ~ = {a E IRKs.t. l: p(k)ak 2:: (veX2cavIU1)(p,q) Vp E Ll(K)}
kEK

and

W; = W; = {bE IRLs.t. l: q(l)bl 2:: (veXlcav2U2)(p, q) Vq E Ll(L)}
IEL
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(see Mertens, Sorin, and Zamir (1994) page 341).

Wi is convex and upper semi continuous with respect to q. W; is convex and upper semI
continuous with respect to p. Denote:

IR:= {(a,b,p,q) E [-Z,Z]K X [-Z,Z]L X ~(K) X ~(L) s.t. a E Wql and bE Wi}

That is, (a,b,p,q) E IR if and only if (a, b) are individually rational payoffs in fCXJ(p,q).

Lemma 2.7: IRis a convex set.

Proof: Denote IRI := {(a,q) s.t. a E Wi} and IRz := {(b,p) s.t. b E Wi}. IR = IRI X IRz,
hence it is sufficient to prove that I Rl and I Rz are convex. We will prove that I Rl is convex, the
proof for I Rz is similar. For p E ~(K) let

IR{:= {(a,q) E ~K X ~(L) s.t. L p(k)ak 2: (vexzcavIU1)(p,q) }
kEK

I Rl = npE~(K) I R{, hence it is enough to show that I R{ is convex for every p E ~(K). (vexZcavl U1)(p, q)
is convex as a function of q, hence I R{ is convex. I

Lemma 2.8:

1. N R = F n IR.

2. NR+ = F+ nIR.

Proof: We will prove the second part. The proof of the first part is similar and a little sim-
pIer. Assume that (a, b) E N R+ with non revealing strategies (J"and T satisfying the conditions

of definition 2.5. Let aT := ~ L,;=l aq,it,jt and bT := ~ L,;=l bp,it,jt. For every T E 1\1we have
(aT,bT) E conv(Fp,q) (because (aq,it,jt,bp,it,jt) E Fp,q for all t E 1\1), hence Ea,r,p,q(aT,bT) E
conv(Fp,q) and also lim SUPT--+CXJEa,r,p,q(aT, bT) E conv(Fp,q), because Fp,q is a finite set and
hence close. E(a}) = E(L,IELq(l)~L,;=lAk,l(it,jt)) = E(L,IELq(l)~L,;=lAk,l(it,jt) I k =
k), because the strategies, and hence the histories, are independent of k. Similarly E(liy) =
E((L,kEK p(k)~ L,;=l Bk,l(it,jd 11 = i). Now E1',E2',E3, and E4 of definition 2.5 imply that
(a, b) E F+. E3 and E4 also imply that (a, b) is individually rational and (a, b, p, q) E I R. Now we
assume that (a, b,p, q) E F+ n IR and show that (a, b,p, q) E N R+. (a, b,p, q) E F+, hence there
exist c ::; a and d ::; b such that (c, d) E conv( Fp,q), p( k) > 0 implies ck = ak and q( l) > 0 implies
dl = bl. Hence (c,d) = L,iEI,jEJAi,j(aq,i,j,bp,i,j) (where L,iEI,jEJAi,j = 1 and Ai,j 2: 0). For all
n E N define 3

/Ln : I X J ---+~ by /Ln(i,j):= lnAi,jJ. Denote Sn := L,iEI,jEJ/Ln(i,j). Note that
n - III X IJI < Sn ::;n. Define a sequence Cn of Sn joint actions of the two players. For every
(i,j) E I X J, Cn contains /LnCi,j) copies of (i,j). When we say that the two players play Cn we
mean that they playa sequence of Sn joint actions according to Cn. We define (J"and T together.
The strategies (J"and T are to play C1, then twice Cz, then six times C3, ... then n! times Cn and so
on. The limit of the average payoffs exists and equals (c, d) because Sn and (n - 1)! are negligible
with respect to n!. A player can not defect without being detected. If player 1 defects, player 2
will switch to a strategy guaranteeing that player 1 will not get more than ak for all k E K (such a

3l x J is the greatest integer not exceeding x.
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strategy exists because a E Wi). If player 2 defects player 1 will switch to a strategy guaranteeing
that player 2 will not get more than bl for alll E L. (J and T satisfy conditions El', E2', E3, and
E4 of definition 2.5. I

Let r = (K, L, I, J, {Ak,lhEK,IEL, {Bk,lhEK,IEL). That is, r is the structure of the game r n(P, q)
without n, p, and q. In the next definition we define tight games. A tight game is a game r in
which for every individually rational pair of vector payoffs there exists a feasible pair of vector
payoffs, not exceeding the individually rational payoffs.

Definition 2.9: A game r is called tight if for every (a,b,p,q) E IR there exists a mixed joint
action, wP,q

b E fl(I X J), yielding a vector payoff not exceeding a for player 1 , and a vector payoffa,
not exceeding b for player 2, i.e,

1 '\"' q( l )Ak,l (wP,q) < ak for all k E K. ~IEL a,b -
.

2 '\"'. p( k )Bk,l (wP,q) < bl for alll E L. ~kEI\ a,b
-

.

3 Admissible Splits

In this section we introduce three definitions based upon the concept of admissible splits (for the
motivation,.examples and geometrical properties see Amitai 1996 ).

Let x = (a,b,p,q) E [-Z,Z]K X [-Z,Z]L X fl(K) X fl(L) and let nand m be positive integers.

Let S = ({xu,vh<u<m,l<v<n,fL,A) E ([-Z,Z]K X [-Z,Z]L X fl(K) X fl(L))mon X fl([m]) X fl([n]),
where xu,v = (au~, bu,v,Pu~v, qu,v).

Definition 3.1:
S is called an m X n - admissible split of x if

1. x = 2:::::'=12::::~=1 fL( U)A( v )xu,v

2. (a) a = 2::::~=1 A(v )au,v for all u such that 1 ::; u ::; m.

(b) b = 2:::::'=1 fL(u )bu,v for all v such that 1 ::; v ::; n.

(c) Pu,v = Pu,v'for alII::; u::; m and 1::; v, v'::; n.
(d) qu,v= qu',v for alII::; u, u' ::; m and 1 ::; v ::; n.

S is called an exact m X n-admissible split if it is an m X n-admissible split and in addition:

3. fL(u) > 0 and A(v) > 0 for all 1 < u < m and 1 ::; v ::; n (The split is into exactly m . m
points).

Remarks:

1. From 1. and 2( c) it follows that p = 2:::::'=1 fL(U)Pu,v for all 1 ::; v ::; n.

2. From 1. and 2( d) it follows that q = 2::::~=1 A(v )qu,v for all 1 ::; u ::; m.

Definition 3.2:
Let :F1 C :F2 be two finite fields (:F2 is thus a refinement of :F1). Let Xl and X2 be [-Z, zjI< X
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[-Z, Z]L X £l(K) x £l(L)-valued random variables, measurable with respect to :P and F2 respec-
tively. X2 is called an (exact) m X n - admissible split of Xl if for every atom f1 of F1, such
that p(f1) > 0, there exists an (exact) m X n-admissible split S = ({x~,V}l<u<m, l<v<n' f-l, >') of

Xj1 := E(X1 I j1), such that j1 is partitioned into disjoint F2-measurable s-;;t; {fJ,:};:::;u:::;m ,1:::;v:::;n
(thus U1 <u<m 1<v<nfJ v = f1 and fJ v nf~1 Vi = 1 if u

=I u' or v =I v') satisfying:- -
,

- - ,
"

1. P(fJvlf1)=f-l(u».(v).,

2. X2 = x~ v on fJ v (i.e, x~ v = E (X2 I fJ V)) whenever P (fJ v) > o.,
"

, ,

Let No be the set of non-negative integers, i.e, No := {O,1,2,3, ...}.

Definition 3.3:
Let x = (c, d,w, s) E [-Z, Z]K X [-Z, Z]L X £l(K) X £l(L). Let C C [-Z, Z]K X [-Z, Z]L X £l(K) X
£l(L). An (exact) m X n-admissible martingale starting at x and converging to C is a sequence

{XtLENo = {(Ct, dt, Wt, St)}tENo of [-Z, Z]K X [-Z, Z]L X £l(K) X £l(L)-valued random variables
satisfying:

3.3.1 Xo = x a.s. (almost surely).

3.3.2 There exists a nondecreasing sequence {FtLENo of finite fields (Fa = {1, n}) with respect
to which {Xt} tEND is a martingale, i.e: Xt is measurable with respect to Ft and Xt =
E(Xt+1 1Ft) a.s.

3.3.3 Xt+1 is an (exact) m X n - admissible split of Xt for every t E No.

3.3.4 Every a.s. limit XCX)of {Xt}tENo satisfies XCX)E C a.s.

4 Main Result

We can now state and prove the main result.

Theorem 4.1:
Let 0 < < p E £l( K) and 0 < < q E £l(L) and let r CX)(p, q) be an infinite repeated game of independent

incomplete information on both sides. If (a, b) E IRKX IRLare equilibrium payoffs in r CX)(p, q), then

there exists an III X IJI- admissible martingale starting at (a,b,p,q) and converging to NR+.
If r is tight then also the converse holds, i.e, if there exists an III X IJI - admissible martingale
starting at (a, b,p, q) and converging to N R+ then (a, b) are equilibrium payoffs in r CX)(p,q).

Proof: In order to prove the theorem we will need a few definitions and lemmas. In this section
we will build an admissible martingale when an equilibrium is given, and in the next section we
will prove the second part of the theorem.

Fix a and T, equilibrium strategies in r CX)(p, q) with equilibrium payoffs (a, b). For every history

ht we want to define several random variables: Pht(k) and qhJl), the a posteriori probabilities of
the events (k = k) and (1 = l) given the history ht. f-lht(i), the probability of the action i being
played by player 1 after the history ht. >'ht(j), the probability ofthe action j being played by player

2 after ht, and aht and bht! the expected vector payoffs given ht. These variables are not defined
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for every history and we will have to extend the definitions. We will define Pht and ILht' together,
by induction. Similarly we will define qht and Aht' We will use qht to define aht and Pht to define

bht' Formally: Let Pho := P and define (using induction on t) for all i E I, j E J and k E J(:

ILht(i):= L. Pht(k)rY(k,ht)(i)
kEf{

and

{

Pht(k)o-(k,ht)(i)
ILht(i)-I=°

P(ht,(i,j))(k) := I-'ht(i)
Pht (k) otherwise

Let qho := q and define Vi E I, Vj E J and VI E L:

AhJj) := L. qht(I)T(I, ht)(j)
lEL

and

{

%t(l)a(l,ht)(j)

q(ht,(i,j))(l) := Aht(j)
qht(l)

Aht(j) -1=0

otherwise

Note that P(ht,(i,j)) is independent of j and T and q(ht,(i,j)) is independent of i and ry. Pht(k) = 0 im-
plies P(ht,(i,j))(k) = 0 and qht(l) = 0 implies q(ht,(i,j))(l) = O. Note that Pht(k) = Pa,T,p,q(k = k I hi),
qhJl) = Pa,T,p,q(1 = II hi), ILht(i) = Pa,T,p,q(it+l = i I hi) and AhJj) = Pa,T,p,q(jt+l = j I hd when-
ever the right side ofthe equations exists, i.e, whenever P(ht) > O. ry and T are equilibrium strategies
hence limT-+CXJEk'(aT) exists, but this does not imply the existence of limT-+CXJEk"(aT I hs) even
when P( hs) > O. We therefore use Banach limits. Fix a Banach limit £ and define for all k E J(

and I E L

at := £[E:~>ht'%t (aT)]

b~t := £[E;;~t,Tht'Pht (bT)]

Note that aht is independent of Pht and bht is independent of qht' We will denote by PI, qt, ILt, At,

at and bt the random variables whose values given ht are Php qhp ILht' Ahp aht and bht respectively.

Define, for every ht E Ht, k E J( and I E L

X~t .- sup£[E;;"T q (aT)]

a'
,

ht' ht

Y~t := sup£[E/ T'p (bT)]
T' ht'

, ht

Clearly at ::; X~t < Z and bL ::; Y~t < Z. For all t 2:: 1 and ht E Ht denote by h-;l E Ht-l the
history such that ht = (h-;l,(i,j)). Let hr;l := rPand p(hr;l):= 1.

The following lemma is the main part of the first part of the proof, and in it the admissible
martingale is being built.

Lemma 4.2:

1. For all ht E Ht and k E J( there exists ct E ~ such that:

(a) xt ::;ct < Z for all k E J( and hi. If pk"(ht) > 0 then ct = X~t = at.

9



(b) c~o = ak for all k E ](.

(c) ct = LjEJ AhtU)C(ht,(i,j)) for all i E I and ht.

2. For all ht E Ht and l E L there exists d~t E IR such that:

(a) Y~t ::; d~t < Z for alll ELand ht. If P-l(hd > 0 then d~t = Y~t = b~t'
(b) d~o = bl for all l E L.

(c) dlt = LiElfLht(i)d(ht,(i,j)) for all j E J and ht .

Proof: We will prove the first part of the lemma (the other part is similar), using induction on
t. For t = 0, ht = <p. Define c~o := ak. Condition (a) is satisfied for ho because a and Tare

equilibrium strategies. Fix k E ](, tEN, ht E Ht and i E I. We assume that ct is defined

correctly and define c(ht,(i,j)) for all j E J.

case 1: pko(ht)a(k,hd(i) = O. In this case pko(ht,(i,j)) = 0 for all j E J, hence we have to prove
only condition (c) (for ht) and the first part of (a) (for (ht, (i,j))). Define:

Ui := 2: AhtU)Xt,(i,j)
jEJ

Using the induction hypothesis we have

Ui < max Ui' = xk < c~ < Z = 2:Aht(j)Z
- i'EI

t - t
jEJ

(1)

and X h
k

( 0 0
) < Z for all j E J. Therefore we can choose for all j E J (simultaneously), ckh ( 0 0 ) sucht, 2,) t, 2,)

that Xk ( 0° ) ::; c~ ( 0° ) < Z, and such that (c) is satisfied:t, 2,) t, 2,)

k
'-

k k ct - UiCh( OO ) X h (
OO

) + (Z-X h ( 0° ))t, 2,)'- t, 2,) t, 2,) Z - Ui

The inequality X h
k

( 0 0) ::; Ch
k

( 0 0
) follows from the inequalities: Z > X h

k
( 0 0 )

'
c~ ~ Ui, and Z > Ui.t,2,) t,2,) t,2,) t

The inequality ckh ( 0 0 ) < Z follows from the inequalities Z > X h
k

( 0 0 ) and Z > c~ because the latert, 2,) t, 2,) t

c~ -Ui
yields ~

z - u o < 1. Thus, we proved that X h
k

( 0 0 ) ::; c~ ( 0 0 ) < Z. To complete this part of the proof. t, 2,) t, 2,)

we have to show that (c) is satisfied:

Ck - Uo

2: AhtU)ct,(i,j) = 2: Aht(j)Xt,(i,j) + ~t
-

U02 (2: AhtU)Z - 2: AhtU)Xt,(i,j))
jEJ jEJ 2 jEJ jEJ

ct - Ui k= Ui + Z - Ui
(Z - Ui) = ch,

and (c) is satisfied.
case 2: pko(ht)a(k, ht)(i) > O. For all j E J define c(ht,(i,j)) := X(ht,(i,j)) ~ a(ht,(i,j))' Fix j E J

and denote (ht, (i, j)) by hs. We will show that if pk. (hs) > 0 then ct = at. The idea is that
if at < X t and pk. (hs) > 0 then type k of player 1 can achieve more than ak by playing a and

10



switching to a strategy guaranteeing him almost xt after hs, a contradiction. We will choose
an arbitrary strategy a' and show that player 1 can gain no more than a~ playing a' after hs
(otherwise he can get more than ak by playing a and switching to a' after hs)~ Therefore c~ = at
if pk. (hs) > O. Formally, let a' be a strategy of player 1. Define a" as follows:

s.

"(k' h ) '-
{

a'(k', hx) for hr = (hs, hx)a , r.-
a(k',hr) otherwise

a" is the strategy of playing a and switching to a' if hs has occurred. Denote Ek. by Ek and pko

by Pk. Denote E;;, ,T,q by E~ and p:;, ,T,q by Pk'. Denote the set of strategies different from hs (i.e,

H s \ {hs}) by "not hs". a and T are equilibrium strategies, therefore

ak = lim Ek(aT) = £[Ek(aT)] = Pk(hs)£[Ek(aT I hs)] + (1- Pk(hs))£[Ek(aT I not hs)]
T--+oo

2': limsupE~(aT) 2': £[E~(aT)] = Pk'(hs)£[E~(aTIhs)]+ (1- Pk'(hs))£[E~(aT Inot hs)]
T--+oo

Pk(hs) = Pk'(hs) and Ek(aT I not hs) = E~(aT I not hs) and assuming that Pk(hs) > 0 we get

at = £[Ek(aT I hs)] 2':£[Ek(aT I hs)] = £[E;;>hs,%s (aT)]

This is true for all a', hence pk'(hs) > 0 implies at 2':xt and therefore ct = xt = at. We have
proved (a) for (ht, (i,j)) for all j E J. We will use (a) to prove (c). From the induction hypothesis
pk'(ht) > 0 implies ct = at = Xkt'

ct = at = L a(k,ht)(i')L Aht(j)a~ht,(i',j))
i' s.t. o-(k,ht)(i'»O jE]

L a(k, ht)( i') L Aht(j)C~ht,(i',j))

i' s.t. o-(k,ht)(i'»O jE]
(2)

because pk'(ht) > 0, a(k,ht)(i') > 0 and Aht(j) > 0 imply pko(ht,(i',j)) > 0, which implies
a~ht,(i',j)) = C7ht,(i',j))'

c~ = xk = max'" Aht(j)X (\ (i' J
O )) 2': max '" Aht(j)ak (h (i' J

O ))t t
,' E I L...i t" °, S t (k h )( °'»0 L...i t, ,

jE] ,..O-,t' jE]

L \ ( 0 ) k= max Aht J c °, °
i' s.t. o-(k,ht)(i'»O jf}

(ht,(t,J)) (3)

From equations (2) and (3) and the fact that Li' s.t. o-(ht,k)(i'»Oa(ht, k)( i') = 1 follows that for all
i' such that a( ht, k)( i') > 0 there exists

ct = L Aht(j)C~ht,(i',j))
jf}

In case 2 a(ht,k)(i) > 0.1

11
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Corollary 4.3:

ChI E W ql and dht E W p
z .

ht ht

Proof: Again we will prove only for Cht' X ht E ~ (immediate from the definition of.I£:, ).-,hI ,ht

ChI 2:: Xht E ~ (lemma 4.2), hence ChI E.I£:, . The fact that ~ = W q
l (see the discussion

,ht ,ht ,ht ht

after definition 2.5) completes the proof.
I

Corollary 4.4: {( Ct, dt, Pt, qt)}~o is a martingale with respect to the fields {Ht}~o and the prob-
ability P: =Pa,T,p,q'

Proof: We will prove the corollary only for Ct.

E(Ct+l I ht) = L P((ht,(i,j)) I ht)C(ht,(i,j))= LLfJht('i)AhJj)C(ht,(i,j))
iEI,jEJ iEI jEJ

= LfJhJi) L Aht(j)C(ht,(i,j))= LfJhJi)Cht = ChI= E(Ct I ht)
iEI jEJ iEI

I
For hoo = ((i1,jl), (iz,jz), ...) E Hoo denote by (hoo)t E Ht, the history defined by the first t coor-
dinates of hoo, i.e, (hoo)t := (('il,jl), (iz,jz), ..., ('it,jt)). For hoo E Hoo define Ch= := limt--+ooC(h=)t,

dh= := limt--+ood(h=)t, Ph= := limt--+ooP(h=)t and qh= := limt--+ooq(h=)t.

Corollary 4.5: (coo, doo,Poo,qoo) exists P-a.s.

Proof: Corollary 4.4 I

Lemma 4.6:
For P -almost every hoo there exists P( (hoo) t) > 0 for all tEN.

Proof: Let tEN. Ht is a finite set hence

P( {hoo E Hoo s.t. P((hoo)t) = o} ) = P( {ht E Ht s.t. P(ht) = O} ) = 0

{t E N} is a countable set, hence

P( U{hoo E Hoo s.t. P((hoo)t) = O} ) = 0
tEN

I

Lemma 4.7:
For P -almost every hoo there exist

1. Ifph=(k) > 0 then c~= = limt--+ooaZh=)t.

2. If qh= (1) > 0 then d~= = limt--+oo b~h=)t.
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Proof: Fix k E K and hoc; such that Ph=(k) > O. We can assume that COC;exists (corollary
4.5). Denote (hOC;)tby ht. Using lemma 4.6 we can assume that P(ht) > 0 for all t. ph=(k) > 0
implies that PhJk) > 0 for all t. P(ht) > 0 implies that P(k = k Iht) = Pht(k) > 0 hence
P ko(h ) Pht(k)P(ht)

h (1 ) k k.c 11 d k 1
. k

t = p(k) > 0, ence emma 4.2 chi = aht lor a t an Ch= = lmt--+OC;a(h=)t. I

Lemma 4.8: (cOC;,dOC;,POC;,qOC;)E IR P-a.s.

Proof: Fix hoc; such that Ch=, dh=, Ph= and %= exist (from corollary 4.5, this happens P-
a.s.). From corollary 4.3 and the fact that Wi and W; are upper semi continuous we have that

Ch= E W~h= and dh= E W;h=' Hence, (Ch=, dh=, Ph=, qh=) E I R. I

Lemma 4.9: Let {Xn}~=l be a bounded sequence of real random variables, converging a.s as
n ---+00, and let {Fn}~=l be a nondecreasing sequence of a-fields such that Xn is measurable with
respect to Fn. Define Yn := suPm~n IXm - Xnl, then E(Yn I Fn) ---+0 a.s as n ---+00.

Proof: Lemma 4.24 in (Hart 85) I

Lemma 4.10: (cOC;,doc;,Poc;,qOC;)E F+ P-a.s.

Proof: Fix hs such that Pa,r,p,q(hs) > O. Let a- and f be the average non revealing strategies
defined by

a-(k, ht):= L Pht(k')a(k', ht)
k'EK

for all k E K and ht

and
f(l, ht) := L qht(l')r(l', ht)

Z'EL

Now define the strategies 0- and f of playing a and r (respectively), and switching to a- and f
(respectively), after hs, Le,

for alll ELand ht

-(k h ) '= {

a-(k, ht) ht = (hs, hx)
a , t.

a(k, ht) otherwise

and

-(l h) .-
{

f(l, ht) ht = (hs, hx)
r , t.-

r(l, ht) otherwise

Denote P := Pa r P q , P .- Pa r P q , E := Ea r P q
'

and E := Ea r P q. Denote Pk .- pko, , , , , , , , , , , , a,r,q ,

-h(-) := Pa,r,p,q('Ik = k) , Ek := E~;r,q, and Ek := Pa,r,p,q('Ik = k).

P( (iHI,jt+l) = (i,j) I ht ) = L Pht(k)a(k, ht)(i) Lqht(l)r(l, ht)(j) = p( (iHI,jt+l) = (i,j) I ht )
kEK ZEL

for every i E I,j E J and ht E Ht such that P(ht) > 0, hence, P(hT I hs) = P(hT I hs) for every
hT E HT. a- and f are non-revealing strategies hence for all k E K, l E L, and hT such that
P( hT I hs) > 0 there exist P(k = k I hT) = PhJ k) and P(l = l I hT) = qhs(l). Recall that for every
k E K and l E L:

at := £[Ek(aT I hs)] and bL := £[Ez(bT I hs)]

13
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Denote

at := £[Ek(aT 1hs)] and bL:= £[El(bT 1hs)]

Fix k E ]( and T > s. Let Ak,l(hT) := ~L:l<t<TAk,l(hT(t)) (note that hT(t) E I X J). Ak,l(hT)
is the average payoff to player 1 when hT occurs and (k,l) = (k, i).

Ek(aT Ihs) = L: Pk(hT 1 hs) L:qhT(l)Ak,l(hT)

hTEHT lEL

hence

Phs(k)Ek(aT 1 hs) = L: Ph.(k)Pk(hT 1 hs) L:qhT(l)Ak,l(hT)

hTEHT lEL

U sing Bayes' rule (recall that P( hs) > 0) we have

Ph.(k)Ek(aT I hs) = L: P(hT I hs)phT(k) L:qhT(l)Ak,l(hT)
hTEHT lEL

(4)

similarly (using the facts that P(hT 1 hs) = P(hT 1hs), P(k = k I hT) = Ph.(k) and P(l = II hT) =
qh.(l)

- " "klPhs(k)Ek(aT 1hs) = ~ P(hT 1hs)Ph.(k) ~%s(l)A '(hT)
hTEHT IEL

(5)

Recall that k is fixed and denote Xt(l) := pt(k)qt(l) for all tEN. From equations (4) and (5) we
have

Phs(k)IEk(aT I hs) - Ek(aT 1 hs)1 = 1 L: P(hT I hs) L:Ak,l(hT)(PhT(k)qhT(l) - Ph.(k)qhs(l))1
hTEHT lEL

::; L: P(hT 1 hs) L: IAk,l(hT)llxhT(l) - Xhs(l)1 ::; z L: P(hT 1 hs) L: IXhT(l) - Xhs (l)1
hTEHT lEL hTEHT lEL

= z. E(L: IXT(l)- xs(l)11 hs) = Z . L: E(lxT(l) - xs(l)11 hs)
lEL IEL

hence

Phs(k)lat - aU = Phs(k)I£[Ek(aT 1hs)] - £[Ek(aT 1 hs)]1

::; sup Phs(k)IEk(aT 1hs) - Ek(aT 1hs)1 ::; Z sup L: E(lxT(l) - xs(l)11 hs)
T"2s T"2s lEL

::; Z L: sup E(lxT(l) - xs(l)11 hs) ::; Z L: E(sup IXT(l) - xs(l)11 hs)
lEL T"2s lEL T"2s

From lemma 4.9 we have that for every 1 E L

lim E(SUPT>slxT(l) - xs(l)11 hs) = 0 P - a.s.
s-+oo -

hence lims-+oops(k)la~ - a~1 = 0 P-a.s. Hence we have that for almost every hoo if PhC<)(k) > 0
then liminfs-+oo a7hoa)S = liminfs-+oo a7hoa)S (note that lims-+oo a7hoa)S might not exist). Similar

arguments yield that for almost every hoo if %oa(l) > 0 then lim inf s-+oo b(hoa)S = lim inf s-+oo b(hoa)s,

P(ht) > 0 P - a.s. (lemma 4.6). Phoa(k) > 0 implies P(hoa)t(k) > 0 for all t, hence Phoa(k) > 0

implies a7hoa)t = C7hoa)tfor all t P - a.s (lemma 4.2), hence

14

L



(k) 0 ' 1
,

1
,

k 1
,

' f k 1
,

' f -k
Ph= > Imp Ies 1m Ct = Imm at = Imm at

t-+oo t-+oo t-+oo
P-a.s (6)

Similarly

qh=(I) > 0 implies 1
.

dl 1
. .

f bl li
.

f -bl P -a,s1m t = 1m In t = m In tt-+oo t-+oo t-+oo

Using the fact that P;:~,q(hT) = P(hT) we have

E;:~,q(aT I hs) = L P(hT I hs) LqhT(i)Ak,l(hT)
hTEHT IEL

(7)

similarly

Ek(aT I hs) = L P(hT I hs) Lqhs(i)Ak,l(hT)
hTEHT IEL

(8)

hence

E;:~,q(aT I hs) - Ek(aT I hs) = L P(hT I hs) L(qhT(I) - qhs(l))Ak,l(hT)

hTEHT IEL

Let a,/:s := £[E;:~,q(aT I hs)]' The same argument used to show that lims-+oops(k)la~ - a~1 = 0

h th t 1
.

I
,k -k

l - 0 P h 1" f ,k
- 1

,

' f -k P X k > ,k
sows a Ims-+oo as - as - -a.s., ence 1m In s-+oo as - 1m In s-+oo as -a.s. hs - ahs

for all k E ](, therefore ct 2:: a,/:s for all k E ]( (lemma 4,2) and c~ 2:: liminfs-+oo a~ for all k E ](

P-a.s. Similarly d~ 2::lim inf s-+oo b~ for alIi E L, Combining this with equations (6) and (7) it is
enough to prove that ( (liminfs-+oo a7h=)shEK, (liminfs-+oo b~h=)s)IEL,Ph=' qh=) E F. F is closed

thus it is sufficient to show that (a(h=)s,b(h=)S,P(h=)S,q(h=)s) E F, Denote (hoo)S by hs and let

at,hT := Lqhs(l)Ak,l(hT) for all k E
](

IEL

and

bL,hT := L phs(k)Bk,l(hT) for alIi E L
kEK

(ahs,hT' bhs,hT) E conv(Fphs,%J, conv(Fphs,%J is convex hence

L P(hT I hs)(ahs,hT' bhs,hT) E conv(Fphs,%J
hTEHT

hence

( L P(hTlhs)ahs,hT' L P(hTlhs)hs,hT,Phs'%s)EF
hTEHT hTEHT

hence (equation 8)
((Ek(aT I hs))kEK, (EI(bT I hs)IEL,Phs, qh.) E F

U sing again the fact that F is closed we get (ahs, bhs, Phs' qh.) E F, I

Lemma 4.11: (coo, doo,Poo, goo) E N R+ P-a.s,

Proof: Lemmas 4.10,4,8, and 2.8. I
Now we get that {(ct,dt,rt,st)}~o is an admissible martingale starting at (a,b,p,q): Condition 1
(of definition 3.3) follows from lemma 4.2 and condition 2 follows from corollary 4.4. Condition 3
follows from lemma 4,2 and the fact that player 2 actions have no influence on Pt and player 1 does
not affect qt. Condition 4 follows from lemma 4.11. This ends the proof of the first part of the
theorem.
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5 From admissible martingales to equilibria

N ow let r
=
(p,q) be a tight game and assume that {( Ct, dt, rt, Stn

~o
is an admissible martingale

starting at (a, b,p, q) and converging to N R+. We will build (J'and T, equilibrium strategies in

r
=

(p, q), such that a will be the expected vector payoff for player 1, and b for player 2.

Lemma 5.1:

If there exists an admissible martingale starting at (a, b, p, q), then there exists an exact admissible

martingale starting at (a, b,p, q)

Proof: See lemma 3.27 in (Amitai 1996). I

Using lemma 5.1 we will assume that the martingale is exact. Let Xt := (Ct, dt, rt, St). Let

P E Ft. There is an exact split of E(Xt 1ft), S = ({E(Xt+11 f~,vn1::;u::;IIJ,1::;v::;PI,flft,Aft).

2:1::;u::;III,1::;v::;PIE(J~,v I P) = 1, therefore if E(Jt+1 I P) > 0 then ft+1 E { f~,v 11 ::; u ::; 111,1 ::;
v ::; IJI }. Ft+1 :J Ft, hence forallp+1 E Ft+1 such that p(Jt+1) > 0 there exists a unique ft E Ft

such that E(Jt+1 IP) > 0 , and thereforep+1 = f~v for some (u, v) E {I, 2, ..., III} X {I, 2, ..., IJI}.
From the last two facts we can conclude that to' every ft EFt, such that P(Jt) > 0, there
corresponds a unique sequence from (I X J)t. This map is one-to-one, since the martingale is exact.
Hence to every P EFt, such that p(P) > 0 there corresponds an history ht E Ht. Denote by fht

the P E Ft corresponding to ht. We will write ht instead of fht' We will write flht' Aht1 Cht1 dht, rht

and Sht instead of fl fht
'

Afht' Cfht' d fht' r fht and s fht respectively.

For all tEN and lE L define at := Z . 2:IEL E(ls=(l) - St(l)llft).

Lemma 5.2: limt-+= at = 0 P-a.s.

Proof: St(l) converges P-a.s. to s=(l) for allk E J(. Hence Is=(l) - st(l)1 converges P-a.s. to 0

and limt-+= at = 0 P-a.s. I

Lemma 5.3: (ct,dt,rt,st)EIR

Proof: (c=,d=,r=,s=) E IR a.s. (definition 3.3 and lemma 2.8), IR is convex (lemma 2.7), and
{(ct,dt,rt,stntEN is an exact martingale (Le, P(ht) > 0 for all hI), I

Corollary 5.4: For allt there exists at E ~1 such that for all T E ~2 and lE L there exists:

lim sup E;jt T Tt(bT) ::; b~
T-+= '

,

For all t there exists Tt E ~2 such that for all (J'E ~1 and k E J( there exists:

lim sup E:o;;: s (aT ) ::;a~, t, t
T-+=

Corollar y 5.5: wTt,St (see definition 2.9) always exists.
Ct,dt

(c=,d=,r=,s=) E F+ a.s. (definition 3.3 and lemma 2.8), hence there exists a random variable

w= E ~(I X J), measurable with respect to P, such that P-a.s there exist: 2:IEL 8= (l)Ak,l(w=) ::;

c~, 2:kEK r=(k)Bk,l( w=) ::; d~, r=(k) > 0 implies 2:IELs=(l)Ak,l( w=) = c~ and 8=(l) > 0
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implies L-kEK roo(k)Bk,l(woo) = d~. Define Wt := E(woo I Ft). {Wt}~o is a bounded martingale,
therefore it converges a.s. to WOO'Define Zt := IIWt- wrt'

dstlh = L-i EI J"E J Iwt(i,j) - wrt'
d
st ( i,j ) 1 andCt, t , Ct, t

{

rt,St

W-.- WCt,dt
t .-

Wt

a t > 1
- t

otherwise

For every w E b..(I X J) and n E 1\1,we choose {j3~(U)}uElxJ such that:

1. j3~( u) is a non-negative integer for all u E I X J.

2. L-UElxJj3~(u)=n.

3. Iw( u) -
(3:;;~u) I ::;~for all u E I X J.

It can be done by fixing an order on I X J and choosing

j3n(u)'=
{

In. w(u)J if ~ L-u'<uj3~(u') ~ L-u'<u w(u')
W .

In. w(u)J + 1 otherwise

For all t E 1\1define wi, wi E b..(I X J) by wi( u) := (3~tt(u)and wi( u) := (3~t/u). Denote by XD the
characteristic function of the set D (i.e, X(x) = 1 if xED and X(x) = 0 otherwise).

IAk,I(Wr) - Ak,l(wi)l::; L Iwt(u) - w~(u)I'IAk,l(u)1 < ZIItX JI
uElxJ

(9)

IAk,I(Wt) - Ak,l(wDI::; L Iwt(u) - w~(u)I'IAk,l(u)1
uElxJ

< L Iwt(u)-wt(u)I'IAk,l(u)l+ L Iwt(u)-w~(u)I'IAk,l(u)1
uElxJ uElxJ

ZIII.IJI
< 2Z. X{at~t} + t

Hence

IAk,I (W ) - Ak,l (w')1 <
ZIII . IJI

+ 2Z . X lt t t {at ~ T} (10)

For all w E b..(I X J) and n E 1\1fix a function 'Yw,n: [n] -+ I X J such that 1'Y~,;(u)1 = j3~(u).
In order to define (J and T, we define communication periods (in which the players play according

to the martingale) and payoff periods. Between the nth and the (n + 1)th communication periods
will be n! payoff periods (hence the payoffs in the communication periods has no influence on
the limit of means of the payoffs of the game). The communication takes place in the periods
1,3,6,13,38, ..., n + L-n'<n n'!, Denote g( n) := n + L-n'<n n'L Thus g( n) is the period in which
the nth communication period takes place. Let COM MU N be the set of communication periods,
that is COMMUN:= {1,3,6,13,38,...,n+ L-n'<nn'!,...}. For every t E 1\1let COM(t) be the
number of communication periods not exceeding t, i.e,

COM(t) := min{ u E 1\1I g( u) ::; t}
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let P AY(t) := t - g(COM(t)). For each history hi, define h~ E HCOM(t), the history reduced to

the communication periods.

h~(u) := ht(g(u)) for all 1 :::; u:::; COM(t)

N ow we can define the strategies a and T. As long as no deviation has been detected let

a( hI, k Ki) :=

( ' )
TCh;,Ci,j»(k)

f-lh; ~
Th'

(k),
1

m
Iw "COM(t)(P AY(t) mod COM(t))( i)h,

t + 1 E COMMUN and Th,(k) > 0,

t + 1 E COMMUN and Th,(k) = 0,
t+lr:J.COMUUN

and no deviation has been detected

If a deviation has first been detected after the history ht then player 1 switches to playing the
strategyaCOM(t) (defined in corollary 5.4). a(ht, k)(i) is well defined because T(h;,(i,j)) is constant
Vj E J. As long as no deviation has been detected let

A ,(
,

) SCh;,Ci,J»(l)

h, J Sh' (I),
1

TJT

Iwh' ,cOM(t)(P AY(t) mod COM(t))(j),
T(ht, I)(j) :=

t + 1 E COMMUN and sh,(I) > 0,
t + 1 E COMMUN and sh,(I) = 0,

t+lr:J.COMMUN

and no deviation has been detected

If a deviation has first been detected after the history ht then player 2 switches to playing the
strategy TCOM(t).

Denote Ph, and qh, by ph,(k) := Po-,T,p,q(k= k I hi) and qh,(l) := Po-,T,P,q(l= I I hi). We
will prove that a and T are equilibrium strategies with vector payoffs a and b. We need a few
technical lemmas. recall that h~ is the partial history ((i1,jl),(i3,h),...,(ig(COM(t)),jg(COM(t)).
For every ht consistent with a and T define Ph; and qh; by Ph;(k) := Po-,T,p,q(k = k I h~) and
%; (I) := Po-,T,p,q(l= II h~).

Lemma 5.6:

1. Po-,T,p,q(hD = P(fh;) > 0 for all h~ E HCOM(t)

2. Th; = Ph; for all h~ E HCOM(t).

s. Sh; = qh; for all h~ E HCOM(t).

Note that if ht is consistent with h~ then Ph, = Ph' and qh, = qh", ,

Proof: Let ht E Ht be the strategy consistent with h~ (there exists only one such strategy). We
will prove the lemma by induction. For t = 0 : h~= <pand Po-,T,p,q(h~) = P(ih~) = 1. Th~ = P = Ph~

and Sh' = q = %,. Now we assume that 1,2 and 3 are satisfied for h~ and prove them for (h~, (i,j)).
0 0

The proof of 3 is similar to the proof of 2, thus we will just prove 1 and 2. Without loss of generality
assume that t + 1 E COM MU N
1.

Po-,T,p,q( h~, (i, j)) = Po-,T,p,q( h~) 2: Ph; (k )a( k, ht)( i) 2: qh; (I)T( I, ht)(j)
kEf{ IEL
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= P(Jh;) L rh;(k)rY(k,ht)(i) LSh;(l)T(l,ht)(j)
kEK IEL

and from the definition of rY and T

= P(Jh;) L f-lh;(i)rh;,(i,j)(k) LAh;(j)sh;,(i,j)(l)
kEK IEL

= P(Jht)f-lh;(i)Ah;(j) = P(ih;,(i,j))

f-lh,(i) > 0, Ah,(j) > 0 (the martingale is exact) and P(Jh') > 0 (the induction hypothesis), thus
t t t

we have P(Jh;,(i,j)) > O.
2.

-
Ph;(k)rY(k,ht)(i)

-
rh;(k)rY(k,ht)(i)

Ph;,(i,j)(k) -
L-k'EK Ph; (k')rY(k', ht)(i)

-
L-k'EK rh;(k')rY(k', ht)(i)

=
f-lh;(i)rh;,(i,j)(k)

= r, .. (k)
L-k'EK f-lh;(i)rh;,(i,j)(k')

hp(2,J)

I

Corollary 5.7:

1. f-lh~(t)(i) = Pa,T,p,q( ig(t+l) = i I h~(t)) for all h~(t) and i E I.

2. Ah~(t)(j) = Pa,T,p,q(jg(t+l) = j I h~(t)) for all h~(t) and j E J.

Proof: We will prove only the first part as the proof of the second part is similar. Let hg(t+l)-l
be the history of length g(t + 1) - 1 that is consistent with h~(t) (i.e, such that h~(t+l)-l = h~(t)
and such that no deviation has occurred during hg(t+l)-l).

PaTpq(ig (t+l ) = i I hg(t+l )-d = "Ph' (k)rY(k,hg (t+l )-l)(i) = "rh' (k)rY(k,hg (t+l )-l)('i), , , L ,; get) L ,; get)
kEK kEK

= L f-lh~(t/i)r(h~(t),(i,j))(k) = f-lh~(t/i) L r(h~(t),(i,j))(k) = f-lh~(t/i)
kEK kEK

I

Corollary 5.8: limt--+CXJE( {at> t}) = 0 and limt--+CXJEk.( {at> t}) = o.

Proof: Lemma 5.2 and the fact that pk. in absolutely continuous with respect to P. I

Lemma 5.9: {rt(k)c7}~o is a martingale w.r.t. P, converging a.s. to rCXJ(k)c':x,for every k E K.

Proof:

E(rt+l(k)c~+ll hi) = LLP((ht,(i,j)) Iht)r(ht,(i,j))(k)c(ht,(i,j))
iEI jEJ

= Lf-lht(i) L Aht(j)r(ht,(i,j))(k)c(ht,(i,j))
iEI jEJ
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Fix j' E J. Using the fact that r(ht,(i,j)) is independent of j we get

E(rt+l(k)c~+l 1 hI) = LfJht(i)r(ht,(i,j/))(k) LAhtU)C(ht,(i,j)) = ct LfJht(i)r(ht,(i,j/))(k)
iE[ jEJ iE[

= ctrht(k) = E(rt(k)c~ IhI)

rt converges to roo a.s. and Ct converges to Coo a.s. hence rtCt converges to roocoo a.s. I

Lemma 5.10: Fix k E K such that p(k) > 0 (recall that we assume that p(k) > 0 for all k E K).
If Vt is a random variable measurable with respect to (Ht,Ht), then Ek'(Vt) = p(lk) Eo-,T,p,q(Pt(k)vt).

Proof: From Bayes' rule we have

P (h 1 k = k ) =
Po-,T,p,q(k = k 1ht)Po-,T,p,q(ht)

=
pht(k)Po-,T,p,q(ht)

o-,T,p,q t
P (k = k) p(k )o-,T,p,q

hence

Ek"(Vt) = Eo-,T,p,q(VtI k = k) = L Po-,T,p,q(ht 1k = k)Vt(ht) = L Pht(k);(;tq(ht)Vt(ht)

htEHt htEHt

1 1
= (k ) L Po-,T,p,q(ht)pht(k)Vt(ht) = (k ) Eo-,T'P,q(Pt(k)Vt)

P htEHt P

I

Lemma 5.11: limt->oo E(rt(k) LIEL St(l)Ak,l( WI)) = p(k)ak for all k E K.

Proof:
Fix k E K. roo(k)LIELSoo(I)Ak,l(woo) = roo(k)c~ P-a.s. (see the definition of woo).
(lemma 5.9)

lim E(roo(k) Lsoo(I)Ak,l(woo)) = lim E(roo(k)c~) = ro(k)c8
t->oo t->oo

IEL

Hence

(11)

On the other hand

E( Irt(k) LSt(l)Ak,I(Wt) - roo(k) Lsoo(I)Ak,l(woo)1 )
IEL IEL

:::; L E( Irt( k )-r oo(k) 1.lst(l)Ak,l( 1vt)I+lst(l)-soo(l)I.lr oo(k)A k,l( Wt)1+ IAk,1(Wt)- A k,l (woo )1.lr oo(k )soo( I) 1)

IEL

:::; L z. Elrt(k) - roo(k)1 + z. Elst(l) - soo(I)1 + z. E(II Wt - WooIiI)
IEL

therefore
lim IE( rt(k) LSt(l)Ak,l(wd - roo(k) Ls(X)(l)Ak,l(woo))1 :::;
t->oo

IEL lEL
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lim E( Irt(k) LSt(l)Ak,I(Wt) - rex;(k) Lsex;(l)Ak,l(wex;)1 )t-+ex;
lEL lEL

::;L Z . lim ( EIrt(k) - rex;(k) I + EISt(l) - sex;(l)1+ E(II Wt - Wex;IiI) ) = 0t-+ex;
lEL

hence

lim E(rt(k) LSt(l)Ak,I(Wt)) = lim E(rex;(k) LSex;(l)Ak,l(wex;))t-+ex; t-+ex;
lEL lEL

because the right hand side exists (equation (11)) and (again from (11))

= ro(k)c~ = p(k)ak

I

Lemma 5.12:

1. limT-+ex;Ek'(aT) = ak for every k E J(.

2. limT-+ex;gl(bT) = bl for every l E L.

Proof: Pcr,T,p,q(ht)= P(hD (P is the probability with respect to which the martingale is defined),

Phi = rh' and qht = Sh' (see lemma 5,6). Let T = g(n) -1 (n > 1) and choose hT E HT consistentt t

with h~. Ek'( aT I hT) = t '£IEL qhT(l) '£;=1 Ak,l(hT(t)) = t '£IEL qh~(l) '£;=1 Ak,l(hT(t)) , hence

1 T
IEk'(aT I hT) - Lq~T(l)Ak,l(wh~)1 = ILqhT(l)T LAk,l(hT(t)) - L%T(l)Ak,l(wh~)1

lEL lEL t=1 lEL

and from equation (10) we have

1 111.111
::; T( g(n - 1)2Z + (T - g(n - l)Z(

n + 2. X{an~~})) )

Z (
2g(n-1) 111.111

)::; ( ) 1 + + 2. X{an>.L }
9 n - n -n

hence

IEk'(aT) - Ek'(Lq~T(l)Ak,l(wh~)I::; Z(2~(~ - ~) +
111.111

+ 2Ek'({an:::: ~}))
lEL 9 n - n n

Ze:(~~~) + III~JI + 2Ek'({an 2: ~)) converges to 0 (corollary 5.8), Wh~ converge to Wex; (also

with respect to pk' because pk' is absolutely continuous with respect to Pcr,T,p,q), and qht = Sht'
Therefore (recall that T:= g(n) -1)

limn-+ex;Ek'( aT) = limn-+ex;Ek'(L Sh~ (l)A k,l( 1Vh~))
lEL

= (
l
k)

lim EcrTpq( Ph' (k) LSh' (l)Ak,I(Wh')) (lemma 5.10)
P t-+ex; ", T T T

lEL
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= (
1
k)

lim E(JTpq( rh' (k) 2:Sh' (I)Ak,l(wh')) = ak
p t-HX) ", T T T

lEL

nand (n - 1)! are negligible with respect to n!, therefore limT-+oo Eko( a7) exists and equals ak. The
proof for b is similar. I
Remark: by similar proof we have limT-+oo Eko(aT I hs) = c~ for every k E J( and hs. Now we

have to show that for every a' E ~1 and k E J( there existsSlimsuPT-+ooEo-"T,k,q(aT)::; ak (the

proof for player 2 is similar).

(lemma 5.6 and lemma 5.11)

Lemma 5.13: c~ ~ L,lEL St(l)Ak,l( Wi) - at for all k E J( and tEN.

Proof: c~ ~ E(L,lEL soo(I)Ak,l( woo) I hi) (see the definition of woo), hence,

2:St(l)Ak,l(Wt) - cz ::; E(2:St(l)Ak,l(Wt) - 2:Soo(l)Ak,l(Woo) I hi)
lEL lEL lEL

= E(2:St(l)Ak,l(Wt - woo) I hi) + E(2:(St(l) - soo(l))Ak,l(woo) I hi)
lEL lEL

::; 0 + Z . E(2: ISt(l)- soo(l)11 hi) ::; at
lEL

I

Corollary 5.14: c~ ~ L,lELSt(l)Ak,l(wD - t - ZIIlfl) for all k E J( andt E N.

Proof: If at ~ t then L,lELSt(l)Ak,l(Wt) = L,IELSt(l)Ak,l(w:::~:)::; c~. and

c~ - 2:St(l)Ak,l(wD = (c~ - 2:St(l)Ak,I(1Vt)) + (2:St(l)Ak,l(Wt) - 2:St(l)Ak,l(1VD)
lEL lEL lEL lEL

and from equation (9) we have

> -Z IIIIJI
- t

If at < t then Wt = Wt and

c~ - 2:St(l)Ak,l(w;) = (c~ - 2:St(l)Ak,l(Wt)) + (2:st(I)Ak,l(wt) - 2:St(l)Ak,l(w;))
lEL lEL lEL lEL

using lemma 5.13 and equati~n (9) we have

cZ - 2: St(l)Ak,l( 1V;) ~ -at - Z III)JI ~ -~ - z III)JI
lEL

I
Fix a' E ~1 with no detectable deviation with respect to a (i.e, a' defers from a only in com-

munication periods). Let P' := Po-',T,p,qand E' := Eo-',T,p,q. Let p'k(.) := P'(. I k = k) and
E'k(.):= E'(-I k = k). Let p~(k):= P'(k = k I hi). Let Cht := Ch; and let H;:= UhtEHt h~.
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Lemma 5.15: {c;(t)}tEN is a p'k-martingale with respect to the fields {H;(t)LEN (which are
isomorphic to {HtLEN).

Proof:

E ,k(-k Ih' ) """ p 'k( " " " " Ih' ) k
Cg(t+l) t = L.t L.t 2g(t+l) = 2,]g(t+l) = J t c(h;,(i,j))

iEI jEJ

= L p,k(
ig(t+l) = i Ih~)L Ah; (j)CZh;,(i,j))

iEI jEJ

and from lemma 4.2

"' p 'k ( "
.
) k k - E

,k(-k lh ' )= L.t 2g(t+l) = 2 Ch; = Ch; = Cht = Ct t

iEI

I

Lemma 5.16: lim SUPT-+(X) E,k( aT) ~ ak for all k E ](. (see lemma 5.12)

Recall that (Y' has no detectable deviation.
Proof: Let T = g(n) - 1 (n > 2) and let T' = g(n - 1).

E'k(aT I hT') ~ ~(T'Z + (T - T') '" sh' (l)Ak,l(w~, )
T L.t T' T'lEL

and from corollary 5.14 we have

,k T' T - T' k 1 IIIIJI
E (aT I hT') < -Z + (Ch' + - + Z-)- T T T' t t

hence

E'k (a ) <T'Z+T-T' (E'k (ck, ) +~+ZIIIIJI )T
- T T hT' t t

= T'Z+T-T'(ak+~+ZIIIIJI)
T T t t

(lemma 5.15 and lemma 4.2 (b)) Therefore (~ --+0)

lim sup E,k( a;(n)-l) ~ ak
n-+(X)

nand (n - 1)! are negligible with respect to n!, therefore

lim sup E,k( a~) ~ ak
n-+(X)

I
Now choose (Y"E ~l. Denote p"k := pk,. and E"k := Ek,. .er",T,q er",T,q

Lem ma 5.17: There exists (Y' E ~ 1 with no detectable deviation (with respect to (Y) such that

lim SUPT-+(X)E;;>,q( aT) 2': lim SUPT-+(X)E"k( aT).
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Proof: Observe the game in which player 1 plays (J""and player 2 plays T. Define a stopping time
T by:

T := min{COM(t) s.t. there exists a detectable deviation between COM(t) + 1 and COM(t + 1) - 1}t

Define (J"'by

(J"' ( k, ht) := {
(J""(k, ht) t < T
(J"(k,ht) t2:T

Denote: plk := P!:;"T q and E'k := Ek;" . Recall that after a detectable deviation player 2 switches
v , , IJ ,T,q

to it, guaranteeing that player 1 will get at most Ct. Fix £ > 0 and choose t such that p"k (t <
T < 00) < £ for all k E J(. Let hsl' hS2"'" hsn be all the histories satisfying Ths = Si and Si ~ t.
Choose T such that for all t' > T there exist for all k E J( and 1 ~ i ~ n '

E"k(atl I hsJ < ct + £,

and
E'k(at' I hs;) > lim E'k(as I hs;) - £ = lim Ek(as I hSi) -£ = c~ . - £

s-+oo s-+oo s,

(see the remark after lemma 5.12). Now we have

E"k(atl) < pllk(t 2: T)E"k(c~ + £ I t 2: T) +
pllk(t < T < oo)E"k(at' It < T < 00)

+
pllk( T = 00 )E"k( at' I T = 00)

and
E'k(atl) > plk(t 2: T)E'k(c~ - £ It 2: T) + plk(t < T < oo)E'k(atl It < T < 00)

+plk(T = oo)E'k(atl IT = 00)

On the other hand
pllk(t 2: T) = plk(t 2: T)

pllk(t < T < 00) = plk(t < T < 00)

pllk(T = 00) = Plk(T = 00)

and
E"k(atl IT = 00) = E'k(atl I T = 00)

therefore
E"k(atl) - E'k(atl) < 2£PIl(t 2: T) + 2zpllk(t < T < 00) < 2£(1 + Z)

hence
lim sup E"k( aT) ~ lim sup E'k( aT)

T-+oo T-+oo

I

Corollary 5.18: Hm suPT-+oo E"k( aT) ~ ak for all k E J(

Proof: lemmas 5.16 and 5.17. I
corollary 5.18 ends the proof of theorem 4.1. I

24



-10 -10 1 0
10 10 0 1

-10 -10 1 0
10 10 0 1

-10 -10 1 0
10 10 0 1

-10 -10 0 1
10 10 1 0

-10 -10 0 1
10 10 1 0

-10 -10 0 1
10 10 1 0

1 0 -10 -10
1 0 10 10

1 0 -10 -10
1 0 10 10

1 0 -10 -10
1 0 10 10

0 1 -10 -10
0 1 10 10

0 1 -10 -10
0 1 10 10

0 1 -10 -10
0 1 10 10

6 Example

The following example demonstrates the difficulty in extending the main result. We define a two-
player game with incomplete information on both sides. There are two types of player 1 and two
types of player 2. The payoffs are only a function of the action chosen by player 2 and the types of

the two players. G is the following game:

1
1 =0
2 3 4

A

k=1 B

c

A

k=2 B

c

1
1 =1

3 42

p= (~,~) and q= (~,~).
Define an admissible martingale {xd~o = {(Ct,dt,Pt,qt)}~o by induction. Let (co,do,Po,qo) =
((~,~),(1,1),(~,~),(~,~)) and let:

Xt
Y1:= ((~,~),(I,I),(I,O),O,~))
Yz:= ((~,~),(I,I),(O,I),O,~))
Zl := ((0,1), (1, 1), (1,0), (1, 0))
Zz := ((1,0), (1, 1), (1,0), (0, 1))
Z3 := ((1,0), (1, 1), (0, 1), (1, 0))
Z4:= ((0,1),(1,1),(0,1),(0,1))

Zcx

if Xt = Xo and i = A
if Xt = Xo and i = B
if Xt = Xo and i = C
if Xt = Y1 and j = 3
if Xt = Y1 and j = 1
if Xt = Yz and j = 4
if Xt = Yz and j = 2

if Xt = Zcx for a = 1,2,3,4

X(t,(i,j)) :=

Let ftht := (~,~,~) for all ht and let

Aht :=

( 1111 )
4' 4' 4' 4

(~,O,~,O)
(O,~,O,~)
(0,0,1,0)
(1,0,0,0)
(0,0,0,1)
(0,1,0,0)

if Xt = Xo
if Xt = Y1

if Xt = Yz
if Xt = Zl

if Xt = Zz
if Xt = Z3

if Xt = Z4
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It is easy to verify that {Xt}~o is indeed an admissible martingale. Using the framework of the
proof of section 4 we can build a pair of strategies in which, in each information period, player 1

reveals his type with probability ~ (given that it has not been revealed yet) and with probability

~ does not reveals information at all. Player 2 reveals information only after knowing the type of
player 1 (Note that if player 2 reveals information before player 1 reveals his type, there will be an
history after which type 1 of player 1 will gain by playing as if he is of type 2). There are many
such pairs of strategies, but none of them is equilibrium. The reason is that as long as player 2
plays non-revealing, player 1 is guaranteed to get a payoff of at least 5. Thus by never revealing

his type (playing A with probability 1 instead of ~) player 1 will get a payoff of at least 5, and
therefore he will deviate.

Note that this is not a counter example to the natural extension of theorem 4.1 as (( ~, ~), (1, 1))
is an equilibrium in rCXJ((~'~)'(~'~)) (player 1 reveals his type in the first period).
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