Uniqueness of the Shapley Value

ABRAHAM NEYMAN*

Institute of Mathematics and Department of Economics, The Hebrew University, Jerusalem 91904, Israel

It is shown that the Shapley value of any given game \(v \) is characterized by applying the value axioms—efficiency, symmetry, the null player axiom, and either additivity or strong positivity—to the additive group generated by the game \(v \) itself and its subgames. © 1989 Academic Press, Inc.

It has often been remarked (e.g., Hart and Mas-Colell, 1988) that the standard axiomatizations (e.g., Dubey, 1975; Shapley, 1953; Young, 1985) of the Shapley value require the application of the value axioms to a large class of games (e.g., all games or all simple games). It is shown in this paper that the Shapley value of any given game \(v \) is characterized by applying the value axioms to the additive group generated by the game \(v \) itself and its subgames. This is important, particularly in applications where typically only one specific problem is considered.

Let \(N \) be a finite set. We refer to \(N \) as the set of players and to a subset \(S \) of \(N \) as a coalition. A (cooperative) game (with side payments) on the set of players \(N \) is a function \(v: 2^N \to \mathbb{R} \) satisfying \(v(\emptyset) = 0 \). For a given game \(v \) and a coalition \(T \), we refer to \(v(T) \) as the worth of \(T \). Given a game \(v \) on the set of players \(N \), and a coalition \(S \), we denote by \(v_S \) the real valued function \(v_S: 2^N \to \mathbb{R} \) given by \(v_S(T) = v(S \cap T) \). Thus, \(v_S \) is a game on the set of players \(N \) and is called the subgame of \(v \), obtained by restricting \(v \) to subsets of \(S \) only.

The set of all games on the set of players \(N \) is denoted \(G^N \), or \(G \), for short. Let \(v \in G \) and \(i, j \in N \). The players \(i, j \) are substitutes in \(v \) if for every coalition \(S \subseteq N \setminus \{i, j\} \), \(v(S \cup i) = v(S \cup j) \); player \(i \) is a null player in the game \(v \) if \(v(S \cup i) = v(S) \) for every coalition \(S \).

* Supported partially by the National Science Foundation Grant DMS 87 05294 at the State University of New York at Stony Brook and by CORE.
Let Q be a set of games on the set of players N. A map $\Psi: Q \to \mathbb{R}^N$ is efficient if for every v in Q, $\sum_{i \in N} \Psi_{iv} = v(N)$; it is additive if for every v, w in Q with $v + w \in Q$, $\Psi v + \Psi w = \Psi(v + w)$; it is symmetric if for every v in Q and every two players i, j that are substitutes in v, $\Psi_i v = \Psi_j v$. A map $\Psi: Q \to \mathbb{R}^N$ obeys the null player axiom if for every v in Q and every player i in N that is a null player of v, $\Psi_i v = 0$. For a given game v in G we denote by $G(v)$ the additive group generated by the game v and all of its subgames, i.e., $G(v) = \{w \in G \mid w = \Sigma k_i v_S, \text{ where } k_i \text{ are integers and } S_i \text{ coalitions}\}$.

Theorem A. Let $v \in G$. Any map Ψ from $G(v)$ into \mathbb{R}^N that is efficient, additive, and symmetric and obeys the null player axiom is the Shapley value.

Proof. Let ϕ be the Shapley value. We must prove that $\phi w = \Psi w$ for every game w in $G(v)$.

For any two games w, u and any two coalitions T and S, $(w \pm u)_S = w_S \pm u_S$ and $(w_S)_T = w_{S \cap T}$. Thus, any subgame of a game in $G(v)$ is in $G(v)$. For any game w in G we denote by $I(w) = \{S \subseteq N \mid \exists T \subseteq S \text{ with } w(T) \neq 0\}$. Note that for any minimal coalition S in $I(w)$, $w(S) \neq 0$. Also, $I(w \pm u) \subseteq I(w) \cup I(u)$ and $I(w_S) \subseteq I(w)$. We prove that $\Psi w = \phi w$ for w in $Q(v)$ by induction on $|I(w)|$, the number of elements in $I(w)$. If $|I(w)| = 0$ then w is the 0 game and thus, by the null player axiom $\Psi w = 0 = \phi w$. Assume that $\Psi w = \phi w$ whenever $|I(w)| \leq k$ and let $w \in G(v)$ with $|I(w)| = k + 1$. Let S be a minimal element in $I(w)$. Then, w_S is a unanimity game and thus, by symmetry, efficiency, and the null player axiom it follows that $\Psi_i w_S = 0 = \phi_i w_S$ for every $i \notin S$ and $\Psi_i w_S = w(S)/|S| = \phi_i w_S$ for every $i \in S$. Note that $S \notin I(w - w_S) \subseteq I(w) \cup I(w_S) \subseteq I(w)$ and thus,

$$|I(w - w_S)| < |I(w)| \quad \text{for every minimal coalition } S \in I(w). \quad (1)$$

Thus, by the induction hypothesis $\Psi(w - w_S) = \phi(w - w_S)$ and applying additivity, $\Psi w = \Psi(w_S) + \Psi(w - w_S) = \phi(w_S) + \phi(w - w_S) = \phi w$.

Our next result characterizes the Shapley value without the additivity axiom. The axiom that is added is strong positivity, which asserts that the value of each player is a monotonic function of his marginal contributions.

A map $\Psi: Q \to \mathbb{R}^N$ is strongly positive if for any player $i \in N$ and any two games, w and u, in Q with $w(S \cup i) - w(S) \geq u(S \cup i) - u(S)$, $\Psi_i w \geq \Psi_i u$.

Theorem B. Let $v \in G^N$. Any map Ψ from $G(v)$ into \mathbb{R}^N that is efficient, strongly positive, and symmetric is the Shapley value.

Proof. We prove that $\Psi w = \phi w$ for any w in $G(v)$ by induction on $|I(w)|$. If $|I(w)| = 0$ then w is the 0 game and thus, by the efficiency and
symmetry of Ψ, $\Psi_iw = \varphi_iw = 0$. Assume that $\Psi_w = \varphi_w$ whenever $|I(w)| \leq k$ and let $w \in G(v)$ with $|I(w)| = k + 1$. Let $\partial(w)$ denote the set of minimal coalitions in $I(w)$. Note that for every S in $\partial(w)$ and every $i \in N \setminus S$, $w_S(T \cup i) - w_S(T) = 0$ and therefore by strong positivity of Ψ, $\Psi_i(w) = \Psi_i(w - w_S)$ which by (1) and the induction hypothesis equals $\varphi_i(w - w_S) = \varphi_i(w)$. Thus, $\Psi_iw = \varphi_iw$ for every $i \in N \setminus S$ where $S \subseteq \partial(w)$. Letting S_0 denote the intersection of all coalitions S in $\partial(w)$, i.e., $S_0 = \cap_{S \in \partial(w)} S$, we deduce that

$$\Psi_iw = \varphi_iw \quad \text{for every } i \in N \setminus S_0. \quad (2)$$

Note that $w(T) = 0$ whenever $T \not\subseteq S_0$. Thus, every two players i, j in S_0 are substitutes in w. Thus, using (1) and the efficiency of both Ψ and φ we deduce that $\Sigma_{i \in S_0} \Psi_iw = \Sigma_{i \in S_0} \varphi_iw$, and by applying the symmetry of both Ψ and φ,

$$\Psi_iw = \varphi_iw \quad \text{for every } i \in S_0. \quad (3)$$

Combining (2) and (3) we conclude that $\Psi_w = \varphi_w$.

Remark a. The above results show, in particular, that any additive subgroup of G, that is closed under the subgame operator, has a unique value. For instance, let w be a given monotonic simple game. Then, $Q = \{wu | u \in G\}$ is an example of such an additive subgroup. Such spaces of games arise in models in which political approval that is described by the simple game w is needed for various economic activities.

Remark b. It follows from the proof of Theorem B that strong positivity could be replaced by the axiom that Ψ_iu depends only on the marginal contributions $u(S \cup i) - u(S)$, $S \subseteq N$, of player i in u.

References

