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Abstract

We analyze the set of equilibria of two-person repeated games with incomplete
information on both sides. We show that each equilibrium generates a martingale
with certain properties. Moreover, for games, satisfying a certain condition that
we call “tightness”, it is shown that the converse also holds: each such martingale
generates an equilibrium.
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1 Introduction

A game with incomplete information is a game in which different players have different information
on the structure of the game. Independent incomplete information (see, for example, Myerson 1991
section 2.8) is a situation in which there exists a common prior distribution over the possible set
of games, known to all the players, and in addition, each player might have additional information
which is independent of the information of the other player. Repeated games with incomplete
information were much studied in the last thirty years (see the book of Aumann and Maschler
1995). Aumann, Maschler, and Stearns (Aumann and Maschler 1968 and Aumann, Maschler, and
Stearns 1968) analyzed the two player zero sum case (see also Blackwell 1956) and had the first
results on the non-zero sum case. In particular, they showed that the set of equilibria might be
empty (in the non-zero sum incomplete information on both sides). However, when it is not empty,
it might be a very complex set. Hart (Hart 1985) introduced the concept of bi-martingales and
used it to characterize the set of equilibria in the one-sided information case (see also Aumann and
Hart 1986). Lately Simon, Spiez, and Toruticzyk (1995) proved that this set is not empty. In this
work we study games with incomplete information on both sides and show that in this case the
bi-martingales used in the characterization in the one-sided information case can be replaced by
an appropriate class of “admissible martingales”. The characterization has a lot in common with
the characterization of the equilibria in the general two player incomplete information cheap talk
games (Amitai 1996) and in particular the admissible martingales were first introduced there.

However, unlike both the one sided information case (Hart 1985) and the general Cheap-Talk
case (Amitai 1996), admissible martingales are not sufficient, in general, to generate equilibria. We
therefore introduce the concept of tightness. In this case admissible martingales and equilibria are
equivalent.

In section 2 we define the model and discuss some properties of repeated games with incomplete
information on both sides and in section 3 we define the notion of admissible martingales. In sections
4 and 5 we state and prove the main result and in section 6 we give an example demonstrating the
difficulties in generalizing the result.

2 The Model

As every repeated game with incomplete information is equivalent to a repeated game with inde-
pendent incomplete information (see Myerson 1991 page 73, Aumann and Maschler 1995 section
4.2, and for a detailed proof, Amitai 1996) we can restrict ourselves to games with independent
incomplete information. We define a class of repeated games with incomplete information on both
sides. The repeated game is played after the players have received their private information and is
defined by the following:

1. Two players: player 1 and player 2.
2. A finite set of actions [ for player 1, and a finite set of actions J for player 2.

3. Two finite sets, K and L, such that to each pair (k € K,l € L) there corresponds a pair of
I x J matrices (A% | BR. ARL = (ARG §))ier se0 » BR = (BR(i,5))ierje-

4. Two probability vectors: p € A(K), p = (p(k))ker and ¢ € A(L), ¢ = (¢(!) )ier-



5. Let n be a natural number or n = co. We define the game I',,(p, q).
6. The game has two phases:

The Information Phase : Nature chooses k € K according to p and 1 € L according to q.
The choices are made independently, i.e, Prob(k = k and 1 = 1) = p(k)q(l). k is told to
player 1 and 1is told to player 2.

The Action Phase : This phase is divided into periods t=1,2,3...,n . For each t, player 1
chooses an action i; € I and player 2 chooses an action j; € J. The choices are made
simultaneously. The payofl to player 1 in period ¢ is a; := Ak’l(it,jt) and the payoff to
player 2 in period t is by := Bk’l(it,jt).

7. The players have perfect recall.
8. 1,2,3,4,5,6,7 are common knowledge to both players.

9. For a finite n the payoff of the game is defined by the sum of the payoffs in the n periods of
the game. For the infinite repeated game it will be defined later, together with the definition
of equilibrium (definition 2.3).

The players have perfect recall, hence 7; and j; are functions of the history of length ¢ — 1,
namely, ht_] = ((il,jl), (ig,jg), ey (it—lajt—l))' let hoo = ((’i],j]), (iz,jz), vaey (’it,jt), ) be the
infinite sequence defined by the actions of the players in the game. Let H; = (I x J)* be the set
of histories of length t. Define Hy = {¢}. Let Ho, = []72,({ X J) be the set of infinite histories.
On H,, , we define for every t, a finite field H; as follows: k!  , h% € H,, are in the same atom
of H, if and only if Al (u) = A% (u) for every 1 < u <t (recall that ko (u) is the pair of actions
chosen by the players at period wu, according to the infinite history hs ). Let Ho, be the o-field
generated by {H;}2, . Our basic probability space is (2,.4) = (K X L X Hoo , 25 @28 @ Hoo). A
point in  is a triple (k, [, ko), where (k,1) is a possible state of nature and ho, € Ho is an history
of the game. When defining sequences of random variables, we will use the following notation:
ay, by, ¢y, ... will usually be random variables measurable with respect to (Hy, Hy), and ay,, by,, ¢, ---
will denote ay(hs), bi(hi), ci(ht), ... . For z € A(I) and y € A(J) we will write A*!(z,y) instead of
Sieries o(D)y() AP, 7) and BH(z, y) instead of Yies jes 2(6)9(7) B (i, j). Since Too(p,q) is a
game with perfect recall, we can restrict ourselves to behavior strategies (see Aumann 1964). To
shorten the writing, whenever we write ’strategy’ we will mean a behavior strategy. Let N denotes
the set of natural numbers {1,2,3,...}.

Definition 2.1: A strategy o of player 1 in I's(p, ¢) is a function ¢ : K’ X Uyen Hi-1 — A(I) .
A strategy 7 of player 2 in T'o(p, ¢) is a function 7 : L x U,eNn Hi—1 = A(J). For hy € Hy let oy,
and 73,, be the strategies of playing according to o and 7 (respectively) given hy, i.e, !

on,(k,hy) = o(k,(ht, hy))

Th (L ) i= 7(1, (B, b))

Y(hi, hy) € Heyr is the strategy he followed by the strategy h,.




Definition 2.2: A strategy o of player 1 in I'oo(p, ¢) is called non—revealing if o(k, hy) = o(k', hy)
for all k, k" € K and hy. A strategy 7 of player 2 in I'o(p, ¢) is called non — revealing if 7(I, h¢) =
7(l',hy) for all [,I' € L and h;,.

Let ¢ be the set of strategies of player ¢ for i = 1,2 and let X be the set of non-revealing
strategies of player ¢ for ¢ = 1,2. Denote:
Z = ARG ), | BR G g 1.
very 2% ARG DL IBYG I+
That is, Z is a strict upper bound of the absolute value of the possible payofls.

Every 4-tuple (o, 7,k,l) € £! x 2 x K x L defines a probability measure 7, ;1 on (Hy, Heo ),
i.e, for an history A := ((¢1,71),(%2,72), ..., (%, j¢)), we denote by 7, ,ki(h¢) the probability that
the first action played by player 1 is 21, the first action played by player 2 is ji, the second action
played by player 1 is i3, and so on, given that k = &k, 1 = I, player 1 plays according to ¢ and

player 2 plays according to 7. We derive from 7, , ;; another probability measure on (K x L x H,
28 @2l @ Hoo) by:

PU,T,p,q(k7 l7 ht) = p(k)q(l)ﬂ-av‘nkyl(ht)

Note that P, pq(k = k1 = 1) = Y. cn, Porpa(k,l,he) = p(k)g(l). Denote by E, ;1 the
expectation with respect to 7, x; and by E, ;, , the expectation with respect to Py, ;. Similarly
we derive | K| probability measures on (L X Hoo, 2X ®Hoo ) and | L| probability measures on (K x H,
) 2K @ Heo) by:

Py o he) i= (DT ki(he)

and
P ok, he) o= p(k)mgr ga(he)

Let E5__ and E}__ be the expectations with respect to P*__ and P} _ respectively. We will

0-7T7q U7T7p UVT’q U7T7p

denote Py ; 0, Egrp.q Pt EF_ Pl and EY__ by P, E, P¥, EF P! and E respectively.

U7T)q, O-7T7q7 077—7])’ U7T7p
Denote by ap and br the average random payoffs to player 1 and player 2, respectively, up to
period T, i.e,
1 & 1 &
ar = Tzat = TZA (44, Jt)
t=1 =1
and
1 & 1 & 1
by = szt = TZB (i, Jt)
t=1

t=1

Definition 2.3: a € R and b € R are equilibrium payof fs in T'so(p, q) if there exist o € B! and
7 € %2 such that:

El : o =lim7p_ . EF(ag) forall k € K.
E2 : b =limp_o E'(by) foralll € L.

E3 : o* > limsupg_, Ef;vT(aT) for all k € K and o’ € %1,



E4 : b > limsupp_,., E;,{T,(bT) forall l € L and 7' € ¥2.

Note that if ¢ € RX and b € RL are equilibrium payoffs in T'w(p,q) then a € (=Z,Z) and
be (-Z,2)L.

Definition 2.4: ¢ € R and b € RY are non revealing equilibrium vector payoffs in Foo(p,q) if
there exist ¢ € X1 and 7 € ¥2_ satisfying E1,E2,E3,E4. Note that o € £1 and 7 € ©2_ imply
(using induction and Bayes’ rule):

E5 : P, ., .k=k]|h;)=p(k)for all h; such that P, ;p,(hs) > 0.

E6 : P, ., ,1=1]h)=q() for all h; such that P, ., q(hs) > 0.

Let

NR :={(a,b,p,q) € R xR x A(K)x A(L) s.t. (a,b) is a non revealing equilibrium in T'w(p, q)}

Definition 2.5: Let (a,b,p,q) € RX x RL x A(K) x A(L). (a,b,p,q) € NR* if and only if there
exist non-revealing strategies o € X1 and 7 € L% such that:

E1’ : o = limr_ o E¥(ar) for all k € K such that p(k) > 0.
E2’ : b =lim7_ E'(br) for all { € L such that ¢(I) > 0.
E3 : o* > limsupy_, E(’T“;J(aT) for all k € K and ¢/ € '.
E4 : b > limsupp_ o, E('leT,(bT) forall I € L and 7' € 2.

We need some notations. Let aq;; and b,;; be the expected vector payoffs (of player 1 and
player 2 respectively) when the players play the actions i and j (respectively) constantly, i.e,

ab =Y q)AM(i,j) Vke K
lel

l klrs -
bp,i,j = Z p(k’)B 7 (%]) VielL
keK
Let
vaq = U {(aniyj’ bp,Z,j)}
(i,5)elxJ

conv(F, ,) is? the set of (jointly) feasible payoffs in the two sided incomplete information one shot
game with payoff matrices (Ak’l,Bk*l) and probability vectors p and ¢. For z,y € RM let z < y
denotes 2™ < y™ for all m € M. We will use z << y to denote ™ < y™ for all m € M. Let

F=|J{(a,b,p,q) € [-Z, 2)% x [-Z,Z]" x A(K) x A(L) s.t. (a,b) € conv(F, )}

P4

2conv(X) denotes the convex hull of the set X.



Ft:={(a,b,p,q) € [-Z, Z]K x [~Z, Z]L X A(K) X A(L) s.t. there are ¢ < ¢ and d < b s.t.
(c,d,p,q) € F,

p(k) > 0 implies a* = ¢

(1) > 0 implies b' = d'}

k and

We now introduce the concept of Banach limit (see Dunford and Schwartz 1958, page 73). We
will use Banach limits in section 4. Let [, be the space of all real bounded sequences. From the
Hahn-Banach theorem (see, for example, Dunford and Schwartz 1958) follows the existence of a
Banach limit which is a real operator £ : [,, — R with the following properties (and many more):

1. L{az + By) = al(z) + SL(y) for all 2,y € [, and o, € R.
2. L(H{&ng1}ly) = L({zn}nq) for all {z,}52; € loo-

3. liminf, L0z, < L({zn}2y) < limsup,_, . @, for all {z,}52, € lw. (in particular, the
existence of im,, o z,, implies lim, oo n = L({2r }52,)

We will write L[z,] instead of L({z,}). Let Al(p,q) be the one shot zero-sum game, with payoff
matrix Y pcr Dorer p(k)g(1) AR Let A3(p,q) be the one shot zero-sum game, with payoff matrix
Skex Suer P(k)g(l)B*!. Denote by U(p,q) the value of the game Aj(p,q) for i = 1,2. For a two
dimensional function u, Denote by vezqu the convexification of u with respect to the first variable,
and by vezqu the convexification of v with respect to the second variable. Similarly, denote by
caviu and cavou the concavification of u with respect the first and the second variables.

Definition 2.6: Let p € A(K) and ¢ € A(L).

qu ={aeR¥ st. Ir e X% s.t.Vk € K and Yo € £! limsup Eff;ﬂq(a;r) < a*}

T—o0

M = {a € R¥ s.t. 37 € ¥? s.t. VL(Banach limit )Yk € K and Yo € ! lim sup E(’,“"T,q(aT) < a®}

T—oo
W2:={beRlst. Jo e £ s.t.VI€ L and Vr € 3% limsup B, (br) < b'}
T— oo
W2 :={b e R s.t. Jo € X' s.t. VL(Banach limit )/ € L and ¥r € £? limsup E; (br) < b}
T—o0

That is, a € qu if and only if player 2 can guarantee that player 1 will not get more than a* for
all £ € K simultaneously, and b € sz if and only if player 1 can guarantee that player 2 will not
get more than b’ for all [ € L simultaneously. From the study of the zero-sum case if follows that

W, =W!={aeRF st > p(k)a* > (vexscan,U')(p, q) Vp € A(K)}
keK

and
W2 =W2={beR"st > q()b' > (vexicavoU?)(p,q) Yq € A(L)}
leL



(see Mertens, Sorin, and Zamir (1994) page 341).
qu is convex and upper semi continuous with respect to q. Wp2 is convex and upper semi
continuous with respect to p. Denote:

IR :={(a,b,p,q) € [-Z, 2] x [-Z,Z]" x A(K)x A(L) s.t. a € W} and b € W2}
That is, (a,b,p,q) € IR if and only if (a,b) are individually rational payoffs in ' (p, ¢).
Lemma 2.7: IR is a convez set.

Proof: Denote /Ry := {(a,q)s.t. a € W]} and IRy := {(b,p)s.t. b € W2}. IR = IRy x IRy,
hence it is sufficient to prove that IR, and IR, are convex. We will prove that TR, is convex, the
proof for I R, is similar. For p € A(K) let

IR := {(a,q) e R¥ x A(L) s.t. Z p(k)a* > (vezgean,UM)(p,q) }
keK

IRy = Npea(x) I R, hence it is enough to show that I R{ is convex for every p € A(K). (vezacaviU')(p, q)
is convex as a function of ¢, hence IR} is convex. Il

Lemma 2.8:
1. NR=FnIR.
2. NRt = FtnIR.

Proof: We will prove the second part. The proof of the first part is similar and a little sim-
pler. Assume that (a,b) € NRT with non revealing strategies o and 7 satisfying the conditions
of definition 2.5. Let @7 := %E?zl Qg5 and br = %ZL by, ;.- For every T' € N we have
(@r,br) € conv(F,,) (because (ay;, ;,,bpi ;) € Fpq for all t € N), hence E, ., (ar,br) €
conv(F, ) and also limsupr_,o By rpo(@r,br) € conv(F,,), because F,, is a finite set and
hence close. E(@%) = E(Yiepa(DF T AR GG G) = E(Cier g()F TLAMY GG | ko=
k), because the strategies, and hence the histories, are independent of k. Similarly E(EIT) =
E((Crex p(k) xS, B¥(it,5:) | 1 = 1). Now E1’,E2,E3, and E4 of definition 2.5 imply that
(a,b) € F*. E3 and E4 also imply that (a,b) is individually rational and (a,b,p,q) € ITR. Now we
assume that (a,b,p,q) € F* N IR and show that (a,b,p,q) € NRT. (a,b,p,q) € FT, hence there
exist ¢ < a and d < b such that (¢, d) € conv(F,,), p(k) > 0 implies ¢* = a* and ¢(/) > 0 implies
d' = b Hence (c,d) = YieriesMij(Gqigrbpij) (Where Yicr ey Aij = 1 and A;j; > 0). For all
n € N define * p, : I X J = Rby pn(i,7) := [nAi;]. Denote s, := Y ies ey in(i,J). Note that
n— || X |J| < 8, < n. Define a sequence C,, of s, joint actions of the two players. For every
(i,7) € I x J, Cy, contains p,(¢,7) copies of (4,7). When we say that the two players play C, we
mean that they play a sequence of s, joint actions according to C,,. We define ¢ and 7 together.
The strategies o and 7 are to play C, then twice Cy, then six times Cs, ... then n! times €, and so
on. The limit of the average payoffs exists and equals (¢, d) because s, and (n — 1)! are negligible
with respect to n!. A player can not defect without being detected. If player 1 defects, player 2
will switch to a strategy guaranteeing that player 1 will not get more than a” for all k € K (such a

®|z]| is the greatest integer not exceeding .



strategy exists because a € qu) If player 2 defects player 1 will switch to a strategy guaranteeing
that player 2 will not get more than b' for all [ € L. ¢ and 7 satisfy conditions E1°, E2°, E3, and
E4 of definition 2.5. 1 .

Let T = (K, L, I, J,{ A" ek ier, {B* ke ter). That is, T is the structure of the game T',(p, ¢)
without n, p, and ¢. In the next definition we define tight games. A tight game is a game [ in
which for every individually rational pair of vector payoffs there exists a feasible pair of vector
payoffs, not exceeding the individually rational payoffs.

Definition 2.9: A game I is called tight if for every (a,b,p,q) € IR there exists a mixed joint
action, wp’q € A(I x J), yielding a vector payoff not exceeding a for player 1 , and a vector payoff
not exceedmg b for player 2, i.e,

L Yiep q(DAR (wh) < af for all k € K.

2. Spex p(k)BR (wf b) <bforalll€L.

3 Admissible Splits

In this section we introduce three definitions based upon the concept of admissible splits (for the
motivation,‘examples and geometrical properties see Amitai 1996 ).

Let 2 = (a,b,p,q) € [~Z,Z)% x [~Z, Z]* x A(K) x A(L) and let n and m be positive integers.
Let § = ({Zup}1cucm 1cogns i) € (=2 25 X [=2, Z1E X A(K) x A(L)™ x A([m]) x A([n]),
where Tuw = (au,’uagu,uapu,va QU,v)-

Definition 3.1:
S is called an m X n — admaissible split of z if

Lo =300 Yt M)A (0) T

2. (a)
(b)
(€) Puw = puyp foralll <u<mand 1<v,0 <n.

’

Yoneq1 A(v)ay,, for all u such that 1 < u < m.
Yoy (u)by,, for all v such that 1 <v < n.

@‘ Q

(d) quuw =gy forall 1 <u, v’ <mand 1 <0< n.
S is called an ezact m x n-admissible split if it is an m X n-admissible split and in addition:

3. w(u) > 0 and A(v) >0 forall 1 <u < mand 1l <wv < n (The split is into exactly m - m
points).

Remarks :
1. From 1. and 2(c) it follows that p = > 7=, p(u)py,e for all 1 <o < n.

2. From 1. and 2(d) it follows that ¢ = > 7—; A(v)gu, for all 1 < u < m.

Definition 3.2: ]
Let Fy C F; be two finite fields (F; is thus a refinement of F7). Let X! and X2 be [-Z, Z]K X



[-Z,Z]F x A(K) x A(L)-valued random variables, measurable with respect to F! and F? respec-
tively. X? is called an (ezact) m X n — admissible split of X! if for every atom f! of F!, such
that P(f!) > 0, there exists an (exact) m X n-admissible split S = ({x"z‘vv}l<u<m Lcv<n M A)of

zp = E(X1| f1), such that f! is partitioned into disjoint F2-measurable sets—{fi;}lsuSm ,1<v<n
(thus Ui<u<m , 1<ocnfe, = fhand f2,N fj’,u' = ¢ if u # « or v # v') satisfying:

(2, | 1) = p(w)A(o).
2. X?=122,0n f2, (ie, 2, = E(X*| f2,)) whenever P(f2,) > 0.

Let Ng be the set of non-negative integers, i.e, Ng := {0,1,2,3,...}.

Definition 3.3:

Let z = (¢,d,w,s) € [~Z, 2} x [-Z,Z)F x A(K)x A(L). Let C C [-Z,Z)¥ x[~Z, Z]F x A(K) x
A(L). An (ezact) m X n-admissible martingale starting at z and converging to C is a sequence
{Xi}ien, = {(en di, wey s) N, of [=2, Z1% x [-Z, Z]F x A(K) x A(L)-valued random variables
satisfying:

3.3.1 Xo = x a.s. (almost surely).

3.3.2 There exists a nondecreasing sequence {F;},cN, of finite fields (Fo = {¢,Q2}) with respect
to which {Xi}tel\lo is a martingale, i.e: X; is measurable with respect to F; and X; =
E(XH_] | ft) a.s.

3.3.3 Xi41 is an (ezact) m X n — admaissible split of X, for every t € Ny.

3.3.4 Every a.s. limit X, of {Xt}tel\lo satisfies X, € ' a.s.

4 Main Result

We can now state and prove the main result.

Theorem 4.1:

LetO << p € A(K) and0 << q € A(L) and let T (p, q) be an infinite repeated game of independent
incomplete information on both sides. If (a,b) € R x R are equilibrium payoffs in Too(p, q), then
there exists an |I| x |J| — admissible martingale starting at (a,b,p,q) and converging to NR™T.
If T is tight then also the converse holds, i.e, if there exists an |I| x |J| — admissible martingale
starting at (a,b,p, q) and converging to NRY then (a,b) are equilibrium payoffs in Us(p, q).

Proof: In order to prove the theorem we will need a few definitions and lemmas. In this section
we will build an admissible martingale when an equilibrium is given, and in the next section we
will prove the second part of the theorem.

Fix o and 7, equilibrium strategies in I'w(p, ¢) with equilibrium payoffs (a,b). For every history
hy we want to define several random variables: py,(k) and gx,(I), the a posteriori probabilities of
the events (k = k) and (1 = /) given the history h;. pp, (%), the probability of the action i being
played by player 1 after the history h;. Az, (), the probability of the action j being played by player
2 after hy, and ap, and by,, the expected vector payoffs given h;. These variables are not defined



for every history and we will have to extend the definitions. We will define pp, and us,, together,
by induction. Similarly we will define g3, and Ay,. We will use gp, to define ay, and py, to define
by,. Formally: Let pp, := p and define (using induction on t) forall i € I, j € J and k € K:

e (8) i= Y pro(k)o(k, he)(3)

keK

and

Phy (K)o (k,he)(0) ,
' 0
P(he(i,g)) (k) := { ey (3) fn (8) #

Ph, (k) otherwise
Let qn, := g and define Ve € I, Vj € J and VI € L:

Mie(7) =) an (D7 (L ) (5)

lel

and

a(lhe)(
q(n,. i1 W
(ht’(li‘]))
qn, (1) otherw1se
Note that p(, (i 7)) is independent of j and 7 and gz, (; ;) is independent of ¢ and o. py, (k) = 0 im-
plies p(n, (i,5))(k) = 0 and g4, (1) = 0 implies g3, (i ;)(!) = 0. Note that py,(k) = Porpo(k = k| ht),
@re(1) = Parpra(1 = 1] he), 15 () = Prreip(isin = 1 | he) and An, () = Povripg(iess = 7 | he) when-
ever the right side of the equations exists, i.e, whenever P(h;) > 0. o and 7 are equilibrium strategies
hence limp_, o Ek'(aT) exists, but this does not imply the existence of limy_ ., Ek'(aT | hs) even
when P(hg) > 0. We therefore use Banach limits. Fix a Banach limit £ and define for all k € K
andl e L
aht = K[Eo'hthh“qht (aT)]

- E[EUht 1 Thy 'Phy (bT)]

Note that a, is independent of pj, and bht is independent of ¢,. We will denote by py, q¢, pt, A,
a; and b; the random variables whose values given h; are pp,, g, , b, , Anss @n, and by, respectively.
Define, for every hy € Hy, k€ K andl € L

XF o= sup E[E’U’Tht an, (ar)]

th = supE[E’ (b7)]

t ThysT 7pht

Clearly a’gt < X}’ft < 7 and blht < th‘ < Z. Forallt > 1 and h; € H; denote by ht‘l € H;.q the
history such that h; = (k;%,(4,5)). Let hy' := ¢ and P(hg') := 1.

The following lemma is the main part of the first part of the proof, and in it the admissible
martingale is being built.

Lemma 4.2:

1. Forall hy € Hy and k € K there exists cﬁt € R such that:

a) XF <cf < Z forallk € K and hy. If P¥(h) > 0 then ¢f = XF =af .
bt ht ht ht ht



(b) cf, = a* for allk € K.
(c) ¢k = ics An(d)ef (hey(irj)) Jor all i € I and hy.
2. Forall hy € H; and | € L there exists d%t € R such that:

(a) Y, < dj, < Z for alll € L and hy. If P'(hy) > 0 then d;, =Y =10} .

(b) dj, = b for alll € L.

(C) dé"/t = E’lel /'Lht(,[/)dl(ht,(l,])) fOT‘ allj E J and ht .
Proof: We will prove the first part of the lemma (the other part is similar), using induction on
t. Fort = 0, hy = ¢. Define cﬁo := a*. Condition (a) is satisfied for ho because o and T are
equilibrium strategies. Fix k € K, t € N, hy € H; and 1 € I. We assume that cf” is defined
correctly and define cécht (.0)) for all 7 € J.

case 1: P¥(hy)o(k, hs)(i) = 0. In this case P*(hy,(i,5)) = 0 for all j € J, hence we have to prove
only condition (c) (for h;) and the first part of (a) (for (he,(¢,7))). Define:

Usi= 3 M)XK, i)

JjeJ
Using the induction hypothesis we have

U; < = XF <k «Z2=N"M.0)Z 1
max Uy = Xp, < ¢, < ]ZE;I he(5) (1)

and Xk heo(ing) < Z for all j € J. Therefore we can choose for all j € J (simultaneously), cﬁt (6.9) such
that Xk hes(ing) < ch () < 2 and such that (c) is satisfied :

k k k Cit_-Lh
Cheiid) = Khoon) T2 = Xhii) 5=

The inequality X h(ing) S < ch (i) follows from the inequalities: Z > X)i,(i,j)? clfu > U, and Z > U;.

The inequality c* < Z follows from the inequalities Z > X* . . and Z > ¢} because the later
hi,(7,7) he (%,7) ht

ek —U;
yields % < 1. Thus, we proved that X}ft (i) S < cﬁt () < Z. To complete this part of the proof

we have to show that (c) is satisfied:

Z Ak, (j)cﬁt,(z 7) Z )\ht Xht, 1,7 Z Aht )Z Z >‘ht Xht )

JjeJ jed Ui jed J€J
k
= Ui-i——‘Zt_—Ui(Z—— U')_cht

and (c) is satisfied.
case 2: P*(he)o(k, hi)(i) > 0. Tor all j € J define cfy, (i ;) = X (i 5)) > (s, i) Fix j€J
and denote (h¢, (4,7)) by hs. We will show that if P¥(h,) > 0 then ¢/ = af . The idea is that

if aﬁs < X}fs and P*¥(h,) > 0 then type k of player 1 can achieve more than a* by playing o and
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switching to a strategy guaranteeing him almost X,’fs after hg, a contradiction. We will choose
an arbitrary strategy o’ and show that player 1 can gain no more than aﬁs playing o’ after hg
(otherwise he can get more than a* by playing ¢ and switching to ¢’ after h,). Therefore cfbs = aﬁs

if P*(hs) > 0. Formally, let ¢’ be a strategy of player 1. Define ¢ as follows:

"ot __} d'(K,hy) for h, = (hg, hy)
o (K hr) 1= { a(k', h,) otherwise

" is the strategy of playing ¢ and switching to o if h, has occurred. Denote E¥ by Ej and P*
by Pr. Denote EU,, r.q DY E} and PU,, g DY P/. Denote the set of strategies different from h, (i.e

H\{hs}) by “not hs ”. o and T are equlhbrlum strategies, therefore

a* = lim E(ar) = L[Ex(ar)] = Pe(he)L[Er(ar | ks)] + (1 = Po(hs))L[Er(ar | not hy)]

T—o0
> lim sup Ey(ar) > LIEE(ar)] = P (hs)LIEE (ar | ko)l + (1 = P (hs))L[E(ar | not hy)]
T oo

Pi(hs) = P/(hs) and Eg(ar | not hy) = E}/(ar | not hy) and assuming that Py(h,) > 0 we get
af, = LIBw(ar | hy)) > LIE(ar | hs)] = LIES,, . (ar)]

This is true for all o', hence P*¥'(h,) > 0 implies aﬁ > Xh and therefore cfb = Xh = ah We have
proved (a) for (h¢,(4,7)) for all j € J. We will use (a) to prove (c). From the induction hypothe51s

P¥(hy) > 0 implies cf, = aﬁt = X,]ft.

Céﬁbt = aéﬂlt = E k ht) Z Aht(] ht, 3))
i 8.5, o(kh)(5)>0 i€J
= Z k ht)(l Z ’\hz h/tv )) (2)
i 8.5, o(k,he)(1')>0 JeJ

because P*(hy) > 0, o(k,h)(3") > 0 and Mg, (j) > 0 imply P*(hy,(¢',7)) > 0, which implies
k _ .k
Uhey(i',d)) = Clhafitig))”
i, = Xht—maXZ’\ht (DX G, M2, max ZAhr AU (i,7))
= A 3
il s.t. ;r(l]?)}ft)( Z hy J)Cht i’,7) (3)

From equations (2) and (3) and the fact that 32, s ¢ (h,k)(i")>0 (e, k)(i) = 1 follows that for all
i’ such that o(hy, k)(i') > 0 there exists

Cht Z Aht (j (#.3))

Jj€J

In case 2 o(he, k)(2) > 0. 1

11



Corollary 4.3:
ch, € quht and dy, € WPth'

Proof: Again we will prove only for ¢z,. Xp, € Mht (immediate from the definition of Mht).
ch, > Xp, € Mh (lemma 4.2), hence ¢z, € _W_/;ht. The fact that Mht = quht (see the discussion
14

after definition 2.5) completes the proof.
1

Corollary 4.4: {(ci,ds, pt, i) oo s @ martingale with respect to the fields {H,},2, and the prob-
ability P:=F; ; , 4.

Proof: We will prove the corollary only for ¢;.

Bl | )= D P((hes (5, 0)) | he)e(ne(igyy = D 2 (DA (5) (e, (0.0))

el ged 1€l jed
= Zou’ht Z ’\ht C(he,(s - Z/J'ht( )cht — Chy — E(Ct | ht)
el J€J 1€l

|

For heo = ((41,71), (42,J2), -..) € Hoo denote by (heo)t € Hy, the history defined by the first ¢ coor-
dinates of heo, i-e, (hoo)' := ((41,71), (2, J2)5 -y (31, 5¢))- For heo € Hoo define ¢ 1= limy_ o0 Choo )t
Qoo 1= iMoo d(hg)ts Phoo 1= liMisoo P(hy)t and gp,, 1= limyoo q(ny,)e-

Corollary 4.5: (¢oo, doo, Pooy §oo) €ists P-a.s.
Proof: Corollary 4.41

Lemma 4.6:
For P-almost every ho, there exists P((he)') > 0 for allt € N.

Proof: Let t € N. H; is a finite set hence
P({hoo € Hoo 8. P((hoo)') =0} )= P({h; € Hy st. P(hy) =0} ) =0
{t € N} is a countable set, hence

P( | J{hoo € Heo s.t. P((hoo)t) =0} ) =

teN
|

Lemma 4.7:
For P-almost every he, there exist

1. If pr (k) > 0 then cﬁm = im0 afhoo)t.

2. If gn, (1) > 0 then dﬁm = im0 bl(hoo)t'
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Proof: Fix k € K and h. such that pp_(k) > 0. We can assume that c, exists (corollary

4.5). Denote (he )t by h;. Using lemma 4.6 we can assume that P(h;) > 0 for all t. ps(k) > 0

implies that ps,(k) > 0 for all ¢. P(hy) > 0 implies that P(k = k |hy) = pp,(k) > 0 hence
ht

Pk (hy) = _zi_()k_)(_) > 0, hence (lemma 4.2) cf i, = aﬁ for all ¢ and ch =lim; o aéﬂhm)t‘ |

Lemma 4.8: (¢oo,doo, Pooy §oo) € IR P-a.s.

Proof: Fix hy such that ¢, dn,, P, and g, exist (from corollary 4.5, this happens P-
a.s.). From corollary 4.3 and the fact that qu and sz are upper semi continuous we have that
Chy, € quh and dp_ € WZ?h . Hence, (¢hysdhoys Phoos Ghee ) € TR. 1

Lemma 4.9: Let {X,}52, be a bounded sequence of real random variables, converging a.s as
n — 00, and let {F,}52, be a nondecreasing sequence of o-fields such that X,, is measurable with
respect to F,. Define Yy, := sup,,>, |Xm — Xul, then E(Y,, | F.) = 0 a.s as n — oo.

Proof: Lemma 4.24 in (Hart 85) i
Lemma 4.10: (coo, doo, Poos §oo) € FT P-a.s.

Proof: Fix hs such that P, ., .(hs) > 0. Let & and 7 be the average non revealing strategies
defined by
F(k,he) == Y pu,(k)o(k' hy)  forall k € K and hy

k'eK

and
F(Lhe) =Y qu(I)T(I';hy)  foralll € L and hy
l'eL

Now define the strategies ¢ and 7 of playing o and 7 (respectively), and switching to ¢ and 7
(respectively), after h,, i.e,

~ ) a(k,hy) hy=(hs,he)
ok, hy) o= { o(k,hy)  otherwise

and

~ — 7~-(l7ht) hy = (hs>ha:)

7l h) 1= { 7(l,ht)  otherwise
l?enote P =P 4, P = =FPsspq,F = E;7p4 , and E = E; s pq. Denote P := Pf"ﬂq ,
Pi(-) == Pszpaq(- | k= k‘) Ek 1= EE, . and By i= Prppg(- | k= k).

P( (isr1,de01) = (5,0) | he ) = D pre(B)o(k, )(8) D an (D7 (L he)(5) = P (Gogrs Gen) = (4,5) | he )
keK leL

for every ¢ € I,j € J and hy € H; such that P(h;) > 0, hence, P(hr | hy) = f’(hT | hs) for every
hr € Hr. & and T are non-revealing strategies hence for all £ € K, [ € L, and hr such that
P(hr | hy) > 0 there exist P(k = k | hy) = p,(k) and P(1=1| hy) = g, ({). Recall that for every
ke Kandle€ L:

af = L[Ex(ar | hs)] and b} = LIEi(br | hs)]
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Denote }
af = L{Ex(ar | hs)] and b, = LIEi(br | k)]
Fix k € K and T > s. Let A¥(hr) = L5, ., A¥!(hy(t)) (note that hr(t) € I x J). A% (hy)
is the average payoff to player 1 when h7 occurs and (k,1) = (k,1).
Enar [ hs)= Y Pilhr | hs) Y ar (DAM (h)
hTEHT lel

hence

ph.(K)Er(ar | hs) = > pr (k) Pe(hr | hs) Y qug (DA™ (k)
hp€eHrp lel

Using Bayes’ rule (recall that P(hs) > 0) we have
pho(K)Ei(ar [ hs) = D P(hr | hs)pnr (k) Y anp (DA (he) (4)

hpeHr lel
similarly (using the facts that P(hr | hy) = P(hy | hy), P(k = k | hy) = p, (k) and P(1=1]| hr) =
qn.(1)

pr(k)Ex(ar | hs) = > P(hr | he)pn, (k)Y qn, () A* (k) (5)

hTEHT el

Recall that k is fixed and denote z4(1) := p,(k)g:({) for all ¢ € N. From equations (4) and (5) we
have

pr. () Ex(ar | hs) — Ex(ar | ko) = | Y. P(hr | he) > A¥ (he)(prr (B)ane (1) = pr.(k)an. ()]

hTEHT leL
< Y0 Plhr | he) D_IAR Bz (D) — 20, (DI S Z Y Plhr | ha) D lng (D) — 2, (D)
hr€Hrp leL hr€Hrp lel
=Z-EQ ler(l) — 2s(D] | he) = Z - 3~ E(ler(l) — es(D)] | hs)
leL leL

hence

pr.(K)lak, — @y | = pr.(k)|L[Ex(ar | hs)] — L[Ex(az | hs)]]
< ;lipphs(k)lEk(aT | hs) — Ex(ar | hs)| < ZSUPZE lzr(l) — zs(D] | hs)

25 1el
<z sup E(Jap(l) — z,(1)| | hs) £ 2 E(sup log(1) — z5(1)] | hs)
ler T23 ter, Tzs

From lemma 4.9 we have that for every [ € L

lim E(suprsslzr(l) —z,(1)| | hs) =0 P —a.s.

hence lim;_ o ps(k)|a* — @| = 0 P-a.s. Hence we have that for almost every he, if ps_ (k) > 0
then liminf,_ a?hw)s = liminf,_ &?hoo)s (note that lim, ., afhw)s might not exist). Similar

arguments yield that for almost every hy, if gx (1) > 0 then liminf,_, bl(hoo)s = liminf,_ El(hoo)s.
P(hy) > 0 P — a.s. (lemma 4.6). ps (k) > 0 implies p(,_):(k) > 0 for all ¢, hence pp (k) > 0
implies a?hoo)‘ = Céchoc)t for all t P — a.s (lemma 4.2), hence
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Pho (k) > 0 implies lim ¢* = liminf a* = liminf &¥ P-a.s (6)
t—00 t—o0 t—00

Similarly

Ghe (1) > 0 implies  lim d = lim inf bl = lim inf bl P-as (7)
Using the fact that P& +.q(hT) = P(h1) we have

B}, (ar | hs) = 3 P(hr|he) Y qn (1)A® (1)
hTEHT lel

similarly

Ex(ar | he) = D Plhr | hs)d_ an, (DA (Br) (8)

hTEHT lel

hence

B, (ar | hs) = Ex(ar | h) = Y P(hr | hs) D (ahe (D) = gr. (1) AR (hr)
hp€Hr lel
Let aﬁf = E[EUTq(aT | hs)]. The same argument used to show that lims_,o<> ps(k)|ak — @*| = 0
shows that im,_ |a* — 5| = 0 P-a.s., hence liminf,_ a’* = hm inf,— oo @F P-a.s. X,ﬁfs > aﬁlks
for all k € K, therefore c,’i > aff for all k € K (lemma 4.2) and ¢*, > liminf,_, @* for all k € K
P-a.s. Similarly d'_ > lim mfs_,oo b for all I € L. Combining this with equations (6) and (7) it is
enough to prove that ( (liminfs_ déﬁhm)s)kel{a (lim infs— o0 bihoo)s)leLyphooa Ghe, ) € F. F is closed

thus it is sufficient to show that (a(hoo)s,g(hoo)s,p(hoo)s,q(hoo)s) € F. Denote (he)® by hs and let

af, pp = O an, (AP (hy) forallk e K
leL

and

hhT- th VB! (hr) forallle L
keK

(@hy hps Dby up) € conv(Fy, qn. ). conv(Fy,, 4, ) is convex hence

S° P(hr | hs)(@he by bhohy) € conv(Fy, g, )
hreHr

hence

( > P(hr | hs)an,hg, . P(hT | hs)bnpg,Dheran.) € F
hTEHT hTEHT

hence (equation 8)

(Ex(ar | hs))ker, (Ei(br | hs)ien: Phas ah,) € F
Using again the fact that F' is closed we get (@s,, Z?hs,Phsv qr,) € F. 1

Lemma 4.11: (coo, doo, Pocs §oo) € NRT P-a.s.

Proof: Lemmas 4.10, 4.8, and 2.8. 1

Now we get that {(cq, ds, 74, 8¢) }oep Is an admissible martingale starting at (a, b, p,q): Condition 1
(of definition 3.3) follows from lemma 4.2 and condition 2 follows from corollary 4.4. Condition 3
follows from lemma 4.2 and the fact that player 2 actions have no influence on p; and player 1 does
not affect ¢;. Condition 4 follows from lemma 4.11. This ends the proof of the first part of the
theorem.
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5 From admissible martingales to equilibria

Now let T'o(p, q) be a tight game and assume that {(¢;, dy, 74, 8¢)}i is an admissible martingale
starting at (a,b,p,q) and converging to NR*. We will build o and 7, equilibrium strategies in
[Foo(p, q), such that a will be the expected vector payoff for player 1, and b for player 2.

Lemma 5.1:
If there exists an admissible martingale starting at (a,b,p,q), then there exists an exact admissible
martingale starting at (a,b,p,q)

Proof: See lemma 3.27 in (Amitai 1996). Il

Using lemma 5.1 we will assume that the martingale is exact. Let z; := (e, dy,re,8:). Let
ft € Fi. There is an exact split of E(X; | f1), S = ({E(z41 ] fuv)}l<u<|1|1<ﬂ<1J|,Mft Age).
Zl<u<|]| 1<v<|J| E(f; uv | f*) = 1, therefore if E(ft+1 | f*) > 0 then f*' € { fqi'u I<u<|I]1<
v < |J| Y. Figr D Fy, hence for all fi+1 € F,yq such that P(f*1) > 0 there exists a unique f* € F;
such that E(f**! | f*) > 0, and therefore f*+! = fi  for some (u,v) € {1,2,..., [T} x {1,2,...,|J]}.
From the last two facts we can conclude that to every f' € F;, such that P(f') > 0, there
corresponds a unique sequence from (I X J)t. This map is one-to-one, since the martingale is exact.
Hence to every f! € F;, such that p(f*) > 0 there corresponds an history h; € H;. Denote by f,
the f' € F; corresponding to h;. We will write h; instead of fj,,. We will write pp,, An,, Ch,» Qhys Thy
and sp, instead of py, ,Ag, S5, 5 dg, Ty, and S fn, respectively.

For all ¢ € N and [ € L define oy =7 ZleL E(|soo(l) = si(D| | fe)-

Lemma 5.2: limy, o ¢ = 0 P-a.s.

Proof: s;(1) converges P-a.s. to se(l) for all k € K. Hence |soo(l) — s4(1)| converges P-a.s. to 0
and lim;— o o; = 0 P-a.s. 1

Lemma 5.3: (¢;,dy,7e,8;) € IR

Proof: (oo, doo,Toos Soo) € TR a.s. (definition 3.3 and lemma 2.8), IR is convex (lemma 2.7), and
{(ct, di, 7, 8¢) }eN s an exact martingale (i.e, P(hy) > 0 for all hy). B

Corollary 5.4: For all t there exists 6, € X' such that for all T € ¥% and | € L there exists:

lim sup E; br) < b,

Gt T n(
T 00

For all t there exists 7, € ©2 such that for all 0 € X' and k € K there exists:

lim sup EX. Fosilar) < af

T—oo

Corollary 5.5: wy,';! (see definition 2.9) always exists.

(Coos Boos Tooy Soo) € FT a.s. (definition 3.3 and lemma 2.8), hence there exists a random variable
woo € A(I X J), measurable with respect to P, such that P-a.s there exist: 3¢ Soo() A% (weo) <
ck Trek Too(B)BM (weo) < dl, roo(k) > 0 implies Y e, seo(() AP (weo) = ¢k and seo(l) > 0
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implies Y pcx Too(k)BF (woo) = d'y. Define w; := E(we | Fi). {w(}2, is a bounded martingale,

H e— Tt,5t — - Te)8¢ (s
therefore it converges a.s. t0 Woo. Define z; := [lwy — w1 = Yieq jes lwe(i, 7) — w7 (4, 5)] and
- wztst (877 > %
Wy = £t .
Wy otherwise

For every w € A(I x J) and n € N, we choose {87 («)}uerxJ such that:
1. B2 (u) is a non-negative integer for all v € I x J.
2. Yuerxs Bulu) = n.
3. Jw(u) — 2| < Lforall ue IxJ.

It can be done by fixing an order on I x J and choosing

47 () o= { e w(u)] I S FL() 2 T ()
WA [n-w(u)] +1 otherwise

For all ¢ € N define wy, w; € A(I x J) by wi(u) := ?tﬂ‘t(i) and @;(u) := —ﬁ—w";@ Denote by xp the

characteristic function of the set D (i.e, x(¢) = 1 if ¢ € D and x(z) = 0 otherwise).

(A5 g) — A5 @l < T () — wi(a)] - | 4% )| < AL )
uelxJ
4w — A < Y fwdu) - @ ()] | 44 )
uelxJ
<Y hedw) — w) A @)+ T b — )] A ()
u€IxJ we€IxJ
<27 Xapty t ﬂflt_lJ_l
Hence
1454w = a5 < AN oy (10)

For all w € A(I x J) and n € N fix a function vy, : [n] — I x J such that |y (v)| = 87 (u).

In order to define o and 7, we define communication periods (in which the players play according
to the martingale) and payoff periods. Between the n‘* and the (n + 1)!* communication periods
will be n! payoff periods (hence the payoffs in the communication periods has no influence on
the limit of means of the payoffs of the game). The communication takes place in the periods
1,3,6,13,38,..,n4+ Y e 7', ... Denote g(n) :=n+ Y., 7'l. Thus g(n) is the period in which
the n** communication period takes place. Let COMMUN be the set of communication periods,
that is COMMUN := {1,3,6,13,38,..,n+ >, n'!,...}. For every t € N let COM(t) be the
number of communication periods not exceeding t, i.e,

COM(t) := min{u € N | g(u) < t}
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let PAY (t) := t — g(COM(t)). For each history k¢, define h; € Hoong(y), the history reduced to
the communication periods.

hi(w) := hy(g(w)) forall 1 <u < COM(t)
Now we can define the strategies o and 7. As long as no deviation has been detected let

T(ht (i,9)) (K)

uh;(z)w t+1€ COMMUN and rp,:(k) > 0
1
o(hy, k)(3) := il t+1€ COMMUN and ry (k) =0
Yoy COM (ty(PAY (t) mod COM (t))(3) t+1¢COMUUN

and no deviation has been detected

If a deviation has first been detected after the history h; then player 1 switches to playing the
strategy Goom (i) (defined in corollary 5.4). o(he, k)(¢) is well defined because r(; (; ;) is constant
Vj € J. As long as no deviation has been detected let

S(n! (3,4 (1)

M) t+1€COMMUN and sy (1) > 0
(he, 1)) == o t+1€COMMUN and s (1) =0
Vi com(n(PAY () mod COM(1))(7) t+1¢ COMMUN

and no deviation has been detected

If a deviation has first been detected after the history h; then player 2 switches to playing the

strategy Tcom (1)

Denote pp, and gn, by pr,(k) = Porpek = k | ht) and gp, (1) := UTp,q(l = 1| h). We
will prove that ¢ and 7 are equilibrium strategies with vector payoffs ¢ and b. We need a few
technical lemmas. recall that h} is the partial history ((i1,71),(43,73); - ({g(com()) Jo(com(e))-
For every h; consistent with o and 7 define py and gx by pu(k) := Forpe(k = k | hY) and

qn; (1) := Poyrpq(l= L] Ry).
Lemma 5.6:
1. Porpg(hy) = P(fr) >0 for all ki € Hoonqy
2. vy = py, for all hy € Hoom(y)-
3. spr = gy for all hy € Hoom(yy-
Note that if hy is consistent with hy then py, = py; and qn, = .

Proof: Let h; € H; be the strategy consistent with h} (there exists only one such strategy). We
will prove the lemma by induction. For ¢t = 0: hy = ¢ and P, 4(hG) = P(fh(/)) =11y =p=pu
and sy, = q = qj;. Now we assume that 1, 2 and 3 are satisfied for A} and prove them for (A}, (4,7)).
The proof of 3 is similar to the proof of 2, thus we will just prove 1 and 2. Without loss of generality
assume that t+ 1€ COMMUN
1.

Porpalht, (4,7)) = Po,‘r,p,q(h;) Z ph’t(k) Z‘Ih’ (D7, he)(5)

keK lel
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= P(fu) Y (k) (k, he) () Y s (D7 (L, Ba)(5)

keK leL
and from the definition of o and 7
= P(fu) D e (Ornr 0,5y (R) D Anr ()8 6.5 (1)
keK leL
= P(fa)bn (DA (3) = P(fry i.5))

pp: (1) > 0, Apr(j) > O (the martingale is exact) and P(fy) > 0 (the induction hypothesis), thus
we have P(fh; 7)) > 0.

. pay (kK)o (k, h)(3) rag (K)o (k, b))

! (5 k =
P = S o W B~ Seren e (R (R, (D)
_ g (7a ) (R)
Dowek Hr (DTh (i)

(k/) = Th;,('i,j)(k")
|
Corollary 5.7:

uh;(t)(') = Porpqligisr) = 11 hlg(t)) for all h'g(t) andi € I.

2. Ah/ t)(J) = Po,T,p,q(jg(t—{—l) = ] | h;](t)) fOT’ all h;(t) and] € J

Proof: We will prove only the first part as the proof of the second part is similar. Let hg(H—l)—l

be the history of length ¢g(¢ + 1) — 1 that is consistent with A’/ a(t) (i.e, such that h/ 41— = h;(t)
and such that no deviation has occurred during hy(s41)-1)-
Pyrpq(i g(t+1) = =1 h (t+1)— Z Ph' a(k,h (t+1)—1)(i) = Z Th;(t)(k’)‘f(kahg(t+1)—1)(":)
keK keK
= Z /thg(t) T(n u() ( 1,9)) (t) ) Z (t),(z,]) :u‘h;(t)(l)

keK

|
Corollary 5.8: lim;_co E({a; > 1}) = 0 and lim;eo E¥({a; > 1}) = 0.
Proof: Lemma 5.2 and the fact that P* in absolutely continuous with respect to P. I

Lemma 5.9: {r,(k)cF}2, is a martingale w.r.t. P, converging a.s. to 7o.(k)ck, for every k € K.

Proof:
E(rega(k)efpy | he) = ZZP (Ches (4 9) | ho) (h i,y (R )C?hn(i,j))
i€l jed
=3 (D) Y A ()7 () (B i)
€l JEJ
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Fix j' € J. Using the fact that r(;, (; ;) is independent of j we get

E(rera(k)efyn | 7)) = 3 (O (hon(iingy(B) 2 M) €(neing)) = he 2 e ()7 (e (i) (F)
1€l J7€J €]

= cf,mh (k) = E(ro(k)e; | he)

T4 converges t0 T'o, a.s. and c¢; converges to ¢y, a.8. hence r;¢; converges to 7o,Co0 a.5. I

Lemma 5.10: Fiz k € K such that p(k) > 0 (recall that we assume that p(k) > 0 for all k € K ).
If v; is a random variable measurable with respect to (Hy, Hy), then Ek'(vt) = ]ﬁEgvT,p,q(pt(k)vt)-

Proof: From Bayes’ rule we have

PU Tvpvq(k k | ht) oTypvq(ht) _ pht(k)PUVT7p)q(ht)

PU,T,P,Q(ht | k = k) = Pa’,r,p,q(k k) - p(k)

hence

(K)Pyr s o(h
Bo(0) = Eoppalve k= 8) = Y Prrpglhe [ le= Rpuhey = 3 2B ornalbi),
ht€H; ht€Hy p( )

1 1
= 5 h;ﬂ Py rpq(he)ph, (R)vi(he) = mm,ﬂp)q(pt(@%)

Lemma 5.11: lim;_, o E(ry(k) Y ier, si(D) A% (wy)) = p(k)a® for allk € K.

Proof:
Fix k € K. 7oo(k) Sier Soo() AP (woo) = roo(k)ck, P-as. (see the definition of we.). Hence
(lemma 5.9)

lim E(roo(k) 3 soo( A (weo)) = lim B(reo(k)ek,) = ro(k)e (11)
leL

On the other hand

E( |rt(k)z (l)Akl (we) — oo (k Zsoo DAR (weo)| )

leL leL

< B(Irik)=roo (B)|-fsiD) A™ (we) |+ 56(1) = 80 (D] oo (k) A¥ (we) |+ AP (00) = AP (wo ) 1o seo (D] )
leL

< Y7 Blruk) — ro() + 2 - Elsi(l) = seo(Dl + Z - B(|| w, — wes 1)
leL

therefore

Jim [E(re(k) 2 su(DAM(106) = 7oo(k) 3 oo (DA™ (w00) )] <

leL lelL

20



hm E(|r(k Est — Toolk Zsoo l)Akl Weo)| )

leL leL

<27 Jim (Elr(k) = roo(k)| + Elsi(1) = soo (D] + E(|| we — woo [l1) ) = 0
leL

hence

lim E(Tt(k)Zst(l)Ak’l(wt)) = hm E(reo(k Zsoo DA (w40))

t
- leL leL

because the right hand side exists (equation (11)) and (again from (11))
= ro(k)eg = p(k)a*
1
Lemma 5.12:
1. limy_o EF(ar) = o* for every k € K.
2. imr_o EY(br) = bt for every l € L.

Proof: P, ., .(h:) = P(h;) (P is the probability with respect to which the martingale is defined),
Phe = T, and gp, = sp; (see lemma 5.6). Let 7' = g(n) — 1 (n > 1) and choose hy € Hy consistent

with k. E¥(ar | hr) = b Sier aar (1) Sl AM(r(0) = & Siep aa, (1) Ty AM(hr(1)) | hence

T
|E*(ar | hr) = ah, (AR (wy )| = |Z%T(1 ZAM hr(8)) = 3 arp (DA (wyy)|
lel el t 1 el
and from equation (10) we have
1 Il-|J
< Hotn-npz 4 @ - g -z o))
29(n 1) _ |1]-1J]
< Z 2 -
= (g(n) —1 + n + X{anz—%})
hence
2g(n — I|-|J . 1
(B (ag) - B dh (045 ()] < 225D VL o gt g, > 1y
5 g(n) - n n

Z(2gg(§‘_l1 + lﬂ;blﬂ + 2E*({a, > 1)) converges to 0 (corollary 5.8), Wy, converge to we, (also

with respect to P¥ because P* is absolutely continuous with respect to Psrpg), and gp, = sp,.
Therefore (recall that 7" := g(n) — 1)

Lt oo B (a1) = limnoo E¥ (D spr (1) A5 (wy )
leL

1
= O] tILm Eorpal Prt(K) IZ:sh/ (ARt (wp ) ) (lemma 5.10)
€L
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! hm Eorpa( The (F) zsh/ AR (wp )Y =af  (lemma 5.6 and lemma 5.11)
p(k) leL T

n and (n—1)! are negligible with respect to n!, therefore limr_ ., E*(aF) exists and equals a*. The

proof for b is similar. §

Remark: by similar proof we have limy_.., E*¥ (a7 | hs) = cﬁs for every k € K and h,. Now we
have to show that for every o’ € X! and k € K there exists limsupy_ o, Eo/ 15 4(ar) < a* (the
proof for player 2 is similar).

Lemma 5.13: ¢f > 3 cp s:(1)AM (wy) — oy for allk € K and t € N.

Proof: ¢f > E(Tier Soo(1) AP (we) | hy) (see the definition of we, ), hence,

Est(l)Ak’l(w ) — ct < E( Zst Ak (wy) Zsoo l)Akl (Woo) | ht)

leL leL leL
= E(Y i) A (we = weo) | he) + B (s0(1) = soo (1)) AP (woc) | hy)
leL leL
<04 2 B(Y [sell) = soa(D] | he) < o
leL

|
Corollary 5.14: cf > 5 cp s(D) AR (@]) — 1 - thﬂ) forallk € K andt € N,
Proof: If o; > % then 7,cp se(D AR (1y) = >lel sy (AR (wB3) < eF. and

ct,di
ef = 3 s DAM(@) = (ef = 3 s (AN (@) + (3 s A () = 3 si(1) A (7))
leL leLl lel lel

and from equation (9) we have
Ll

> —
t

If o < % then w; = w; and

=D s AR = (e = Y su(AM (we)) + (3 s AM (wr) = 37 se())AB! (w)))

leL leL leL lel

using lemma 5.13 and equation (9) we have

of =S s (AR (@) >~y - 2 > 2~ 7
t [ t
leL
[
Fix ¢’ € ¥! with no detectable deviation with respect to o (i.e, ¢’ defers from ¢ only in com-
munication periods). Let P’ := Py ... and E' := Ey,,,. Let P*(:):= P'/(- | k = k) and

E*(:):= E'(- |k = k). Let pi(k) := P'(k =k | h;). Let &, := cry and let Hy = Uy, en, hi-
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Lemma 5.15: {5§(t)}teN is a P'®-martingale with respect to the fields {H;(t)}tGN (which are
isomorphic to {H:},eN).-

Proof:

Elk( (t+1) | hl ZZP,k (t+1) = =1 ]g(t+1 =J | ki ) hi,(4.9))
i€l jed

=3 P*(igusny = i1 A1) D An J)Ch' )

i€l JEJ

and from lemma 4.2

= ZPlk(ig(tﬂ) = i)cﬁg = Cﬁ; =l = Elk(af | h)
iel

1
Lemma 5.16: limsupy_ . E*(ar) < af for all k € K. (see lemma 5.12)
Recall that o/ has no detectable deviation.

Proof: Let T = g(n)—1(n > 2)and let T = g(n — 1).

E™(ar | hy) < —(T’Z+(T T Zsh/ l)A“(wh,)
lel

ﬂ

and from corollary 5.14 we have

T T-T 1 [1]]J]
1k 1} < — k, — i |
EMar | hr) < 52+ —5— (e, + o+ Z2——)
hence T T_T 111)
Elk' < _7 tk VA
()T+T(E()++t)
T T 1111
==z k Z——
T +— ( + -I- . )
(lemma 5.15 and lemma 4.2 (b) ) Therefore (Tl — 0)
. k k
th?jol(l)p E (a_];(n)—l) <a
n and (n — 1)! are negligible with respect to n!, therefore
lim sup E’*(a¥) < a*
|
Now choose o/ € X1, Denote P"* := Pf,, g and Bk = E(]: e

Lemma 5.17: There ezists o' € ¥ with no detectable deviation (with respect to o) such that
limsupy_,, ¥ (ar) > limsupp_,_ E"*(ar).

O'Tq
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Proof: Observe the game in which player 1 plays ¢’ and player 2 plays 7. Define a stopping time
T by:

T = mtin{COM(t) s.t. there exists a detectable deviation between COM(t) + 1 and COM(t + 1) — 1}

Define o’ by
’ L O'”(k,ht) t<T
o (ks ) 1= { olk,he)) t>7

Denote: P* .= P*  and E'* .= EF

' .
o'\ T,q °,7q

Recall that after a detectable deviation player 2 switches

to 7, guaranteeing that player 1 will get at most ¢;. Fix € > 0 and choose ¢ such that P"*(t <
T < o00) < eforall k€ K. Let hs,, hs,,..., hs, be all the histories satisfying The, = S and s; < L.
Choose T such that for all ¢’ > T there exist forall k € K and 1 << n

E"(ay | hs;) < cﬁs_ + €

and
E’k(at: | hs;) > Slim E’k(ag | hs;) — €= Slim Ek(ag | hs,) —€ = c’,; — €

T

(see the remark after lemma 5.12). Now we have
E"™(ay) < PRt > 1)E"™ (F + e |t > 7))+ P (t < 7 < 00)E"™(ay | t < T < 00)

+P" (1 = 00)E"™(ay | T = o0)

and
E™ay) > PRt > )E*(cF —e|t>7)+ P*(t <7 < 00)E™(ay |t < 7 < o0)

+P*(1 = 00)E*(ay | T = 0)

On the other hand
Pt >71)=P*t> 1)

P™(t < 1< 00)=P*t <1< 0)

and

E"™(ap | 7= 00) = E™ay | T = )
therefore

E"(ay) — E™(ay) < 2eP"(t > 7) + 2ZP"™(t < 7 < 00) < 2¢(1 + Z)

hence

lim sup E"*(ar) < lim sup E’*(ar)

T—o0 T—o0

|

Corollary 5.18: limsupy_,., E"*(ar) < a* forallk € K

Proof: lemmas 5.16 and 5.17. 1
corollary 5.18 ends the proof of theorem 4.1. i
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6 Example

The following example demonstrates the difficulty in extending the main result. We define a two-
player game with incomplete information on both sides. There are two types of player 1 and two
types of player 2. The payoffs are only a function of the action chosen by player 2 and the types of
the two players. G is the following game:

1=0 1=1
1 2 3 4 1 2 3 4

A -10 -10 1 0 1 0 -10 -10

10 10 0 1 1 0 10 10
-10 -10 1 0 1 0 -10 -10

k=15 10 10 0 1 1 0 10 10
C -10 -10 1 0 1 0 -10 -10

10 10 0 1 1 0 10 10
-10 -10 0 1 0 1 -10 -10

A | 10 10 1 0 0 1 10 10
-10 -10 0 1 0 1 -10 -10

k=2 B |10 10 1 0 0 1 10 10
-10 -10 0 1 0 1 -10 -10

C |10 10 1 0 0 1 10 10

pP= (%a%) and ¢ = (272)
Define an admissible martingale {z;}72q = {(¢s,ds, pt, ¢t) }i20 by induction. Let (co,do, po,qo) =

((275) (1 1) (272) (;,;)) and let:

Ty ifz;,=2zpandi=A4
Yi:=((3,%),(1,1),(1,0),(3,3)) ifa,=20andi= B
Yo :=((1,1),(1,1),(0,1),(3,1))  ife;=z0andi=C
)z, :=((0,1),(1,1),(1,0),(1,0)) if z; =Y and j =3
TEEN) Tz, = ((1,0),(1,1),(1,0),(0,1)) ife; =Y and j=1
Zg:=((1,0),(1,1),(0,1),(1,0))  ifz,=Y,and j=4
Zg := ((0,1),(1,1),(0,1),(0,1)) if 2y = Yy and j = 2

Zo ife, =2, fora=1,2,3,4

Let pp, := (%, %, %) for all Ay and let

(%7%7%3%) if z; = zg
(%7Oa%70) ifzy =Y,
(O,%,O,%) if z; = Y,
A, =23 (0,0,1,0) ifzy= 24
(1,0,0,0) if Ty = Z2
(0,0,0, 1) if Ty = Z3
(0, 1,0,0) if Ty = Z4

DN
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It is easy to verify that {z;}32, is indeed an admissible martingale. Using the framework of the
proof of section 4 we can build a pair of strategies in which, in each information period, player 1
reveals his type with probability % (given that it has not been revealed yet) and with probability
% does not reveals information at all. Player 2 reveals information only after knowing the type of
player 1 (Note that if player 2 reveals information before player 1 reveals his type, there will be an
history after which type 1 of player 1 will gain by playing as if he is of type 2). There are many
such pairs of strategies, but none of them is equilibrium. The reason is that as long as player 2
plays non-revealing, player 1 is guaranteed to get a payoff of at least 5. Thus by never revealing
his type (playing A with probability 1 instead of %) player 1 will get a payoff of at least 5, and
therefore he will deviate.

Note that this is not a counter example to the natural extension of theorem 4.1 as ((4, 1), (1,1))

is an equilibrium in I‘OO((%, %), (%, %)) (player 1 reveals his type in the first period).
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