Simpson’s Paradox for the Cox Model

Clelia Di Serio, Yosef Rinott and Marco Scarsini

In the context of survival analysis, we define a covariate X as protective (detrimental) for the failure time T if the conditional distribution of [T | X = x] is stochastically increasing (decreasing) as a function of x. In the presence of another covariate Y, there exist situations where [T | X = x, Y = y] is stochastically decreasing in x for each fixed y, but [T | X = x] is stochastically increasing. When studying causal effects and influence of covariates on a failure time, this state of affairs appears paradoxical and raises the question of whether X should be considered protective or detrimental. In a biomedical framework, for instance when X is a treatment dose, such a question has obvious practical importance. Situations of this kind may be seen as a version of Simpson’s paradox. In this paper we study this phenomenon in terms of the well-known Cox model. More specifically, we analyze conditions on the parameters of the model and the type of dependence between X and Y required for the paradox to hold. Among other things, we show that the paradox may hold for residual failure times conditioned on T > t even when the covariates X and Y are independent. This is due to the fact that independent covariates may become dependent when conditioned on the failure time being larger than t.

January, 2007
Published in: 
Scandinavian Journal of Statistics 36, 463-480 (2009)