# The Time-Preference Nash Solution

The primitives of a bargaining problem consist of a set, S, of feasible utility pairs and a disagree- ment point in it. The idea is that the set S is induced by an underlying set of physical outcomes which, for the purposes of the analysis, can be abstracted away. In a very influential paper Nash (1950) gives an axiomatic characterization of what is now the widely known Nash bargaining solution. Rubinstein, Safra, and Thomson (1992) (RST in the sequel) recast the bargaining problem into the underlying set of physical alternatives and give an axiomatization of what is known as the ordinal Nash bargaining solution. This solution has a very natural interpretation and has the interesting property that when risk preferences satisfy the expected utility axioms, it induces the standard Nash bargaining solution of the induced bargaining problem. This property justifies the proper name in the solutionâ€™s appellation. The purpose of this paper is to give an axiomatic characterization of the rule that assigns the time-preference Nash outcome to each bargaining problem.